
Interactive Distributed Ray Tracing
of Highly Complex Models

Ingo Wald, Philipp Slusallek, Carsten Benthin
Computer Graphics Group,

Saarland University, Saarbruecken, Germany
fwald,slusallek,benthing@graphics.cs.uni-sb.de

Abstract. Many disciplines must handle the creation, visualization, and manip-
ulation of huge and complex 3D environments. Examples include large structural
and mechanical engineering projects dealing with entire cars, ships, buildings,
and processing plants. The complexity of such models is usually far beyond the
interactive rendering capabilities of todays 3D graphics hardware. Previous ap-
proaches relied on costly preprocessing for reducing the number of polygons that
need to be rendered per frame but suffered from excessive precomputation times
— often several days or even weeks.
In this paper we show that using a highly optimized software ray tracer we are
able to achieve interactive rendering performance for models up to 50 million
triangles including reflection and shadow computations. The necessary prepro-
cessing has been greatly simplified and accelerated by more than two orders of
magnitude. Interactivity is achieved with a novel approach to distributed render-
ing based on coherent ray tracing. A single copy of the scene database is used
together with caching of BSP voxels in the ray tracing clients.

1 Introduction

Fig. 1. Four copies of the UNC power-plant ref-
erence model with a total of 50 million triangles.
In this view a large fraction of the geometry is
visible. At 640x480 pixels the frame rate is 3.4
fps using seven networked dual Pentium-III PCs.

The performance of todays graphics
hardware has been increased dramati-
cally over the last few years. Today
many graphics applications can achieve
interactive rendering performance even
on standard PCs. However, there are also
many applications that must handle the
creation, visualization, and manipulation
of huge and complex 3D environments
often containing several tens of millions
of polygons [1, 9]. Typical examples of
such requirements are large structural en-
gineering projects that deal with entire
buildings and processing plants. Without
special optimization techniques these en-
vironments will stay well below interac-
tive rendering performance.

In the past these models were usually
handled on a component by component
basis, as the sheer data volume prohib-
ited any interactive visualization or manipulation of the models as a whole. However,



there are several scenarios that require the interactive visualization and manipulation
of entire models. For instance, design reviews and simulation-based design must often
deal with the complex interrelations between many components of the model, such as
a large processing plant involving many industrial robots and transport devices. Many
interactive tasks benefit greatly from the ability to instantly inspect any aspect of the
entire model, such as walking or flying around the model as a whole and then zooming
in on relevant details.

A minimum requirement for achieving interactivity is the spatial indexing of the
geometry. This allows to limit rendering to visible parts of the model by using view
frustum and occlusion culling (e.g. [4, 22]). Unless the model has been organized in
such a way already, spatial indexing requires sorting the geometry spatially in a rela-
tively simple and efficient preprocessing phase.

Beyond spatial indexing rendering can be improved by performing additional pre-
computation: computing and rendering only the potentially visible set (PVS) of geome-
try, creating and selecting levels-of-detail (LOD), simplifying the geometry, and replac-
ing distant geometry using image-based methods. Aliga et al. [1] created a framework
using all these methods to achieve interactive performance for our reference power-
plant model (see Figure 1).

This advanced preprocessing, however, is very costly and for most cases cannot be
fully automated yet. Preprocessing time was estimated to be 3 weeks for the complete
model of only a single power-plant from Figure 1.

Because of this tremendous overhead, alternatives need to be found that do not
require such costly preprocessing in order to achieve interactivity. Ray tracing is an ob-
vious candidate as it only relies on spatial indexing for efficient rendering and features
built-in view frustum and occlusion culling. It is known to have logarithmic scalability
in terms of models size and also scales well with available computational resources due
to being “embarrassingly parallel”.

However, ray tracing is known for its high computational cost and is not usually
associated with interactive rendering. Fortunately, this situation is changing rapidly as
highly optimized ray tracing implementations become available [20, 14].

1.1 Interactive Ray Tracing on Standard PCs

The coherent ray tracing approach by Wald et al. [20] achieves high rendering speed
both through a new ray tracing algorithm and low-level optimizations. The latter in-
clude simplifying and optimizing code paths, optimizing data structures for caching,
and using SIMD extensions (Single Instruction – Multiple Data, such as Intels SSE [6])
for data-parallel implementations of basic ray tracing algorithms. This implementation
is limited to triangles only but offers arbitrary shading computations through dynami-
cally loadable modules.

