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Abstract

This paper outlines the basic steps in the design and implementation of an intensity based automated
Transmission Electron Microscopy (TEM) image mosaicking application, and highlights some of the
implementation details, such as the tile matching, mosaic layout, and tile distortion correction.

1 Motivation

The goal of this project is to provide a fully automatic tool for image registration and mosaicking of several
hundred high-resolution images. This tool is primarily aimed at researchers working with Transmission
Electron Microscopy images. A microscope rarely has a large enough field of view to cover the area of
interest to the scientist with reasonable detail. Therefore, the area of interest has to be imaged as a sequence
of tiles, following some overlapping tile pattern. The original area of interest is later reconstructed by laying
out the image tiles into a mosaic. One problem particular to the microscopy images arises from the fact
that the imaging process introduces distortion into the images. Thus, even if the exact layout is known for
the image tiles, the tiles may not match perfectly in the overlap region. When the number of tiles is more
than just a few, the task of laying out the mosaic quickly becomes daunting, and is a prime candidate for
automation.

2 Problem statement

Given a large number of tiles specified in no particular order, a mosaic must be constructed and individual
tiles must be corrected for distortion. This is the global problem that can be split up into slightly more
manageable sub-problems:

e Find pairs of matching tiles.
e Build a rough estimate of the mosaic without distortion correction.

e Iteratively refine the mosaic by un-warping and adjusting the position of each tile simultaneously.

3 Description of the mathematics and algorithms

3.1 Matching pairs of tiles

Finding matching tiles amounts to finding tiles with highest cross-correlation. The method for finding
matching tiles implemented in this application is based on a technique described by Girod and Kuo[1]. The
technique is very straight forward, but it has an important prerequisite - it requires that the width and
height of the two tiles must match. If that is not the case, one or both of the tiles must be padded on
the bottom and on the right side with zeros until both of the tiles have matching dimensions as follows:
given unpadded tiles Uy and Uy, padded tiles Sy and S are generated such that width (Sy) = width (S1) =
max (width (Uy) , width (Uy)) and height (So) = height (S1) = max (height (Uy) , height (Uy)).

Having satisfied the prerequisite by padding the tiles, the tiles are transformed into the frequency domain
by Discrete Fourier Transform Fy = F {S,} and Fy = F'{S1}. The Discrete Fourier Transform functionality



is provided by the FFTW/[4] library. Once the tiles have been transformed, the cross-correlation ®19 between
S1 and S is calculated as
q)lo = F1 X Fék

where F{ is the complex conjugate of Fy. The auto-correlation terms ®gg = Fyy X F and ®17; = F X F} are
used to enhance the cross-correlation term as follows
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where € is a small number greater than zero added to avoid division by zero. The Girod and Kuo paper
addresses a slightly different problem than the one targeted by our application. The technique described
in the paper is intended for tracking a moving object. One of the difficulties of the tracking problem is
that the background behind the object changes. The mosaicking problem typically does not suffer from this
obstacle. During early experimentation we attempted to use the auto-correlation directly as P = ®1¢. This
was found to be unacceptable, therefore the current implementation of the mosaicking application follows
exactly the technique described by Girod and Kuo. The comparison of the enhanced auto-correlation and
plain auto-correlation can be seen in figure 1.
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Figure 1: enhanced auto-correlation vs. plain auto-correlation

enhanced auto-correlation plain auto-correlation

The inverse Fourier transform of the cross-correlation
PDF (z,y) =R (F~'{P})

corresponds to the probability density function (PDF) that tile S; matches with tile Sy displaced by vector
[ y]T. We will refer to this function as the displacement PDF'. Thus, in order to find the displacement
vector it is necessary to find the coordinates [a ymam]T of the global maximum of this function.



Finding the maximum of the displacement PDF is non-trivial. This is due to the fact that for most
electron microscopy images the PDF is usually very noisy. Also, the PDF of two mismatched images may
contain several maxima, or none at all. The technique described in the Girod and Kuo paper mentions a
simple thresholding method used to suppress the negative and insignificantly small values of the PDF'. The
method currently implemented in the mosaicking application is similar, but has several important features
that are worth pointing out.

