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Abstract

Visualization users are increasingly in need of techniques
for assessing quantitative uncertainty and error in the im-
ages produced. Statistical segmentation algorithms compute
these quantitative results, yet volume rendering tools typi-
cally produce only qualitative imagery via transfer function-
based classification. This paper presents a visualization
technique that allows users to interactively explore the un-
certainty, risk, and probabilistic decision of surface bound-
aries. Our approach makes it possible to directly visual-
ize the combined ”fuzzy” classification results from multi-
ple segmentations by combining these data into a unified
probabilistic data space. We represent this unified space,
the combination of scalar volumes from numerous segmen-
tations, using a novel graph-based dimensionality reduction
scheme. The scheme both dramatically reduces the dataset
size and is suitable for efficient, high quality, quantitative
visualization. Lastly, we show that the statistical risk aris-
ing from overlapping segmentations is a robust measure for
visualizing features and assigning optical properties.

Keywords: volume visualization, uncertainty, classifica-
tion, risk analysis

1 Introduction

Volume visualization endeavors to provide meaningful im-
ages of features ”embedded” in data. There has been a sig-
nificant amount of research over the past 17 years on pro-
viding visualization of volume data [4, 6, 17, 19]. Interactive
volume visualization strives to allow the user to highlight fea-
tures of interest in the volume data, such as material bound-
aries or different tissue types. Such features are dependent
on a number of factors: the kind of data, domain specific
knowledge, and the user’s semantics. Simultaneously, there
has been progress towards classifying features from volumet-
ric data [5, 7, 21]. While segmentation is not considered to
be a solved problem, there exist many different methods for
segmenting volume data [10].

The demand for more quantitative measures in visual-
ization has grown both within the visualization community
and with the users of visualization tools. In volume ren-
dering applications, transfer functions have typically been
used for both classification and assignment of optical prop-
erties. However, using transfer functions for classification
limits the user’s ability to change the type of classification
that occurs and does not provide any quantifiable measure
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A) Transfer Function-based Classification B) Unsupervised Probabilistic Classification

Figure 1: A comparison of transfer function-based classification ver-
sus data-specific probabilistic classification. Both images are based
on T1 MRI scans of a human head and show fuzzy classified white-
matter, gray-matter, and cerebro-spinal fluid. Subfigure A shows the
results of classification using a carefully designed 2D transfer func-
tion based on data value and gradient magnitude. Subfigure B shows
a visualization of the data classified using a fully automatic, atlas-
based method that infers class statistics using minimum entropy,
non-parametric density estimation [21].

of uncertainty. Transfer functions also tend to be unintuitive
to use and do not provide the user with a clear concept of
how classification is being performed on the data.

Statistical classification and segmentation methods incor-
porate a probabilistic model of the data and feature behav-
iors, a sophisticated notion of spatial locality, as well as the
ability for the user to input their expertise. Interaction with
this kind of probabilistic data and decision rules can provide
each user the ability to define what information is important
to his/her particular task as part of the visualization.

In this paper, we propose a system that provides the
user access to the quantitative information computed dur-
ing fuzzy segmentation. The decision making step of clas-
sification is deferred until render time, allowing the user
finer control of the ”importance” of each class. Unfortu-
nately, postponing this decision result comes at the cost of
increased memory consumption. To accomodate this mem-
ory use, we propose a data dimensionality reduction (DDR)
scheme that is designed to accurately represent pre-classified
or segmented data for visualization. This approach allows
data to be classified using the most appropriate fuzzy seg-
mentation method, while utilizing existing volume visual-
ization techniques. We also show that statistical risk is a
robust measure for visualizing features and assigning optical
properties.

2 Previous Work

There has been an enormous number of publications on
both volume visualization and classification/segmentation.
A comprehensive overview is outside the scope of this paper.
For an extensive overview of volume rendering, the reader is
refered to an excellent survey by Kaufman and Mueller [13].
The book by Duda et al. provides a solid introduction to



the topic of statistical classification and segmentation [5].
Stalling et al. demonstrate the utility of fuzzy probabilistic
classification for creating smooth, sub-voxel accurate models
and visualization [20].

Using transfer functions for volume rendering involves
mapping data values to optical properties such as color and
opacity [17, 4]. Transfer function design is a difficult pro-
cess, especially when features are indistinguishable based on
data value alone. As such, researchers have investigated aug-
menting the domain of the transfer function with derivative
information to better disambiguate homogeneous materials
and the boundaries between them [14, 15].