The new algorithm improves on basic recursive ray tracing by making significantly
better use of coherence through reordering rays and tracing, intersecting, and shading
them in packets of four or more rays in SIMD fashion. This is similar in spirit to [16]. It
reduces the memory bandwidth proportionally to the number of rays in a packet because
data needs to be fetched only once for the whole packets instead of once for each ray.
It also improves caching behavior through better data locality.

By tracing rays in packets the usual depth-first ray tracing algorithm is essentially
reordered to be breadth-first within each packet. This reordering can exploit the coher-
ence among adjacent eye rays as well as among shadow and other secondary rays.

With all these optimization the coherent ray tracing algorithm runs almost com-



pletely within the data caches of the CPU, thus achieving speedup factors between
11 to 15 (!) compared to conventional ray tracers. It challenges the performance of
high-end graphics hardware already for scene complexities of more than half a million
triangles and moderate screen resolutions of 5122 using only a single Intel Pentium-III
CPU [20].

1.2 Interactive Distributed Ray Tracing

Due to the “embarrassingly parallel” nature of ray tracing these results scale well with
the use of multiple processors as long as they all get the necessary bandwidth to the
scene database. However, contrary to other approaches [10, 14, 1] our target platform
is not an expensive shared-memory supercomputer but the inexpensive cluster of work-
stations (CoW) that is commonly available everywhere. Unless the complete data base
is replicated on each machine the bandwidth of the network limits the performance for
distributed ray tracing in this scenario.

We use the classic setup for distributed ray tracing using a single master machine
responsible for display and scheduling together with many working clients that trace,
intersect, and shade rays. The main challenges of this approach are efficient access to a
shared scene data base that can contain several GB of data, load balancing, and efficient
preprocessing.

We solve these issues with a novel approach that is again based on exploiting coher-
ence using the same basic ideas as in [20] but on a coarser level. Our main contributions
are:

Scene subdivision In a preprocessing step a high-level BSP-tree is built while adap-
tively subdividing the scene into small, self-contained voxels. Since preprocess-
ing is only based on the spatial location of primitives it is simple and fast. Each
voxel contains the complete intersection and shading data for all of its triangles
as well as a low-level BSP for this voxel. These voxels form the basis for our
explicit cache management.

Scene cache management The complete preprocessed scene is stored on a server only
once and all clients request voxels on demand. The clients explicitly manage
a cache of voxels, thus exploiting coherence between rays (within the rays of
a single packet and between multiple adjacent packets) and in time (between
similar rays in subsequent frames).

Latency hiding By reordering the computations we hide some of the latencies in-
volved in demand loading of scene data across the network by continuing compu-
tations on other rays while waiting for missing data to arrive. This approach can
easily be extended by prefetching data for future frames based on rays coarsely
sampling a predicted new view.

Load balancing We use the usual task queue approach based on image tiles for load
balancing. Instead of randomly assigning image tiles to clients we try to assign
tiles to clients that have traced similar rays in previous frames. This approach
maximizes cache reuse across all clients. Ideally this leads to the working set
(visible geometry) being evenly distributed among the caches of all clients.

The paper is organized as follows: we start with a review of related work in the next
section before presenting and discussing the main issue of distributed data management
in Section 3. Section 4 describes our preprocessing algorithm, which is followed by
a discussion of our load balancing algorithm in Section 5. Results are presented in
Section 6 before we conclude and offer suggestions for future work in Section 7.



2 Related Work

Regarding the visualization of large models, the most closely related previous work is
the UNC “Framework for Realtime Walkthrough of Massive Models” [1]. In particular
we have chosen to directly compare our results with the performance published in this
paper. The UNC framework focuses on walkthroughs using high end graphics hard-
ware and a shared-memory multiprocessor machine. It consistently achieves interactive
frame rates between 5 and 15 frames per second on an early SGI Onyx with four R4400
and an InfiniteReality graphics subsystem.

The UNC framework uses a combination of different speedup techniques. The
largest effect is due to the replacement of distant geometry by textured depth meshes [1,
19, 3], which results in an average reduction of rendered polygons by 96%. This reduc-
tion is due to occlusion as well as sparse resampling of the environment with image-
based methods. Both effects are implicit in ray tracing, even though the resampling in
ray tracing is dynamic and uses the original geometry instead of rendering a smaller
simplified scene. The resulting scintillations or temporal noise can at least partially be
resolved by a temporal coherent sampling strategy [8].

