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Implementation of an automati
 image registration toolPavel A. Koshevoy, Tolga Tasdizen, Ross T. WhitakerMay 2, 2006Abstra
tThis paper outlines the basi
 steps in the design and implementation of an intensity based automatedTransmission Ele
tron Mi
ros
opy (TEM) image mosai
king appli
ation, and highlights some of theimplementation details, su
h as the tile mat
hing, mosai
 layout, and tile distortion 
orre
tion.1 MotivationThe goal of this proje
t is to provide a fully automati
 tool for image registration and mosai
king of severalhundred high-resolution images. This tool is primarily aimed at resear
hers working with TransmissionEle
tron Mi
ros
opy images. A mi
ros
ope rarely has a large enough �eld of view to 
over the area ofinterest to the s
ientist with reasonable detail. Therefore, the area of interest has to be imaged as a sequen
eof tiles, following some overlapping tile pattern. The original area of interest is later re
onstru
ted by layingout the image tiles into a mosai
. One problem parti
ular to the mi
ros
opy images arises from the fa
tthat the imaging pro
ess introdu
es distortion into the images. Thus, even if the exa
t layout is known forthe image tiles, the tiles may not mat
h perfe
tly in the overlap region. When the number of tiles is morethan just a few, the task of laying out the mosai
 qui
kly be
omes daunting, and is a prime 
andidate forautomation.2 Problem statementGiven a large number of tiles spe
i�ed in no parti
ular order, a mosai
 must be 
onstru
ted and individualtiles must be 
orre
ted for distortion. This is the global problem that 
an be split up into slightly moremanageable sub-problems:
• Find pairs of mat
hing tiles.
• Build a rough estimate of the mosai
 without distortion 
orre
tion.
• Iteratively re�ne the mosai
 by un-warping and adjusting the position of ea
h tile simultaneously.3 Des
ription of the mathemati
s and algorithms3.1 Mat
hing pairs of tilesFinding mat
hing tiles amounts to �nding tiles with highest 
ross-
orrelation. The method for �ndingmat
hing tiles implemented in this appli
ation is based on a te
hnique des
ribed by Girod and Kuo[1℄. Thete
hnique is very straight forward, but it has an important prerequisite - it requires that the width andheight of the two tiles must mat
h. If that is not the 
ase, one or both of the tiles must be padded onthe bottom and on the right side with zeros until both of the tiles have mat
hing dimensions as follows:given unpadded tiles U0 and U1, padded tiles S0 and S1 are generated su
h that width (S0) = width (S1) =

max (width (U0) , width (U1)) and height (S0) = height (S1) = max (height (U0) , height (U1)).Having satis�ed the prerequisite by padding the tiles, the tiles are transformed into the frequen
y domainby Dis
rete Fourier Transform F0 = F {So} and F1 = F {S1}. The Dis
rete Fourier Transform fun
tionality1



is provided by the FFTW[4℄ library. On
e the tiles have been transformed, the 
ross-
orrelation Φ10 between
S1 and S0 is 
al
ulated as

Φ10 = F1 × F ∗

0where F ∗

0 is the 
omplex 
onjugate of F0. The auto-
orrelation terms Φ00 = F0 ×F ∗

0 and Φ11 = F1 ×F ∗

1 areused to enhan
e the 
ross-
orrelation term as follows
P =

Φ10√
Φ00 × Φ11 + ǫwhere ǫ is a small number greater than zero added to avoid division by zero. The Girod and Kuo paperaddresses a slightly di�erent problem than the one targeted by our appli
ation. The te
hnique des
ribedin the paper is intended for tra
king a moving obje
t. One of the di�
ulties of the tra
king problem isthat the ba
kground behind the obje
t 
hanges. The mosai
king problem typi
ally does not su�er from thisobsta
le. During early experimentation we attempted to use the auto-
orrelation dire
tly as P = Φ10. Thiswas found to be una

eptable, therefore the 
urrent implementation of the mosai
king appli
ation followsexa
tly the te
hnique des
ribed by Girod and Kuo. The 
omparison of the enhan
ed auto-
orrelation andplain auto-
orrelation 
an be seen in �gure 1.Figure 1: enhan
ed auto-
orrelation vs. plain auto-
orrelation

enhan
ed auto-
orrelation plain auto-
orrelationThe inverse Fourier transform of the 
ross-
orrelation
PDF (x, y) = ℜ