Laidlaw demonstrated the effectiveness of classification
techniques that define an explicit material mixture model
and incorporate a feature space that includes spatial neigh-
borhood information [16]. Recently, a number of visualiza-
tion research efforts have begun to leverage high quality clas-
sification techniques to enhance the expressiveness of trans-
fer function design. Bajaj et al. show how statistical analysis
can drive the creation of transfer function lookup tables [1].
Tzeng et al. demonstrate two kinds of binary discriminant
classifiers for transfer function specification using artificial
neural networks and support vector machines [24]. Their
approach illustrates the benefits of a robust feature space
including local spatial information. In later work, Tzeng
et al. utilize a cluster-based discriminant and discuss the
importance of fuzzy classification with respect to material
boundaries [25].

Others take a different approach in dealing with the dif-
ficulties of transfer function-based classification and color
mapping by separating classification from the transfer func-
tion entirely. Tiede et al. describe a technique for volume
rendering attributed or tagged data that smoothes feature
boundaries by analyzing the relationship between the tags
and original scalar data [23]. Hadwigger et al. and Viola et
al. describe techniques for rendering tagged data that ex-
tends the approach of Tiede using a sophisticated hardware
accelerated system and novel rendering modalities for pre-
classified or segmented data [9, 26]. Bonnell et al. describe a
method for the geometric extraction of features represented
in data with volume-fraction information [2].

There has been a recent call from within the visualiza-
tion community for visualization techniques that provide a
rigorous treatment of uncertainty and error in the images
they produce [12]. Grigoryan and Rheihgens present a point-
based approach for representing spatial uncertainty in seg-
mented data [8]. Whittenbrink et al. describe how geometric
glyphs can be used to express uncertainty in vector valued
data fields [27].

A number of dimensionality reduction techniques have
been developed to either detect low-dimensional feature
manifolds in a high dimensional data-space or reduce the
dimensionality of the data-space while preserving relation-
ships between data samples. Principal component analysis
and independent component analysis are examples of lin-
ear dimensionality reduction [5]. ISOMAP and Local Lin-
ear Embedding are examples of non-linear manifold learning
techniques that attempt to ”flatten out” a sparsely sampled
manifold embedded in a higher dimensional space while pre-
serving the geodesic distance between points [18, 22].

3 General Statistical Classification

Classification of image data in either 2D or 3D is a special
case of a more general data classification. Since nearly all
image data share the characteristic that samples are spatially
correlated, the ”feature space” for image data classification
includes not only data values, but also spatial relationships.

Rather than discussing a specific classification scheme for
image data, we would like to focus on the more general sta-
tistical classification process and its application to visualiza-
tion. There are five basic elements of the statistical classi-
fication process that need to be considered when designing
a classifier: feature selection, classifier selection, parameter
estimation, class conditional probability estimation, and de-
cision and risk analysis. The remainder of this section covers
a statistical framework for image data classification for use in
visualization applications and describes each of these steps
in further detail.

3.1 Feature Selection
The first step in classifying data is to decide what features
should be identified and subsequently visualized. The fea-
tures are the different classes that exist in the data, which
we will identify as ωi, representing physical items such as
white matter and gray matter in MRI brain data, or more
abstract phenomena like warm and cold air-masses in nu-
merical weather simulation.

3.2 Classifier Selection
Before features can be classified, it is necessary to under-
stand how they are represented by the raw image data. For
scanned image data, e.g. MRI or CT, there are several as-
sumptions commonly made with respect to features in the
acquired signal. These assumptions can help guide the con-
struction of a statistical feature model. One common as-
sumption is that discrete materials tend to generate nearly
constant scanned values, i.e. if two samples come from the
same material, their signal intensities should be the same.
It is assumed that data sample values are degraded or per-
turbed by an independent noise source due to thermal vari-
ation and electro-magnetic interference. If the noise model
can be adequately characterized as a probabilistic distribu-
tion, it dictates the expected variation of data value for a
locally homogeneous material. Because data is only avail-
able in a discrete form, it is also assumed that the signal
is band limited and that the sample values are mixtures of
discrete materials near that sample. This assumption of par-
tial volume effects allows one to predict, or model, how data
values for multiple classes mix near boundaries. If for no
other reason, partial volume effects alone suggest that a-
priori, discrete class assignment of data samples is a poor
choice for representing classified data. That is, partial vol-
ume effects indicate that the classification of data samples
near feature boundaries is inherently fuzzy.

3.3 Parameter Estimation
If the feature model is parametric the next step is the esti-
mation of the model parameters. For instance, if materials
are represented as Gaussian distributions, it is necessary to
identify the mean and standard deviation for each of the
materials to be classified.