Another reduction by 50% each resulted from view frustum and level-of-detail
(LOD) selection. While the first is again an implicit feature of ray tracing, we do not
implement LODs even though they could easily be used once they are generated [5].
This is a typical time/image quality trade-off because not using LOD increases aliasing
but avoids the long preprocessing times for LOD creation.

Finally, occlusion culling based on hierarchical occluder maps (HOM) [22] for the
near geometry reduces the number of rendered polygons by another 10%. Again occlu-
sion culling is implicit in a ray tracer and does not require additional preprocessing.

The main drawback of the UNC approach is the tremendous preprocessing time —
estimated to be three weeks for a single copy of the power-plant model. The technique
is also less scalable both in terms of model size (the preprocessing is apparently super-
linear) and graphics performance, where performance of ray tracing can easily be scaled
by adding more client PCs.

Recently Parker et al. [14, 12, 13] demonstrated that interactive frame rates could
also be achieved with a full-featured ray tracer on a large shared-memory supercom-
puter. Their implementation offers all the usual ray tracing features, including paramet-
ric surfaces and volume objects, but is carefully optimized for cache performance and
parallel execution in a non-uniform memory-access environment. They have proven
that ray tracing scales well in the number of processors in a shared memory environ-
ment, and that even complex scenes of several hundred thousand primitives could be
rendered at almost real-time frame rates.

A similar system has been realized by Muuss [9, 10]. It used CSG objects as its
primitives, which makes direct comparisons difficult. It also uses an optimized general
ray tracer and was able to render highly complex models at a few frames per second on
high-end shared-memory supercomputers with up to 96 CPUs. However, both this and
the Utah system require an expensive shared-memory machine, while we concentrate
our effort on low cost PCs in standard network environments.

Memory coherent ray tracing by Pharr et al [15] has also been able to efficiently
render highly complex objects by exploiting coherence between rays. In addition to
basic ray tracing their system also implements global illumination effects through path
tracing [7].

We share the basic idea of splitting the scene into smaller voxels and using these
for manual caching. However, our usage of the voxel structure is quite different, as



Pharr et al. performs significantly more reordering and scheduling of computations. In
their system intersection computations are scheduled based on voxels: all rays that have
entered a voxel so far are intersected in batches with the geometry in this voxel and rays
are forwarded to adjacent voxels if there is no hit. The intersection computations for a
voxels are scheduled based on the number of rays waiting, their weight, the amount of
geometry, the state of the geometry cache, and other factors.

The system made it possible to ray trace scenes of up to 50 million triangles, but
was far from realtime with rendering times still in the order of several hours for images
of moderate size. On the other hand this system was mainly designed for generality and
not for highest performance.

Another difference to our approach is the regular structure of the scheduling grid
and the local forwarding of rays. The first issue results in large numbers of voxels even
in empty regions of the scene (particularly relevant in the power-plant model) and the
second has a significant overhead in tracing individual rays through empty space. By
tracing packets of rays in parallel until they all terminate we eliminate this overhead
while our BSP hierarchy better adapts to the local structure of the scene.

Of course, there has been a tremendous amount of previous work on parallel and
distributed ray tracing in general. Detailed surveys can be found in [2, 18, 17]. Most
of the techniques used in our ray tracing engine have been proposed in one or another
way in previous publications, but never in the combination and with the optimizations
as presented here. To our knowledge this is the first time anything close to interactive
performance has been reported for distributed ray tracing with models of this size.

3 Distributed Data Management

The main problem we had to deal with for highly complex scenes are related to file
size, limited address space, network distribution of the model data, and stalls due to
demand loading. File size is not really a problem any more as most platforms (Linux in
particular) are now supporting file sizes beyond 2 GB. More problematic is the limited
virtual address space on 32 bit architectures such as Intel’s Pentium CPUs.

In the original implementation of coherent ray tracing [20] we created a single bi-
nary file containing the model. It used the main memory layout so that we could directly
map the entire file into our address space using the Unix mmap-facilities. However this
is no longer possible with files larger than the supported address space. One possible
solution would be to map only parts of a larger file and change the mappings on demand
(essentially using a cache of mappings).