(

F−1 {P}
)
orresponds to the probability density fun
tion (PDF ) that tile S1 mat
hes with tile S0 displa
ed by ve
tor

[x y]T . We will refer to this fun
tion as the displa
ement PDF . Thus, in order to �nd the displa
ementve
tor it is ne
essary to �nd the 
oordinates [xmax ymax]
T of the global maximum of this fun
tion.2



Finding the maximum of the displa
ement PDF is non-trivial. This is due to the fa
t that for mostele
tron mi
ros
opy images the PDF is usually very noisy. Also, the PDF of two mismat
hed images may
ontain several maxima, or none at all. The te
hnique des
ribed in the Girod and Kuo paper mentions asimple thresholding method used to suppress the negative and insigni�
antly small values of the PDF . Themethod 
urrently implemented in the mosai
king appli
ation is similar, but has several important featuresthat are worth pointing out.Early experimentation with the PDF has shown that identifying the maxima be
omes signi�
antly easierafter blurring the PDF to remove the high-frequen
y noise. The blurring is 
arried out in the Fourier domain,where it 
orresponds to a multipli
ation by a low-pass �lter
PDF (x, y) = ℜ

(

F−1 {P × Filter (r, s)}
)where r ∈

[

0,
√

2
] and s ∈ [0, r]. When s = 0 the �lter behaves exa
tly like the ideal low-pass �lter, passinguna�e
ted frequen
ies in the range [0, r] and attenuating 
ompletely frequen
ies in the range (r,∞). When

s > 0 the �lter passes frequen
ies in the range [0, r − s] 
ompletely una�e
ted, frequen
ies in the range
(r + s,∞) are 
ompletely attenuated, and frequen
ies in the range (r − s, r + s] are attenuated a

ording tothe fun
tion

attenuation (f) =
1 + cos

(

π
f−(r−s)

2s

)

2whi
h provides a smooth transition from zero attenuation at f = r− s to full attenuation at f = r + s. Thislow-pass �lter results in zero total power loss in the frequen
y range [0, r], be
ause the attenuation in
urredin range [r − s, r] is 
an
eled out by the power leakage from range [r, r + s] due to aliasing.More experimentation has shown that blurring the tiles prior to 
al
ulating their 
orresponding PDFredu
es the number of false maxima in the PDF . The tiles are blurred in the Fourier domain as follows
F0 = F {S0} × Filter (r, s)

F1 = F {S1} × Filter (r, s)and the rest of the 
al
ulations are 
arried out as des
ribed above. The parameters r and s used for blurringthe tiles and the PDF 
an be tuned. In the 
urrent implementation the values r = 0.5 and s = 0.1 are usedfor the tiles, and r = 0.4 and s = 0.1 for the PDF .Having blurred the PDF , it is ne
essary to sele
t a good threshold value in order to isolate a set ofpixels 
orresponding to the global PDF maximum. We assume that the number of pixels belonging to themaximum is approximately 1% of the total number of PDF pixels, but it may not be less than 5 pixels orgreater than 64 pixels. The lower bound restri
tion is imposed in order to avoid thresholding values whereonly one maximum pixel is left. One pixel does not 
arry enough information about the rest of the stru
tureof the PDF . When 5 pixels are grouped together, it is fairly obvious that there is only one strong maximumin the PDF . If the pixels are s
attered a
ross the PDF , it is likely the PDF does not have a strongmaximum. The lower bound on the number of pixels belonging to the PDF maximum is ne
essary in orderto deliver the information regarding the distribution of these pixels within the PDF . One or two pixels donot 
arry enough information. The upper bound on the number of pixels applies to larger images. If toomany pixels are allo
ated to the PDF maxima, the 
omputational burden involved in the 
lassi�
ation ofthe 
lusters in
reases. The upper limit of 64 pixels guarantees that no PDF 
ould ever 
ontain more than
64 maxima. Thus

pixelsmaxima = min

(

64, max

(

5,
area (PDF )