Not all feature models are parametric however, i.e. there
may not be an explicit, a-priori model for which to estimate
parameters. For instance, consider an artificial neural net-
work as a classifier. With this type of classifier, the model
and its parameters are implicit, and must be inferred from
a training set. The training set is a set of samples and the
associated class memberships identified by a user, which are
used to “teach” the classifier the relationships between fea-
ture vectors (data values) and classes. A training set might
also be used as segmentation seed points.

3.4 Class Probability Estimation
Once an appropriate feature model has been developed and
parameters identified for each feature of interest, it is pos-
sible to compute the class conditional probabilities for each



sample in the dataset. When these probabilities are cal-
culated using only the global feature model, with respect
to individual samples or feature vectors (�x), we call this
the probabilistic likelihood P (�x|ωi). What is wanted, how-
ever, is the posterior distribution P (ωi|�x), which weighs the
likelihood against observed evidence and prior information.
Bayes Rule provides the relationship between the posterior
distribution and likelihood,

P (ωi|�x) =
P (�x|ωi)P (ωi)∑C

i=1 P (�x|ωi)P (ωi)

where C is the number of classes, P (ωi) is the prior prob-
ability of class ωi, and the denominator is a normalization
factor that insures that

∑c
i=1 P (ωi|�x) = 1.

3.5 Decision and Risk Analysis
Conditional risk R(ωi, x) describes the loss incurred for de-
ciding that a sample x belongs to class ωi based on multiple
class conditional probabilities,

R(ωi, �x) =
C∑

j=1

λ(ωi, ωj)P (ωj |�x) (2)

where C is the number of classes, λ(ωi, ωj) is the risk weight,
which expresses the cost associated with deciding ωi when
the true state of nature is ωj . The optimal, discrete class
assignment rule for some feature sample �x is the ωi that
minimizes R(ωi, �x), and is commonly known as the Bayes
Risk or Bayes Decision Rule.

The maximum a-posteriori discriminant, also known as
the “0-1 risk” decision rule, is commonly used when build-
ing a tag volume from class conditional probabilities. It is
a special case in which the minimum risk class decision is
simply the class with the maximum conditional probability.
The risk weights in this case are,

λ(ωi, ωj) =

{
1 i �= j
0 i = j

The risk function becomes simply R(ωi, �x) = 1 − P (ωi|�x).
Another constructive way of reasoning about risk is to

consider what minimum value of λ(ωi, ωj) with respect to �x
would be required to make class ωi the minimum risk class.
This can be expressed as

λ(ωi, �x) = max
j,i�=j

(
P (ωj |�x)

P (ωi|�x)

)
(4)

We call this the “risk-ratio”. Figure 2 shows the relation-
ship between probabilities and their ratios for a 1D fea-
ture space (x) and two classes. For compactness we denote
P1(x) ≡ P (ω1|x) and P2(x) ≡ P (ω2|x). Because it is often
useful to work in ”log-probability” space, Figure 2 also plots
the log probabilities and log probability ratios (log risk ra-
tios). Figure 2A shows plots for a pair of non-normalized
distributions. Figure 2B shows the plots for the normalized
distributions based on P1(x) and P2(x) from Figure 2A. No-
tice that neither the probability ratio nor log probability
ratio is changed by normalization. Also notice that the log
risk-ratios have a zero-crossing at the “0-1” risk boundary,
denoted by the vertical line labeled B. In the following sec-
tion, we will leverage the behavior of the log risk ratio to
design a continuous discriminant function suitable for visu-
alizing the relationships between multiple class probabilities.

While specifying or manipulating the λ(ωi, ωj) risk weight
for each pair of classes is extremely useful for exploring un-
certainty in the classification, we have found that in practice
it is often tedious and cumbersome. Instead, it is prefer-
able to specify a weight that describes the ”importance” of
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Figure 2: A 1D example of probabilistic boundary behavior. The
graphs plot the relationship between probability, log-probability, prob-
ability ratio, and log-probability ratio in multi-class uncertainty anal-
ysis. Figure B shows these quantities for normalized probabilities.

a class. From this weight it is possible to derive the risk
weight as

λ(ωi, ωj) =

{
µj/µi i �= j
0 i = j

(5)

where µi is a user specified importance weight for class ωi.

4 Visualizing Classified Data

Our approach for visualizing classified data advocates de-
coupling the first four primary stages of classification from
the transfer function and deferring the final step, the deci-
sion, until a sample is rendered. This requires the fuzzy class
probabilities to be included with the data used for rendering.
The advantage of using the fuzzy probabilities is that they
interpolate, unlike discrete class assignments, and allow the
transfer function design to be greatly simplified.