On the other hand we did not want to replicate the entire model of several GB on
each of our client machines. This means that demand loading of mapped data would
be performed across the network with its low bandwidth and large latency. While this
approach is technically simple by using mmap across an NFS-mounted file system, it
drastically reduces performance for large models. For each access to missing data the
whole ray tracing process on the client is stalled while the operating system reads a
single memory page across the network.

Even stalling for a few milliseconds due to network latency is very costly for an in-
teractive ray tracer: Because tracing a single ray costs roughly one thousand cycles [20],
we would lose several thousand rays for each network access. Instead we would like
to suspend work on only those rays that require access to missing data. The client can
continue working on other rays while the missing data is being fetched asynchronously.
However, this approach is not possible with the automatic demand loading facilities of
the operating system unless large numbers of threads would be used, which would be



infeasible.

3.1 Explicit Data Management

Instead of relying on the operating system we had to explicitly manage the data our-
selves. For this purpose we decompose the models into small voxels. Each voxel is
self-contained and has its own local BSP tree. In addition, all voxels are organized in
a high-level BSP tree starting from the root node of the entire model (see Figure 2).
The leaf nodes of the high-level BSP contain additional flags indicating whether the
particular voxel is in the cache or not.

Voxel

Geometry

Shading Data

BSP
Voxel

Voxel

Geometry

Shading Data

BSP
Voxel

Voxel

Geometry

Shading Data

BSP
Voxel

Voxel Cache Table

BSP

Toplevel

= "not in cache"

Fig. 2. The data structure used to organize the
model data. Voxels are the smallest entity for
caching purposes. Their average compressed
size is roughly 75 KB.

If a missing voxel is accessed by a ray
during traversal of the high-level BSP,
we suspend this ray and notify an asyn-
chronous loader thread about the missing
voxel. Once the data of the voxel has
been loaded into memory by the loader
thread, the ray tracing thread is noti-
fied, which resumes tracing of rays wait-
ing on this voxel. During asynchronous
loading, ray tracing can continue on all
non-suspended rays currently being pro-
cessed by the client. More latency could
still be hidden by deferring shading oper-
ations until all rays are stalled or a com-
plete tile has been traced. We use a sim-
ple least-recently-used (LRU) strategy to manage a fixed size geometry cache.

3.2 Compressed Data

We had to come up with a reasonable compromise between the file size of voxels and the
overhead through replication of triangle data. That compromise resulted in an average
file size of voxels of 250 KB. With files of this size the voxel loading time is strongly
dominated by the amount of data transfered over the network. This means that reducing
the file size would also reduce the loading time. We pack our voxels using a method
that allows fast and space/cache efficient decompression using the LZO compression
library [11].

Though this compression is more optimized towards speed, its compression ratio
is approximately 3:1 for our voxel data. Decompression performance is significantly
higher than the network bandwidth, taking at most a few hundred microseconds, thus
making the decompression cost negligible compared to the transmission time even for
compressed voxels.

3.3 Shared Voxel Cache

All the PCs in our system are dual-processor PCs and run two ray tracing threads in
parallel. In addition to a good price/performance ratio, it offers the additional advantage
that network bandwidth can be reduced by up to a factor of two: whenever data is
loaded, it is made available to both threads. Of course, this requires that both threads
share the same voxel cache. In order to keep overhead as low as possible all cache
management functionality is bundled in a third cache management and voxel fetcher
thread, which shares the address space with the rendering threads.



4 Preprocessing

The total size of a single power-plant model is roughly 2.5 GB after preprocessing
including BSP-trees, replicated triangles, and shading data. Due to this large data size
we need an out-of-core algorithm to spatially sort and decompose the initial model.

The algorithm reads the entire data set once in order to determine its bounding box.
It then recursively determines the best splitting plane for the current BSP node and sorts
all triangles into the two child nodes. Triangles that span both nodes are replicated.
Note that the adaptive decomposition is able to subdivide the model finely in highly
populated areas and generates large voxels for empty space. At this stage each node is
a separate file on disk in a special format that is suitable for streaming the data through
the preprocessing programs.

Once the size of a BSP node is below a given threshold we create a voxel and
store it in a file that contains its data (triangles, BSP, shading data, etc.). This is a
binary file format that is suitable for directly reading it into memory. In order to avoid
large directories with the associated lookup cost on some file systems, the files are
automatically sorted into a directory hierarchy.