100

))where area (PDF ) 
orresponds to the total number of pixels in the PDF image.To �nd the threshold value that would provide this number of pixels, it is ne
essary to build a 
umulativehistogram of the PDF pixel values. The 
urrent implementation uses 1024 histogram bins. Although theimportan
e of this parameter has not been explored in the 
ontext of our appli
ation, we 
an assume thatmore bins will give us a more a

urate estimate of the threshold value. The 
umulative histogram is sear
hedfor the bin 
ontaining at least
area (PDF ) − pixelsmaxima3



number of pixels. The minimum pixel value asso
iated with that bin is the optimal threshold value that weneed.On
e the PDF is thresholded, a small fra
tion of the pixels belonging to the maxima are isolated intoone or more 
lusters. Next, pixels are 
lassi�ed into 
lusters based on an 8-
onne
ted neighborhood sten
il.On
e all of the 
lusters have been identi�ed, the 
lusters that are broken up a
ross the PDF boundary aremerged together. This step is required be
ause the Dis
rete Fourier Transform assumes that the signal isperiodi
; therefore, the PDF is also periodi
. After all of the pixel 
lusters are identi�ed, the 
oordinatesof the PDF maxima are 
al
ulated as the 
enters of mass of the 
orresponding 
lusters. The value of ea
hmaximum is 
al
ulated as the total mass of the 
luster divided by the number of pixels in that 
luster.This pro
ess results in a list of several maxima with varying 
oordinates and values. The list is sorted indes
ending order, so that the highest maximum is at the head of the list.Given a list of maxima points present in a parti
ular PDF , a simple heuristi
 is applied to de
ide whetherthe tiles that produ
ed this PDF in fa
t mat
h. Mat
hing tiles would ideally produ
e only one maximum.However, due to the ina

ura
y in the sele
tion of the thresholding value, it is very likely that there will beseveral maxima. This is also the 
ase when the tiles being mat
hed have undergone a distortion. Duringexperimentation an important observation was made that mismat
hing tiles produ
e a PDF with severalmaxima points at roughly the same value, while the PDF of two mat
hing tiles produ
es one maximumsigni�
antly higher than the rest. This result suggests a very simple algorithm to de
ide whether the PDF
orresponds to two mat
hing tiles. The dissimilarity of the PDF maxima with respe
t to the best PDFmaximum is 
al
ulated as
dissimilarity =

maxbest (PDF )

maxi (PDF )
− 1The dissimilarity of two perfe
tly similar maxima is equal to 0. Whenever dissimilarity ex
eeds a giventhreshold the 
orresponding maximum is removed from the list. In 
urrent implementation, the dissimilaritythreshold is set to 1; thus, maxima whi
h are more than 2 times smaller than the highest maxima in thelist are dis
arded. If the list 
ontains only one maximum, we assume that the tiles mat
h and pro
eed to
al
ulate the 
orresponding displa
ement ve
tor. If there is more than one maximum left in the list after this�ltering, it is very likely that the tiles do not mat
h, or one of the tiles is self-similar and may mat
h the othertile in several pla
es. Due to distortion, it is possible that no mat
hing tiles will be found with exa
tly onemaximum. In that 
ase the mat
h with the fewest number of maxima is 
onsidered. Signi�
antly radiallydistorted tiles typi
ally have 2 to 4 valid maxima 
orresponding to small shifts from the true displa
ementve
tor. The 
urrent implementation of the mosai
king appli
ation 
onsiders at most 3 maxima per mat
h.In order to �nd the displa
ement ve
tor, it is not enough to simply �nd the maximum of the displa
ement