4.1 Color Mapping Multi-Class Probabilities
Figure 3 shows a simple, synthetic 2D example that il-
lustrates various approaches for color mapping based on
class probabilities from a realistic classifier, iso-surfaces, and
transfer function-based classification. The simulated raw
data (Figure 3B) was created by assigning a unique inten-
sity value to each of the generated materials (Figure 3A),
rasterizing the materials into a 2562 image, blurring the im-
age, and finally adding three percent normally distributed
noise. Figure 3C shows four relevant iso-value thresholds
(Taken at intervals between the class means) as subimages.
The posterior class conditional probabilities were estimated
using the known parameters (Figure 3 D); mean data value,
noise distribution, and a neighborhood size proportional to
the blur kernel. Figure 3E shows the image color mapped
based on the class with the maximum probability (0-1 risk
decision), as is often done when generating ”tagged data”.
Figure 3F shows a color mapping based on class probabili-
ties greater than a threshold of 0.5 for all classes; all data
values containing a probability less than 0.5 are shown as
black. Figure 3G shows the image with colors weighted by
the minimum reciprocal-risk-ratio, wi = 1/λ(ωi, �x)). No-
tice that the boundaries are crisper than in the probability
weighted example and that the variation in thickness for the
loop (material e) is easier to see. Figure 3H shows a color
mapping based on the 0-1 risk decision, with the addition of
two importance weighted risk decisions for material e, where
µe = 1.15 and µe = 1.5. The additional max risk-ratios were
blended over the color map weighted by 1/µe. Finally, Fig-
ure 3I shows a color mapping made using a carefully designed
2D transfer function, based on data value and gradient mag-
nitude. Because gradient estimation is highly sensitive to
noise, the 2D transfer function performed quite poorly with
the raw data (top-right subfigure), even though the gradi-
ent was estimated using the derivative of a cubic b-spline
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Figure 3: A 2D example of probabilistic boundary behavior. A) The
synthetic dataset, consisting of five materials. B) The raw dataset
constructed from a blurred monochrome version of the synthetic
dataset with noise added. C) The four most relevant iso-value
thresholds of the raw data as subimages. D) An image colored based
on the class conditional probabilities of the classified raw data. E) A
”max-probability” tagged image. F) The data set color mapped
based on a probability threshold of 0.5. G) An image colored based
the probability ratios (risk curves). H) An image showing several risk
contours for material ”e”. I) Data color mapped using a carefully
hand tuned 2D transfer function, based on raw data value and the
gradient magnitude of the median filtered raw data.

kernel, which implicitly blurs the data. To accommodate
for the noise, the data was pre-processed using a median fil-
ter with a width of five pixels before gradient computation
(Figure 3I, bottom-right subfigure).

4.2 Risk-centric Transfer Functions
Instead of taking a D dimensional vector of raw-data val-
ues as input, a transfer function based on class conditional
probabilities transforms a C dimensional vector into the op-
tical properties needed for rendering, where C is the number
of classes. While it may seem appropriate to use the class
conditional probabilities as input to the transfer function,
as described in Section 3.5, the relationships between the in-
dividual posterior probabilities are best expressed in terms
of risk. A reasonable choice is the C dimensional risk vec-
tor, �Λ(�x) = [λ0(�x) . . . λC(�x)]T , where λi(�x) = R(ωi, �x) from
Equation 2.

Unfortunately, this expression of risk does not provide
much more information than the raw probabilities. Instead,
it is preferable to use a discriminant function that we call
the minimum decision boundary distance:

λi(�x) = max
j,j �=i

(
log

(
λ(ωj , ωi)

Pj(�x)

Pi(�x)

))
(6)

where we are using the short-hand Pi(�x) ≡ P (ωi|�x). This
can be rewritten as

λi(�x) = max
j,j �=i

( log(λ(ωj , ωi)) + log(Pj(�x)) − log(Pi(�x)) )

In terms of importance weights µi, the minimum decision
boundary distance is the maximum over all j �= i

λi(�x) = log(µj) + log(Pj(�x)) − log(µi) − log(Pi(�x)) (8)

The benefit of this expression is that it places the decision
boundary, with respect to class ωi, at λi(�x) = 0, with nega-
tive values indicating that class ωi is the minimum risk class,
and positive values indicating that it is not. It also has a
more linear behavior than the probability ratio, and is in-
variant with respect to normalization (or any other uniform
scaling) of the class conditional probabilities. For Gaussian
distributions with the same standard deviation, this term
is exactly the minimum decision boundary distance (in the
feature space) scaled by 2‖�ci − �cj‖, two times the distance
between their means or centers. Figure 4 illustrates the be-
havior of this term for three different class distributions in
a 1D feature space (x), with a varying importance term for
class 2. Notice that in Figure 4C a small increase in µ2 was
able to make class 2 the minimum risk class, even though
it would not have been using the maximum a-posteriori de-
cision rule, used in Figure 4A. The arrows below the plots
indicate the range over which each class is the minimum risk
decision. In Figure 4B all three classes are the minimum risk
at the origin.
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Figure 5: Effect of varying the importance term for white matter in
a classified brain dataset visualization.