This preprocessing algorithms is easy to set up as it has only two parameters that
need to be set: the number of triangles in a voxel and the maximum depth of the BSP
trees. The rendering speed is fairly insensitive to the exact setting of these parameters
as long as the minimum size of voxels is reasonably small. However, the size of the
generated data set increases steadily with smaller voxel size and larger BSP depth. It
is still unclear if there is an automatic way to determine good values for these two
parameters.

The cost of preprocessing algorithms has a complexity of O(n logn) in the model
size. Preprocessing is mainly I/O bound as the computation per triangle is minimal. We
are currently using a serial implementation, where each step in the recursive decompo-
sition is a separate invocation of a single program. Currently, the resulting files are all
located on a single machine acting as the model server.

With a little more programming effort we could significantly speed up preprocessing
by distributing the triangle data to multiple machines. A master process would control
the decomposition, distribute the load across the machines, and build the high-level BSP
tree. Storing the data base on several machines would have the additional benefit that
access is distributed across all data base servers, thus making better use of the available
bandwidth in a fully switched network. Of course, once the data set of a node is small
enough an in-core algorithm should be used for better preprocessing performance.

5 Load Balancing

The efficiency of distributed/parallel rendering depends to a large degree on the amount
of parallelism that can be extracted. We are using demand driven load balancing by
subdividing the image into tiles of a fixed size (32 by 32 pixels). As the rendering
time for different tiles can vary significantly (e.g. see the large variations in model
complexity in Figures 1 and 7), we must distribute the load evenly across all client
CPUs. This has to be done dynamically, as the frequent camera changes during an
interactive walkthrough make static load-balancing impossible.

We employ the usual dynamic load balancing approach where the display server
distributes tiles on demand to clients. The tiles are taken from a pool of yet unassigned
tiles, but care is taken to maintain good cache locality in the clients. Currently, the
scheduler tries to give clients tiles they have rendered before, in order to efficiently



reuse the data in their geometry caches. This approach is effective for small camera
movements but fails to make good use of caches for larger movements.

This simple assignment can be improved using an idea from image-based rendering
— essentially a simplified RenderCache [21, 8]. For each traced ray the 3D intersection
points would be stored together with its rendering cost and the client that computed it.
This information can then reprojected into the next frame. For each new tile, its cost is
estimated by averaging the cost over all the intersection points reprojected to this tile.

Additionally, for each tile a client affinity value is estimated based on the fraction of
reprojected samples computed by a particular client. Tiles are then assigned to clients
primarily based on affinity in order to maximize cache reuse. Additionally we hand out
costly tiles first in order to minimize load imbalance towards the end of a frame.

In order to avoid idle times while the clients are waiting for the next task from the
master each client buffers one additional task. This way, when a client has completed
its current tile, it can immediately proceed working on the next tile without having to
wait for the servers reply. In a similar way, we double-buffer workload in the server: If
all tiles from the current frame have been assigned to clients, the server starts assigning
tiles from the next frame while waiting for the last frame to complete.

6 Implementation and Results

Our current setup uses two servers — one for display and one for storing and distribut-
ing the preprocessed models. Both machines are connected via Gigabit Ethernet to a
Gigabit Ethernet switch. These fast links help in avoiding network bottlenecks. In par-
ticular we require a high bandwidth connection for the display server in order to deal
with the pixel data at higher resolutions and frame rates. The bottleneck for the model
data could be avoided by distributing it among a set of machines as mentioned above.

0

1

2

3

4

5

6

7

1s 23s 46s 69s 92s
0

5

10

15

20

25

30

35

40

f
r
a
m
e
s
 
p
e
r
 
s
e
c
o
n
d

da
ta

 v
ol

um
e 

in
 M

B
/s

time (in sec)

framerate
loaded data volume

Fig. 3. Frame rate and transfered data rate af-
ter decompression during a walkthrough head-
ing from the outside to the inside of the power-
plant building. The frame rate is pretty con-
stant around 4-5 fps unless large amounts of data
are transfered (at the beginning where the whole
building is visible). The frame rate is achieved
without the SIMD optimization, which should
the frame rate by at least a factor a two to 6–12
fps.