PDF . The 
oordinates [xmax ymax]
T are always positive, yet the displa
ement ve
tor may very well havenegative 
oordinates. As mentioned earlier, the Dis
rete Fourier Transform assumes that the signal isperiodi
, therefore the 
ross-
orrelation between the tiles 
orresponds to 
ross-
orrelation of two periodi
tiles. On
e the 
oordinates of the maximum [xmax ymax]

T are known, there are four possible permutationsof the displa
ement ve
tor that 
ould produ
e the 
orresponding high 
ross-
orrelation between the tiles.The permutations are
T00 =

[

xmax

ymax

]

T10 =

[

xmax − width (S0)
ymax

]

T01 =

[

xmax

ymax − height (S0)

]

T11 =

[

xmax − width (S0)
ymax − height (S0)

]The 
urrent implementation of the appli
ation 
hooses the best permutation based on the normalizedsquared image di�eren
es metri
. This metri
 is 
al
ulated as the sum of squared pixel di�eren
es withinthe overlap region, divided by the area of the overlap region. The best permutation 
orresponds to thelowest metri
 value (the least mismat
h between the tiles). The metri
 is evaluated against unpadded tiles4



U0 and U1, yet the displa
ement permutations are based on the dimensions of the padded tiles S0 and S1,whi
h means that some of the permutations may not overlap the unpadded tiles at all. In 
onsequen
e,permutations 
an be dis
arded early based on the amount of overlap between the tiles. The amount ofoverlap is 
omputed as the ratio of the area of the overlap region to the area of the smaller of the two tiles.Thus, when one tile overlaps another entirely, the overlap is equal to 1. Displa
ement ve
tors resulting inless than 5% of overlap are dis
arded without further 
onsideration. This de
ision is based on the fa
t thattypi
al tiles will have 20% to 30% of overlap along the edges of the tile, and approximately 10% to 5% ofoverlap at the 
orners.3.2 Initial mosai
 layoutPrior to dedu
ing the tile ordering it is ne
essary to �nd pairs of mat
hing tiles. The runtime 
omplexityof the 
urrent algorithm for �nding the mat
hing tiles is O
(

n2
). The performan
e of this algorithm may beimproved, but not without sa
ri�
ing some robustness in �nding the 
orre
t tile mat
hes and reje
ting themismat
hes. Why this is the 
ase will be
ome more 
lear after the 
urrent algorithm is explained in greaterdetail.The algorithm tries to �nd the best possible mapping from the image spa
e of one tile into any othertile. This is a

omplished by 
as
ading the mappings via intermediate tiles. For example, there may exista mapping U0 : U1 between tiles U0 and U1, and another mapping U1 : U4 between tiles U1 and U4. Amapping U0 : U1 : U4 between tiles U0 and U4 
an be 
reated via the intermediate tile U1. The numberof intermediate steps in a mapping from one tile to another will be referred to as the 
as
ade length fromnow on. Given n tiles, there may be at most n − 2 intermediate steps in a mapping between any 2 tiles. Of
ourse, this is only the upper bound on the 
as
ade length. There are no guarantees that a mapping with agiven 
as
ade length exists between any 2 tiles. However, the fa
t that there may be redundant mappingsbetween any 2 tiles presents a great opportunity to sele
t the best mapping possible.The algorithm pro
eeds as follows. First, pairs of mat
hing tiles are found. Finding just one mat
h forevery tile is not enough, be
ause that does not provide any redundant mappings between the tiles. This isthe reason why the algorithm has O

(

n2
) run time 
omplexity. One way to speed up the algorithm is to limitthe number of redundant mappings to some �xed maximum number per tile. Allowing a maximum of just

2 mappings per tile may introdu
e enough redundan
y to 
orre
t for mismat
hes while also speeding up themat
hing pro
ess.The mappings between the tiles are stored as 
onne
tions in a graph of tiles. Ea
h mapping (
onne
tion)is weighed a

ording to the normalized squared image di�eren
es metri
 mentioned earlier. Next, redundantmappings with 
as
ade length 1 to n − 2 are found. There may be more than one su
h mapping, thereforeit is useful if the pro
ess is explained with an example. Assume there exists a fun
tion
C (Ui : Uj) = costthat evaluates the 
ost of a mapping between tiles Ui and Uj . Given the following sample mappings