Like iso-surfaces, risk surfaces, i.e. spatial decision bound-
aries, have a number of desirable properties; water tight,
easy geometric extraction. Unlike iso-surfaces, risk sur-
faces can support interesting boundary configurations, non-
manifold 3-way and 4-way intersections, whereas iso-surfaces
only support manifold 2-way interfaces.

5 Reparameterization

The increased storage size required for representing multiple
fuzzy classified features is an important issue for interactive
rendering. Most hardware based rendering platforms place
hard restrictions on dataset size. Increased data size also
has a dramatic effect on data access bandwidth, a prime
concern for rendering efficiency, which is arguably a more
pressing issue than memory capacity limitations.

To address the problems associated with increased data
set size, we need a data-space transformation T (�c ∈ �C) →
�P with the following properties:
1) Reduces the dimensionality of the dataspace; P � C.
2) Invertible with minimal error; ‖�c − T−1(T (�c))‖ < ε.
3) Encoded values can be interpolated prior to decode;
4) Decoding has minimal algorithmic complexity.
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Figure 6: Slices of classified datasets reparameterized into a 3D data-
space, and their associated graphs. The color is generated by map-
ping the 3D data coordinates directly to RGB colors. Subfigure A
shows a classified engine dataset, and Subfigure B shows the Brain-
Web Phantom fuzzy classifed data [3].

The criteria above describe a transformation, or encoding,
of the data that effectively compresses the data, while allow-
ing the conditional probabilities to be reconstructed after the
data has been resampled during rendering. While dimen-
sionality reduction (criterion 1) helps us solve the problem
of increased storage and bandwidth, the criterion of interpo-
lation prior to decode (3) helps eliminate redundant compu-
tation during the resampling and gradient estimation stages
of the rendering pipeline.

5.1 Graph-based Dimensionality Reduction GDR
Our approach models the transformation (T (�c)) as a graph
layout problem, and is similar to work done independently by
Iwata et al. [11]. Nodes represent pure classes, P (ωi|�x) = 1,
and edges represent mixtures of multiple classes. Once con-
nectivity of the graph is known, it is laid out in a space
with a dimension P of our choosing, optimizing the spacing
between nodes so there is no overlap of edges. The node lo-
cations are then used as a sparse data interpolation system,
which serves as the inverse mapping T−1(�p). All data sam-
ples �c are then mapped to this parameterization space by
finding the position �p that minimizes the difference between
T−1(�p) and �c. Figure 6 illustrates this method applied to 2
classified datasets using a 3D reparameterization.

5.1.1 Graph Construction
Graph construction begins with identifying edge weights eij

for each pair of class nodes Ni and Nj . Edge weight is the
covariance of the class probabilities assuming a mean of 1
for each class,

eij =

N∑
k=1

P (ωi|xk)P (ωj |xk)

where N is the number of samples in the dataset. In ad-
dition to the pair-wise class variance, we are interested in
identifying higher order mixtures. To do this, an additional
node is added to the system for any significant higher order
mixtures. These nodes have an associated weight, n, that is
the higher order variance for the mixture type it represents.
For instance the three way mixture variance is

nijk =
N∑

l=1

P (ωi|xl)P (ωj |xl)P (ωk|xl)

Note that for volume data these variance weights represent
fuzzy boundaries between classified features. In general,
most edge and higher order node weights are zero, i.e. the
features/classes do not touch in the spatial domain; this is
a property that our data parameterization method exploits.

5.1.2 Graph Layout
Once the edge and higher order node weights are determined,
they are normalized based on the maximum weight. These
weights are then used to compute potentials for a force di-
rected graph layout. Our solver treats edges as springs with
a unit natural length, and nodes as charged particles, which
repel one another. The solver seeks to minimize an energy
function with respect to the class nodes, which are positions
in a P dimensional space;

E( �N2, . . . , �NC) =

M∑
i=1

M∑
j=i+1

‖ϕ
(

�Ni, �Nj

)
‖

where C is the number of classes, M is the total number
of nodes in the system including the higher order variance

nodes, and ϕ( �Ni, �Nj) is the force function. The first node,
N1, is constrained to the origin of the ambient space. The
nodes representing higher order variance, NC+1 . . .NM , are
constrained to the average position of the class nodes whose
variance they represent. The role of these nodes is to insure
that class node placement does not interfere with spaces that
represent important feature mixtures.