Early experimentation with the PDF has shown that identifying the maxima becomes significantly easier
after blurring the PDF' to remove the high-frequency noise. The blurring is carried out in the Fourier domain,
where it corresponds to a multiplication by a low-pass filter

PDF (z,y) = R (F~' {P x Filter (r,s)})

where r € [0, \/ﬂ and s € [0,7]. When s = 0 the filter behaves exactly like the ideal low-pass filter, passing
unaffected frequencies in the range [0, 7] and attenuating completely frequencies in the range (r,00). When
s > 0 the filter passes frequencies in the range [0, — s] completely unaffected, frequencies in the range
(r 4+ s,00) are completely attenuated, and frequencies in the range (r — s,r + s] are attenuated according to
the function

1+ cos (w%)
2

which provides a smooth transition from zero attenuation at f = r — s to full attenuation at f = r +s. This
low-pass filter results in zero total power loss in the frequency range [0, ], because the attenuation incurred
in range [r — s, 7] is canceled out by the power leakage from range [r, r + s] due to aliasing.

More experimentation has shown that blurring the tiles prior to calculating their corresponding PDF
reduces the number of false maxima in the PDF'. The tiles are blurred in the Fourier domain as follows

attenuation (f) =

Fy = F{So} x Filter(r,s)
F = F{S} x Filter(r,s)

and the rest of the calculations are carried out as described above. The parameters r and s used for blurring
the tiles and the PDF can be tuned. In the current implementation the values » = 0.5 and s = 0.1 are used
for the tiles, and r = 0.4 and s = 0.1 for the PDF.

Having blurred the PDF, it is necessary to select a good threshold value in order to isolate a set of
pixels corresponding to the global PDF maximum. We assume that the number of pixels belonging to the
maximum is approximately 1% of the total number of PDF pixels, but it may not be less than 5 pixels or
greater than 64 pixels. The lower bound restriction is imposed in order to avoid thresholding values where
only one maximum pixel is left. One pixel does not carry enough information about the rest of the structure
of the PDF. When 5 pixels are grouped together, it is fairly obvious that there is only one strong maximum
in the PDF. 1If the pixels are scattered across the PDF, it is likely the PDF does not have a strong
maximum. The lower bound on the number of pixels belonging to the PDF maximum is necessary in order
to deliver the information regarding the distribution of these pixels within the PDF. One or two pixels do
not carry enough information. The upper bound on the number of pixels applies to larger images. If too
many pixels are allocated to the PDF maxima, the computational burden involved in the classification of
the clusters increases. The upper limit of 64 pixels guarantees that no PDF could ever contain more than

64 maxima. Thus
area (PDF) ) )
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where area (PDF') corresponds to the total number of pixels in the PDF image.

To find the threshold value that would provide this number of pixels, it is necessary to build a cumulative
histogram of the PDF pixel values. The current implementation uses 1024 histogram bins. Although the
importance of this parameter has not been explored in the context of our application, we can assume that
more bins will give us a more accurate estimate of the threshold value. The cumulative histogram is searched
for the bin containing at least

area (PDF) — pizelSmazima



number of pixels. The minimum pixel value associated with that bin is the optimal threshold value that we
need.

Once the PDF is thresholded, a small fraction of the pixels belonging to the maxima are isolated into
one or more clusters. Next, pixels are classified into clusters based on an 8-connected neighborhood stencil.
Once all of the clusters have been identified, the clusters that are broken up across the PDF boundary are
merged together. This step is required because the Discrete Fourier Transform assumes that the signal is
periodic; therefore, the PDF is also periodic. After all of the pixel clusters are identified, the coordinates
of the PDF maxima are calculated as the centers of mass of the corresponding clusters. The value of each
maximum is calculated as the total mass of the cluster divided by the number of pixels in that cluster.
This process results in a list of several maxima with varying coordinates and values. The list is sorted in
descending order, so that the highest maximum is at the head of the list.

Given a list of maxima points present in a particular PDF', a simple heuristic is applied to decide whether
the tiles that produced this PDF in fact match. Matching tiles would ideally produce only one maximum.
However, due to the inaccuracy in the selection of the thresholding value, it is very likely that there will be
several maxima. This is also the case when the tiles being matched have undergone a distortion. During
experimentation an important observation was made that mismatching tiles produce a PDF with several
maxima points at roughly the same value, while the PDF of two matching tiles produces one maximum
significantly higher than the rest. This result suggests a very simple algorithm to decide whether the PDF
corresponds to two matching tiles. The dissimilarity of the PDF maxima with respect to the best PDF

maximum is calculated as
maxpest (PDF)

max; (PDF)

The dissimilarity of two perfectly similar maxima is equal to 0. Whenever dissimilarity exceeds a given
threshold the corresponding maximum is removed from the list. In current implementation, the dissimilarity
threshold is set to 1; thus, maxima which are more than 2 times smaller than the highest maxima in the
list are discarded. If the list contains only one maximum, we assume that the tiles match and proceed to
calculate the corresponding displacement vector. If there is more than one maximum left in the list after this
filtering, it is very likely that the tiles do not match, or one of the tiles is self-similar and may match the other
tile in several places. Due to distortion, it is possible that no matching tiles will be found with exactly one
maximum. In that case the match with the fewest number of maxima is considered. Significantly radially
distorted tiles typically have 2 to 4 valid maxima corresponding to small shifts from the true displacement
vector. The current implementation of the mosaicking application considers at most 3 maxima per match.