C (U0 : U1) = 278

C (U0 : U2) = 311

C (U1 : U4) = 160

C (U2 : U4) = 121

C (U0 : U4) = 3419it is most likely that the mapping U0 : U4 is mismat
hed. There are 2 possible alternative mapping from tile
U0 to U4. The 
ost is set to the maximum 
ost of the intermediate mapping 
osts. In the 
ontext of thisexample, this means that

C (U0 : U1 : U4) = max (C (U0 : U1) , C (U1 : U4)) = 278

C (U0 : U2 : U4) = max (C (U0 : U2) , C (U2 : U4)) = 311The mapping with the least 
ost (in this 
ase U0 : U1 : U4) is preferred even when it has greater 
as
adelength. 5



In order to generate the mosai
, it is ne
essary to sele
t the target tile into whi
h every other tile will bemapped. This is done by 
onsidering the total 
ost of the target tile 
andidates. The total 
ost is 
al
ulatedas the 
umulative 
ost of the mapping from the target tile to every other tile in the mosai
. The 
andidatewith the lowest total 
ost be
omes the target tile.3.3 Distortion 
orre
tionIn order to 
orre
t for distortion ea
h tile has to be un-warped. During the various stages of the developmentof this appli
ation, several transform types have been explored. The transform that is 
urrently used is abivariate 
ubi
 Legendre polynomial, de�ned as follows
x (u, v) = Xmax ×

N
∑

i=0

i
∑

j=0

aj,i−j × Pj

(

u − uc

Xmax

)

× Pi−j

(

v − vc

Ymax

)

y (u, v) = Ymax ×
N

∑

i=0

i
∑

j=0

bj,i−j × Pj

(

u − uc

Xmax

)

× Pi−j

(

v − vc

Ymax

)where [uc vc]
T is the 
enter of distortion. The transform is parameterized by 
oordinates uc vc, normalization
onstantsXmax and Ymax and polynomial 
oe�
ients ai,i−j and bi,i−j . In order to simplify the 
omputationalburden, it is assumed that Xmax and Ymax 
orrespond to the half-width and half-height of the tile. Thelo
ation of the 
enter of distortion [uc vc]

T is unknown, therefore it is assumed to be at the 
enter of the tile.The gross tile displa
ement [Tx Ty]
T estimated from the tile mat
hing is in
orporated in [uc vc]

T as follows
uc =

width (Ui)

2
− Tx

vc =
height (Ui)

2
− TyThe polynomial 
oe�
ients are found iteratively by the ITK[3℄ optimization framework. The standardITK image registration framework 
onsists of the following 
omponents

• Two images that must be mat
hed (�xed image and moving image).
• A metri
 that quanti�es the quality of the mat
h between the images.
• A transform.
• An optimizer.This framework is not dire
tly appli
able to simultaneous registration of more than 2 images, therefore analternative method had to be developed. Sin
e more than one tile may overlap the same pixel, the averageintensity varian
e within overlapping regions was 
hosen as the tile mismat
h metri
, shown below

V =
1

A

W−1
∑

u=0

H−1
∑

v=0





1

N (u, v)

N(u,v)−1
∑

i=0

Pi (xi (u, v, ai;0,0, ...) , yi (u, v, bi;0,0, ...)) − µ (u, v)



where V is the average varian
e. A is the area (pixel 
ount) of the overlapping regions. W and H are thedimensions of the mosai
. N (u, v) is the number of tiles overlapping a pixel at the given mosai
 
oordinates
[u, v]T . xi (u, v, ai;0,0, ...) and yi (u, v, bi;0,0, ...) 
ompute the tile 
oordinates given mosai
 
oordinates [u, v]Tand transform parameters ai;0,0, ..., bi;0,0, ... for tile Ui. Pi (x, y) is the intensity value for tile Ui at the
omputed tile 
oordinates, and µ (u, v) is the mean intensity value at the spe
i�ed mosai
 
oordinates

µ (u, v) =
1

N (u, v)