The force function, ϕ( �Ni, �Nj), for the charged particle and
spring edge model is,

ϕ( �Ni, �Nj) =
(
eij(‖�d‖ − 1) + ninj exp(−‖�d‖2)

)
�d

where �d = �Ni − �Nj , and ni is a higher order variance node

weight or 1 if �Ni is a class node. If either of the nodes
represent a higher order variance, the edge weight eij is 0.
This function returns the force vector with respect to node
�Ni. It is anti-symmetric with respect to the order of its

parameters, i.e. ϕ( �Ni, �Nj) = −ϕ( �Nj , �Ni).

5.1.3 Sparse Data Interpolation and Encoding

Once we have laid out the graph in our target space, the
class nodes serve as fiducials for a sparse data interpolation
scheme. For this we choose Gaussian radial basis functions.
This sparse data interpolation scheme defines a mapping,
T−1(�p), from our encoding space back to the C dimensional
probability space. For some point �p in the encoding space,
the corresponding vector of conditional probabilities, �c, is
given by

�c =

∑C
i=1 �ci exp(−‖�p − �Ni‖2)∑C

i=1 exp(−‖�p − �Ni‖2)

where �ci is the conditional probability vector associated
with node Ni, and the denominator expresses the fact that
this equation is a ”sum of unity” sparse data interpolation
scheme. Since each node represents a pure class probability,
all of the elements of its associated �ci are 0 except the ith
entry, which is 1. Therefore, the conditional probability for
each element of �c reduces to

�c [i] =
exp(−‖�p − �Ni‖2)∑C

j=1 exp(−‖�p − �Nj‖2)
(14)

That is, the ith element of �c is simply the normalized interpo-

lation kernel weight associated with �Ni. As suggested in Sec-
tion 4.2, the minimum decision boundary distance discrimi-
nant (Equation 8) is perhaps a better quantity for transfer
function color mapping. In this case, the denominator in



Equation 14 cancels and the expression for the elements of
Λ(�x) becomes the maximum over all j �= i,

λi(�x) = log(µj) − ‖�p − �Nj‖2 − log(µi) + ‖�p − �Ni‖2 (15)

where �p = T
(
[P (ω1|�x), . . . , P (ωC|�x)]T

)
, and note that

−‖�p − �Nj‖2 ≡ log(P (ωj |�x)).
For each sample in our dataset, identified by its feature

vector �xi, the associated vector of class conditional proba-
bilities, �ci = [P (ω1|�xi), . . . , P (ωC|�xi)]

T , is parameterized, or
mapped under T (�c), into our new space as the point, �pi, that
minimizes E(�pi) = ‖�ci − T−1(�pi)‖

Unfortunately, since we are using non-compact basis func-
tions, when a class probability approaches 1, the �p vectors
tend to infinity. This is due the fact that the Gaussian
basis functions are never actually zero. To accommodate
this we apply an affine transformation to the elements of
T−1(�pi) that ramps smoothly zero as the values approach
some threshold ε. This epsilon value is the reciprocal of
the maximum importance weight µi that our system allows;
empirically, a µmax = 200 is sufficient to make the minimiza-
tion well behaved. The affine transformation has no effect
on the placement of the decision boundaries, and tends to
push error in the transformation out to the extremely low
class probabilities, i.e. P (ωi|�x) < ε → 0.

This mapping can alternatively be thought of a reparam-
eterization of the data-space that allows us to trivially clas-
sify the data using normalized Gaussian distributions with
means equal to the class node centers. That is, the data
samples are arranged in the new space so they are, by con-
struction, normally distributed based on the feature classes.

6 Implementation

Our implementation of this work found that decoupling clas-
sification and transfer function color mapping not only im-
proved the flexibility of our visualization system, but also
dramatically simplified its construction. Our system natu-
rally breaks up into several components: slicing and probing,
classification and segmentation, GDR encoding, and visual-
ization. Whenever possible, we leveraged existing tools and
libraries to speed the development and prototyping of appli-
cation specific variants of our system.

6.1 Slicing and Probing
The first step in the visualization of data using our system is
the inspection of the raw data on a slice by slice basis. Our
slicing tool’s interface is modeled after a user interface com-
monly used for medical data. There are three slice views, one
for each axis of the 3D data, and mouse clicks in one win-
dow automatically update the slice positions in the other
two. This tool also provides window and level contrast set-
tings as well as simplistic coloring of multi-variate data. The
main function of this tool is to provide the ability to do fea-
ture/class selection and training set generation. This is done
by probing locations in the data, on the slice views, where
a class is present. These probe locations can then be used
to estimate classification parameters, or as training data for
non-parametric classifiers, or as seed points for segmenta-
tion.