For our experiments we have used
seven dual P-III 800-866 MHz machines
as ray tracing clients. These clients are
normal desktop machines in our lab but
were mostly unused while the tests were
performed. The client machines are con-
nected to a FastEthernet switch that has a
Gigabit uplink to the server switch.

The model server has two very fast
striped disks for storing the preprocessed
model data. The disks can sustain a band-
width of roughly 55 MB/s, which al-
most exactly matches the maximum mea-
sured Gigabit network bandwidth. We
use NFS with large read and write buffers
to access the model data from the clients.
Each client is able to almost saturate the
full bandwidth of its network connection,
such that our potential bottleneck is now
the connection to the model server. The
display and scheduling server runs at a
very light computational load but must
handle a large and constant stream of pix-
els from all clients.



We have tested our setup with the power-plant model from UNC [1] to allow for
a direct comparison with previous work. This also provides for a comparison of algo-
rithms based on rasterization versus ray tracing.

The power-plant test model consists of roughly 12.5 million triangles mostly dis-
tributed over the main building that is 80 meter high and 40 by 50 meters on either
side (see Figure 1). Each triangle of the model also contains vertex normals that allow
smooth shading and reflection (see below).

Preprocessing including conversion from the original PLY-files into our format as
well as voxel decomposition took roughly 2.5 hours, with our unoptimized, sequential
implementation. This already is significantly faster than the preprocessing required
in [1]. That approach required 17 hours for a partial preprocessing that did only allow
for interactive movements in a small fraction of the overall model. Their preprocessing
time for the whole model was estimated to take three weeks [1]. We estimate that once
parallel preprocessing is fully implemented, our preprocessing time could be reduced
to less than half an hour.

Figure 3 gives a compact summary of our overall results. It shows the frame rate
achieved by our system as well as the amount of geometry fetched over the course of a
walk through the model. All images in this paper are computed at 640 by 480 resolution.
The total time of the walkthrough is 92 seconds using all seven clients. Note that we
only trace primary rays for this test in order to allow direct comparison with the results
from [1]. We only show the results of a single walkthrough, as they closely match those
from other tests.

The walkthrough starts outside the main building while sweeping the view across
most of the power-plant. This is very demanding as the building is mostly open and
allows to see much of the complex inside structure. A lot of geometry needs to be
loaded, which saturates the network connection to the model server at up to 17 MB/s of
geometry (uncompressed) for a single client only.

0

1

2

3

4

5

6

7

8

1pc 2pcs 3pcs 4pcs 5pcs 6pcs 7pcs
0

1

2

3

4

5

6

7

8

s
p
e
e
d
u
p
 
w
i
t
h
 
#
P
C
s

Speedups for different numbers of PCs

walkthrough, cache cleared
walkthrough, data already in cache

ideal speedup

Fig. 4. The system shows almost perfect scala-
bility from 1 to 7 dual CPU PCs if the caches
are already filled. With empty caches we see
some network contention effects with 4 clients
but scalability is still very good. Beyond 6 or 7
clients we start saturating the network link to the
model server.

We then move inside the main build-
ing. The working set is much lower here,
but can change very quickly as we move
past a large occluder. During this time
we still fetch an average of 1–2 MB/s
of geometry data (with spikes up to 13
MB/s). However, the latency of those
transfers can mostly be hidden by our
asynchronous fetching approach. We do
not yet perform any form of prefetching,
even though this would help even more
in avoiding network effects.

With seven dual CPU machines we
achieve a pretty constant frame rate of
3–5 fps. However, all numbers are com-
puted with plain C++ code, as the SIMD
code was still being adapted to the new
distributed algorithm. Early tests of the
SIMD optimized ray tracing code has
consistently achieved speedups by a fac-
tor greater than 2. This brings our frame
rate up to 6–12 fps, which is about the same as achieved in [1]. Note that we still render
the original model with all details and not a simplified version of it.



Fig. 5. Two images showing show the structure of the high-level BSP tree by color coding
geometry in each voxel (bottom image). Voxels are relatively large for the walls but become
really small in regions with lots of details.

Figure 5 visualizes the BSP structure that is built by our preprocessing algorithm.
The voxel size decreases significantly for areas that have more geometric detail.