N(u,v)−1
∑

j=0

Pj (x (u, v, a0,0, ...) , y (u, v, b0,0, ...))6



Thus, a transform that maps from the mosai
 spa
e into the tile spa
e is 
omputed for ea
h image. Inorder to estimate the bounding box of the mosai
, a transform from the tile spa
e to the mosai
 spa
e mustbe used. Sin
e the 
orresponding transform is unavailable, the inverse mapping is 
al
ulated numeri
ally viathe Newton's method[2℄.Within the ITK image optimization framework, the optimizer manipulates the parameters of the trans-form for ea
h tile in order to minimize the average varian
e within the overlapping regions of the mosai
.Currently, we use a modi�ed version of the itk::RegularStepGradientDes
entOptimizer, where the relaxation
riteria has been altered to be independent of the derivative dire
tion to rely solely on the fun
tion value.The original ITK implementation of itk::RegularStepGradientDes
entOptimizer diverged near the minima ofthe metri
 fun
tion.The optimization pro
eeds in 2 stages. First, we assume that all of the tiles have been warped similarly,therefore optimize all transform parameters of (ex
ept the �xed parameters uc, vc, Xmax, Ymax) of one tileand share the 
hanges with all other tile transforms. This 
ompensates for large s
ale radial distortion
ommon to all tiles. Next, we assume that the remaining varian
e in the mosai
 is due to unique distortionspresent in ea
h tile. Therefore, we restart the optimization with the shared parameters. This time weoptimize ea
h tiles transform without sharing the parameters with other tiles. This produ
es the uniquetransform parameters for ea
h tile.The varian
e minimization iterates until it 
onverges or ex
eeds the maximum number of iterations(spe
i�ed by the user). The resulting transform parameters de�ne the un-distortion transforms whi
h bestmat
h the neighboring tiles.4 Demonstration of the 
orre
tness of implementationThe tile mat
hing and tile ordering examples were 
omputed using an earlier version of the un-warpingtransform de�ned as follows
x (u, v) = uc + (u − uc) × S (u, v)

y (u, v) = vc + (v − vc) × S (u, v)

S (u, v) =

N−1
∑

n=0

kn ×
(

R (u, v)

Rmax

)2n

R (u, v) =

√

(u − uc)
2 + (v − vc)

2where [uc vc]
T is the 
enter of radial distortion. The transform is normalized by Rmax. Thus, the radialdistortion transform is parameterized by 
oordinates uc vc, normalization 
onstant Rmax and polynomial
oe�
ients k0...kN−1. In order to simplify the 
omputational burden, it is assumed that Rmax 
orrespondsto the maximum distan
e from the 
enter of distortion to the 
orners of the tile. The lo
ation of the 
enterof distortion is unknown, therefore it is assumed to be at the 
enter of the tile. Additionally, the number ofpolynomial 
oe�
ients is limited to N = 2. Thus, only k0 and k1 are needed to de�ne the transform.4.1 Tile mat
hingFigure 2 on the next page shows two mat
hing image tiles. These tiles have undergone a mild radial distortionwith parameters k0 = 0.95 and k1 = 0.05. The overlap area between these tiles is roughly 8%. Figure 3 showsthe displa
ement PDF 
orresponding to these two tiles, as well as the isolated pixel 
lusters 
orrespondingto the PDF maxima. There are a total of 19 maxima isolated in the PDF. Filtering the maxima leaves onlyone eligible maximum for 
onsideration, whi
h indi
ates that the tiles are well mat
hed.