6.2 Classification and Segmentation
While we have developed several specialized classification
algorithms of our own, we rely heavily on a collabora-
tive project aimed at the development of open source al-
gorithms for image registration, classification, and segmen-
tation called the Insight Toolkit (ITK) [10]. The designers of
this toolkit were careful to make a strong distinction between
class conditional probability estimation and decision rules

with respect to the statistical classifiers it supports, which
makes the specialization of classification and segmentation
algorithms for the purpose of visualizing class conditional
probabilities very convenient.

6.3 GDR Encoding
The implementation of the Graph-based Dimensionality Re-
duction scheme represented the bulk of our development ef-
fort. Even so, the library only consists of approximately 300
lines of code. We developed the library to be generic with re-
spect to dimension, so it naturally supports encodings with
any target dimension. A force directed graph solver natu-
rally lends itself to least-squared, implicit solutions. How-
ever, given the relatively low number of nodes that we need
to layout (typically between ten and one hundred), we found
that a time dependent explicit solver performs quite well.
The advantage of using an explicit solver is in the simplic-
ity of its implementation. The disadvantage is that explicit
solvers can tend to get stuck in local minima, which can
be resolved using simulated annealing randomization. Our
solver is iterative, with an adaptive timestep proportional
to the maximum force over all nodes. Our solver begins
by initializing all class nodes to random positions. At each
timestep the class node positions are updated by

�Ni
′ = �Ni +

∆t

1 + α maxk

∑N
j=1 ϕ( �Nk, �Nj)

N∑
j=1

ϕ( �Ni, �Nj)

where α is a scale term, in our system we choose ∆t = 1
and α = 10. All higher-order variance nodes are constrained
to the average position of the class nodes whose variance
they represent, therefore after each time step, we update
the positions of these nodes accordingly. The iteration pro-
ceeds until the energy function E(N2, . . . ,NC) is no longer
decreasing. We then record the graph configuration and the
value of the energy function, and randomize several of the
class node positions and minimize the new configuration. We
perform this process of minimization and randomization sev-
eral times, generally 10, and return the configuration with
minimal energy.

The encoding step, �p = T (�c), is also expressed as a min-
imization. This too, can be implemented as an iterative
solver. We accomplish this by first selecting an initial �p as

�p =

C∑
i=1

�Ni �c [i]

The update step is

�p ′ = �p +

C∑
i=1

�Ni

(
�c [i] −A(T−1(�p)[i])

s

)

where A() is an affine transformation mapping the range
[ε, 1] → [0, 1], and s is a scale term proportional to the itera-
tion number. Empirically, we have found that s = (1 + n)/2
gives excellent results, where n is the iteration number. Be-
cause our inverse mapping, T−1, is smooth, this optimiza-
tion converges quickly. Five iterations is generally enough to
achieve an acceptable RMS error, ideally this error should
be approximately ε. For instance, the 4D GDR encoding
of the BrainWeb Phantom classified data achieves an RMS
error of .0004, with an ε = .0003.

6.4 Visualization
Our rendering system is a simple single pass hardware ray
caster. When the number of classes being visualized is five or
less, we do not require a GDR encoding of the posterior prob-
abilities. Since we know that P (ωc|�x) = 1 − ∑C−1

i=1 P (ωi|�x),
we can simply use a 4D dataspace (RGBA texture) for four
classes, and easily derive the fifth class’s probability. When



using GDR encoded data, the first step in rendering a sample
is decoding. Recall that since we want the minimum decision

boundary distance, �Λ(�x), we do not need to actually decode
the class conditional probabilities (see Equation 15). The

algorithm for computing �Λ from GDR encoded data can be
computed efficiently by looping over the classes twice. The
first loop computes log(µi) + log(P (ωi|�x)) and saves off the
maximum and second maximum of these values. The second
loop completes the computation of �Λ ≡ L by subtracting the
respective log(µi)+log(P (ωi|�x)) from the maximum of these
values, unless this term is already the maximum, in which
case we use the second maximum. This small optimization

converts the computation of �Λ from an O(C2) to an O(C)
algorithm.

Once the �Λ(�x) vector has been computed, the transfer
function can be evaluated as C separable 1D opacity func-
tions, or lookups. The domain of these 1D transfer functions
is [− log(µmax), log(µmax)], where negative values indicate
that the class is the minimum risk class and 0 is the decision
boundary.