The original model does not provide material information other than some mean-
ingless surface colors. In order to test some of the advanced features of ray tracing,
we added a distant light source to the model and made some of the geometry reflective
(see Color Plate 6). Of course, we see a drop in performance due to additional rays
being traced for shadows and reflections. However, the drop is mostly proportional to
the number of traced rays, and shows little effect due to the reduced coherence of the
highly diverging rays that are reflected off the large pipe in the front as well as all the
tiny pipes in the background.

We also tested the scalability of our implementation by using one to seven clients
for rendering exactly the same frames as in the recorded walkthrough used for the tests
above and measured the total runtime. The experiment was performed twice — once
with empty caches and once again with the caches filled by the previous run. The
difference between the two would show network bottlenecks and any latencies that
could not be hidden. As expected we achieved almost perfect scalability with filled
caches (see Figure 4), but the graph also shows some network contention effects with
4 clients and we start saturating the network link to the model server beyond 6 or 7
clients. Note, that perfect scalability is larger than seven because of variations in CPU
clock rates.

Because we did not have more clients available, scalability could not be tested be-
yond seven clients. However, our results show that scalability is mainly bound by the
network bandwidth to the model server, which suggests that a distributed model data
base would allow scalability well beyond our numbers. Of course we could also repli-
cate the data — space permitting.

Color Plate 7 shows some other views of the power-plant showing some of the
complexity hidden in this huge test model.

For a stress test of our system we have placed four copies of the power-plant model
next to each other resulting in a total model complexity of roughly 50 million triangles
(see Figure 1). Preprocessing time increased as expected, but the frame rate stayed
almost identical compared to the single model. Essentially the depth of the higher-level
BSP tree was increased by two, which hardly has any effects on inside views.



However, for outside views we suffer somewhat from the relatively large voxel gran-
ularity, which results in an increased working set and accordingly longer loading times
that can no longer be completely hidden during movements. When standing still the
frame rates quickly approach the numbers measured for a single copy of the model.

7 Conclusions and Future Work

Previously, interactive rendering performance for highly complex models with tens of
millions of polygons and more could only be achieved with high-end graphics hardware
on supercomputers and required very expensive preprocessing techniques that makes
the technique mostly infeasible.

In this paper, we have shown that using a software ray tracing approach, interactive
rendering performance can be achieved for more complex models even on inexpensive
clusters of workstations. We use a two–level, adaptive scene decomposition with BSP
trees that allows explicit data management for caching and reordering purposes.

We have shown that a high degree of parallelism can be extracted from such systems
by using efficient load balancing and paying careful attention to network bandwidth and
latencies. Stalling due to network latencies can be avoided to some degree by reordering
the computations within the clients.

Even though our system already achieves interactive rendering performance by us-
ing only seven rendering clients, there are many ideas for further improvements:

Obviously, faster computers and networks are already available. They would allow
for almost twice the performance while being only slightly more expensive.

The other obvious extension to the system is to increase speed by fully activating
the SIMD extensions and prefetching methods as described in [20]. Also a distributed
scene data base would avoid the server bottleneck and allow for even more rendering
clients.

More computational resources would allow us to spend more effort on illumination
and shading computations. In particular, anti-aliasing and more complex shading com-
putations, like programmable shading, would be interesting. It would also be interesting
to implement more complex global illumination algorithms and deal with the reduced
coherence for illumination rays.

Bandwidth could be reduced further by separating BSP, geometry, and shading in-
formation into separately loadable entities. This would prevent loading shading data
even for voxels that never generate an intersection. Similarly, we need to avoid the
increased file size due to replicating information for geometry contained in multiple
voxels.

Finally, as is the case with all algorithms working on a fixed spatial decomposi-
tion, we are limited to static environments. New algorithms and data structure that can
deal with complex dynamic environments are desperately needed for interactively ray
tracing.

8 Acknowledgements

We thank the the Computer Graphics Group at the University of North Carolina and
Anselmo Lastra in particular for providing the power-plant model. Georg Demme and
Marcus Wagner provided invaluable help and support with programming and system
setup. We also thank the anonymous reviewers for the helpful comments.



References

1. D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson, K. Hoff, T. Hudson, W. Str-
zlinger, R. Bastos, M. Whitton, F. Brooks, and D. Manocha. MMR: An interactive massive
model rendering system using geometric and image-based acceleration. In 1999 ACM Sym-
posium on Interactive 3D Graphics, pages 199–206, Atlanta, USA, April 1999.