7



Figure 2: mat
hing tiles

tile 0 tile 4 mosai
 0:4Figure 3: displa
ement PDF for mat
hing tiles

PDF 0:4 maxima 
lusters PDF maximaFigure 4 on the following page shows two mismat
hed tiles. Figure 5 shows the 
orresponding displa
e-ment PDF and PDF maxima. There are 30 maxima isolated in this PDF. After �ltering there are still 5maxima left. Ideally there would be only one maximum left, therefore this PDF indi
ates that the tiles donot mat
h.
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Figure 4: mismat
hed tiles

tile 6 tile 8Figure 5: displa
ement PDF for mismat
hed tiles

PDF 6:8 maxima 
lusters PDF maxima4.2 Tile orderingFigure 6 on the next page illustrates the order in whi
h the tiles are added to the mosai
. As 
an be seen, thealgorithm lays out the red tiles su
h that they have signi�
ant overlap with previous tiles (shown in blue).
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Figure 6: tile ordering

4.3 Distortion 
orre
tionTo verify the un-warping 
apabilities of the appli
ation a set of 9 arti�
ially warped tiles was generated.Ea
h tile was warped by a radial distortion transform with parameters k0 = 0.95 ± 0.05 × drand() and
k1 = 0.05± 0.05× drand(). This ensures that ea
h tile has been uniquely warped. Figure 7 on the followingpage shows the result of displa
ement estimation for ea
h tile, as well as the varian
e within the overlappingregions of the mosai
. 10



Figure 7: initial mosai


This �gure illustrates the tiling of the mosai
 and initial varian
e within the overlapping regions of themosai
. Here, the maximum varian
e is 7750, and the mean varian
e is 144.The initial mosai
 is �rst un-warped using shared transform parameters a
ross all transforms. This ismeant to 
ompensate for any 
ommon global distortion present in all tiles. This stage of un-warping redu
esthe average varian
e from 144 to 112, as illustrated in �gure 8 on the next page. The image on the bottomdemonstrates varian
e within the overlapping regions of the mosai
.

11



Figure 8: shared parameters optimization results

The result of shared transform parameters optimization. Here, the maximum varian
e is 4940, and the meanvarian
e is 112.Following the optimization using the shared transform parameters, the pro
ess is repeated with uniquetransform parameters for ea
h tile. This stage of un-warping redu
es the average varian
e from 112 to 2.71,as illustrated in Figure 9 on the following page .
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Figure 9: unique parameters optimization results

The result of unique transform parameters optimization. Here, the maximum varian
e is 80.7, and the meanvarian
e is 2.71.5 ResultsFigure 10 on the next page shows 12 tiles of one mosai
. These tiles were mat
hed to ea
h other resultingin initial mean varian
e of 100. Following the shared transform parameters optimization, the mean varian
ewas redu
ed down to 52.8. The unique transform parameters optimization redu
ed the mean varian
e downto 43. The remaining varian
e may be due to higher order distortion, or di�eren
es in tile illuminationinherent in ea
h tile or 
ontributed by the Contrast Limited Adaptive Histogram Equalization (CLAHE)prepro
essing that was applied to ea
h tile. A 
lose up demonstration of the a
hieved varian
e redu
tion
an be seen in �gure 11 on page 15.
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Figure 10: sample ele
tron mi
ros
opy tiles

These are the sample Transmission Ele
tron Mi
ros
opy tiles from one sli
e of a rabbit retina tissue. Ea
htile has been enhan
ed with Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. Thetag at the lower left 
orner of ea
h tile disrupts the initial tile mat
hing in the frequen
y domain, thereforea bottom portion of the image 
ontaining the tag has to be 
ropped out prior to transforming the image viaFFT. During varian
e minimization the tag is masked out, leaving the rest of the image in ta
t. The e�e
tof masking out the tag 
an be seen in the mosai
s shown in �gures 7, 8 and 9.
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Figure 11: varian
e redu
tion

These images illustrate the varian
e redu
tion due to tile un-warping within the overlap regions of the mosai
.The images on the left are from the initial mosai
 prior to un-warping, while the images on the right arefrom the �nal mosai
 where ea
h tile has been un-warped with unique transform parameters.15
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