7 Results and Discussion

Color mapping based on the decision boundary distance
term has a number of advantages. Unlike the raw class
conditional probabilities, this term takes into account the
relationships between the class probabilities for each sample
and a user defined importance for each class. This means
that the transfer function can be evaluated for each class
independently, i.e. we need only design a simple 1D transfer
function for each class. Furthermore, thanks to its well-
defined behavior, we can define transfer functions based on
decision boundary distance in advance, and apply them to
classes as effects or profiles. For instance, if we desire a
surface-like rendering, the opacity function for a particular
class is simply a dirac delta centered at 0. This can be im-
plemented robustly using a single preintegrated isosurface
lookup table, which can be used for all classes that are to be
rendered in this way. Alternatively, this can also be done by
detecting a λi(�x) zero-crossing between two adjacent sam-
ples along the viewing ray, an example of risk-surfaces ren-
dered using this method can be seen in Figure 7. For two
sided risk-surfaces, we need only move the delta function to a
slightly negative λi(�x) value, so that each class’ risk-surface
appears at a slightly different position than those who share
that boundary. If we desire a more traditional fuzzy render-
ing, a suitable opacity function can be any monotonically
decreasing function based on −λi(�x).

Often, when probabilistic data is presented graphically,
it is also shown with error bars indicating some confidence
interval or sensitivity. We can create a kind of 3D analogue
by displaying multiple risk-surfaces for a class at once, by
varying µi. These concentric risk-surfaces provide a visual
indication of the sensitivity of the boundary test. That is, it
shows how the boundary would change if some class ωi was
µi times more likely. When the contours are packed closely
together, we see that the decision boundary is well defined.
When the contours are spread out, we see that the boundary
is sensitive to small changes in class likelihoods, indicating
that the exact placement of the decision boundary is less
reliable. We can also derive a local measure of sensitivity
that can be used for coloring the risk surfaces to highlight
regions where the boundary placement is less certain. The
measure we use is s(�x) = 1/‖∇λi(�x)‖, larger values of s(�x)
indicate a higher sensitivity in the spatial boundary loca-
tion with respect to small changes in µi. Confidence inter-
vals are another way of generating risk-boundary error bars.

Low HighSensitivity

wht

csf skl

sknm+s
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Figure 7: Selected risk-surfaces from the classified BrainWeb Phan-
tom “fuzzy data”, color mapped based on sensitivity (a measure of
uncertainty in the decision boundary position). The data used for
the renderings is a 4D GDR encoding of ten material classes.

Confidence intervals can be measured in terms of the vol-
ume enclosed by a decision boundary with respect to µi.
We compute confidence intervals by generating a histogram
for the range of µi from [1/µmax, µmax], where each bin is
simply the number of samples in the dataset with a nega-
tive λi(�x) values given the corresponding µi. The 95% con-
fidence interval is the decision boundary for the µi whose
volume histogram count is 95% of the µmax histogram bin
count. Figure 8 shows examples of each of these methods
as well as a more traditional approach to color and opacity
specification. Notice that the fuzzy method ramps color to
black as λ approaches 0. This gives us yet another visual
indication of uncertainty, when the black boundary is thick,
the placement of the decision surface in this region is less
certain.

Because the reparameterized dataspace is an encoding,
transformations to the data, such as scaling and bias or
quantizing, must also be applied to the node centers. We
have found this to be quite easy if we simply encode the cen-
ters as part of the dataset, for instance appended to the end
of the file or setting the first few samples to be the (param-
eterized) node centers. Of course, this technique is fragile
with respect to spatial transformations, such as resampling
and cropping.

8 Conclusion and Future Work
This paper describes a key way in which domain specific
classification and segmentation can be integrated with state
of the art volume visualization techniques. By decoupling
classification and color mapping, classification can be ac-
complished independently of color mapping, allowing appli-
cation specific solutions to evolve without concern for the
current limitations of transfer function-based volume ren-
dering. The transfer function interface also is dramatically
simplified, not only is the feature space broken down into in-
dependent components, but these components have semantic
meaning to the user. We show that deferring the decision
step of the classification pipeline until render-time can pro-
vide the user with the ability to manipulate the decision
making process and investigate uncertainty in the classifica-
tion. We also address the increase in data set size, due to
the need to store each class’ probabilities independently, by
developing a data dimensionality reduction technique specif-
ically designed to accurately encode probabilistic image data
and efficiently decode after resampling during the rendering
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Figure 8: A comparison of rendering profiles. Subfigure A shows a “fuzzy” volume rendering color-mapped based on lambda for white matter.
Subfigure B shows the risk-surface (lambda equal 0) for white matter color-mapped based on sensitivity (change in boundary position per
unit change in importance). Subfigure C shows confidence intervals based on percent change in importance. Subfigures D and E show various
features classified/segmented in the engine dataset. D shows sensitivity color mapping applied to the valve guides. E shows the coolant chamber
of the engine rendered using confidence intervals.

phase of the visualization pipeline.
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