2. Alan Chalmers and Erik Reinhard. Parallel and distributed photo-realistic rendering. In
SIGGRAPH 98 Course, pages 425–432. ACM SIGGRAPH, Orlando, July 1998.

3. Lucia Darsa, Bruno Costa, and Amitabh Varshney. Navigating static environments using
image-space simplification and morphing. In ACM Symposium on Interactive 3D Graphics,
pages 25–34, Providence, RI, 1997.

4. Ned Greene, Michael Kass, and Gavin Miller. Hierarchical Z-buffer visibility. Computer
Graphics, 27(Annual Conference Series):231–238, 1993.

5. Homan Igehy. Tracing ray differentials. Computer Graphics, 33(Annual Conference
Series):179–186, 1999.

6. Intel Corp. Intel Pentium III Streaming SIMD Extensions. http://developer.intel.com/vtune/-
cbts/simd.htm.

7. James T. Kajiya. The rendering equation. Computer Graphics, 20(4):143–150, August 1986.
8. William Martin, Steven Parker, Erik Reinhard, Peter Shirley, and William Thompson. Tem-

porally coherent interactive ray tracing. Technical Report UUCS-01-005, Computer Graph-
ics Group, University of Utah, 2001.

9. Michael J. Muuss. Towards real-time ray-tracing of combinatorial solid geometric models.
In Proceedings of BRL-CAD Symposium ’95, June 1995.

10. Michael J. Muuss and Maximo Lorenzo. High-resolution interactive multispectral missile
sensor simulation for atr and dis. In Proceedings of BRL-CAD Symposium ’95, June 1995.

11. Markus Oberhume. LZO-compression library. available at http://www.dogma.net/-
DataCompression/LZO.shtml.

12. Steven Parker, Michael Parker, Yaren Livnat, Peter Pike Sloan, Chuck Hansen, and Peter
Shirley. Interactive ray tracing for volume visualization. IEEE Transactions on Computer
Graphics and Visualization, 5(3):238–250, July-September 1999.

13. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter Pike Sloan. Interac-
tive ray tracing for isosurface rendering. In IEEE Visualization ’98, pages 233–238, 1998.

14. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter Pike Sloan. Interac-
tive ray tracing. In Interactive 3D Graphics (I3D), pages 119–126, april 1999.

15. Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Rendering complex scenes with
memory-coherent ray tracing. Computer Graphics, 31(Annual Conference Series):101–108,
August 1997.

16. E. Reinhard and F. W. Jansen. Rendering large scenes using parallel ray tracing. In Euro-
graphics Workshop of Parallel Graphics and Visualization, pages 67–80, September 1996.

17. Erik Reinhard. Scheduling and Data Management for Parallel Ray Tracing. PhD thesis,
University of East Anglia, 1995.

18. Erik Reinhard, Alan Chalmers, and F.W. Jansen. Overview of parallel photorealistic graph-
ics. In Eurographics ’98, State of the Art Reports. Eurographics Association, August 1998.

19. Francois SIllion, George Drettakis, and Benoit Bedelet. Efficient imposter manipulation for
real-time visualization of urban scenery. Computer Graphics Forum, Proceeding Eurograph-
ics ’97, 16(3):207–218, September 1997.

20. Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek. Interactive rendering
with coherent ray tracing. Computer Graphics Forum (Proceedings of EUROGRAPHICS
2001, 20(3), 2001. available at http://graphics.cs.uni-sb.de/ wald/Publications.

21. Bruce Walter, George Drettakis, and Steven Parker. Interactive rendering using the render
cache. Eurographics Rendering Workshop 1999, 1999. Granada, Spain.

22. Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E. Hoff III. Visibil-
ity culling using hierarchical occlusion maps. Computer Graphics, 31(Annual Conference
Series):77–88, August 1997.



Fig. 6. Shadow and reflection effects created with ray tracing using one light source. The perfor-
mance drops roughly proportional to the number of total rays traced but the size of the working
set increases. Note the reflections off all the small pipes near the ground. Diffuse case: 1 ray per
pixel, 4.9 fps, with shadow and reflection (multiple of 2 rays): 1.4 fps.

Fig. 7. Two complex view of the power-plant. Both still render at 4.9 and 3.9 fps, respectively.