In order to find the displacement vector, it is not enough to simply find the maximum of the displacement
PDF. The coordinates [Tmqz ymaz]T are always positive, yet the displacement vector may very well have
negative coordinates. As mentioned earlier, the Discrete Fourier Transform assumes that the signal is
periodic, therefore the cross-correlation between the tiles corresponds to cross-correlation of two periodic
tiles. Once the coordinates of the maximum [Z,,qx ymaw]T are known, there are four possible permutations
of the displacement vector that could produce the corresponding high cross-correlation between the tiles.
The permutations are

disstmilarity = -1

[«
T — max
OO L ymam }
T = [ Zmae — width (Sp) ]
L yma:ﬂ
xmam
To = | Ymaz — height (So) ]
7. — [ Tpaz — width (Sp)
= | Ymaz — height (So)

The current implementation of the application chooses the best permutation based on the normalized
squared image differences metric. This metric is calculated as the sum of squared pixel differences within
the overlap region, divided by the area of the overlap region. The best permutation corresponds to the
lowest metric value (the least mismatch between the tiles). The metric is evaluated against unpadded tiles



Up and Uy, yet the displacement permutations are based on the dimensions of the padded tiles Sy and S,
which means that some of the permutations may not overlap the unpadded tiles at all. In consequence,
permutations can be discarded early based on the amount of overlap between the tiles. The amount of
overlap is computed as the ratio of the area of the overlap region to the area of the smaller of the two tiles.
Thus, when one tile overlaps another entirely, the overlap is equal to 1. Displacement vectors resulting in
less than 5% of overlap are discarded without further consideration. This decision is based on the fact that
typical tiles will have 20% to 30% of overlap along the edges of the tile, and approximately 10% to 5% of
overlap at the corners.

3.2 Initial mosaic layout

Prior to deducing the tile ordering it is necessary to find pairs of matching tiles. The runtime complexity
of the current algorithm for finding the matching tiles is O (n2) The performance of this algorithm may be
improved, but not without sacrificing some robustness in finding the correct tile matches and rejecting the
mismatches. Why this is the case will become more clear after the current algorithm is explained in greater
detail.

The algorithm tries to find the best possible mapping from the image space of one tile into any other
tile. This is accomplished by cascading the mappings via intermediate tiles. For example, there may exist
a mapping Uy : U; between tiles Uy and Uy, and another mapping U; : Uy between tiles Uy and Uy. A
mapping Uy : Uy : Uy between tiles Uy and Uy can be created via the intermediate tile U;. The number
of intermediate steps in a mapping from one tile to another will be referred to as the cascade length from
now on. Given n tiles, there may be at most n — 2 intermediate steps in a mapping between any 2 tiles. Of
course, this is only the upper bound on the cascade length. There are no guarantees that a mapping with a
given cascade length exists between any 2 tiles. However, the fact that there may be redundant mappings
between any 2 tiles presents a great opportunity to select the best mapping possible.

The algorithm proceeds as follows. First, pairs of matching tiles are found. Finding just one match for
every tile is not enough, because that does not provide any redundant mappings between the tiles. This is
the reason why the algorithm has O (n2) run time complexity. One way to speed up the algorithm is to limit
the number of redundant mappings to some fixed maximum number per tile. Allowing a maximum of just
2 mappings per tile may introduce enough redundancy to correct for mismatches while also speeding up the
matching process.

The mappings between the tiles are stored as connections in a graph of tiles. Each mapping (connection)
is weighed according to the normalized squared image differences metric mentioned earlier. Next, redundant
mappings with cascade length 1 to n — 2 are found. There may be more than one such mapping, therefore
it is useful if the process is explained with an example. Assume there exists a function

C(U; : Uj) = cost

that evaluates the cost of a mapping between tiles U; and U;. Given the following sample mappings

CUy:Uy) = 278
CUy:Uy) = 311
C(Uy:Uy) = 160
CUy: Uy = 121
CUy:Us) = 3419

it is most likely that the mapping Uy : U, is mismatched. There are 2 possible alternative mapping from tile
Up to Uy. The cost is set to the maximum cost of the intermediate mapping costs. In the context of this
example, this means that

O(Uo : U1 : U4) = Imax (C (UO : Ul),O(Ul : U4)) =278
O(Uo : U2 : U4) = max (C (UO : UQ),O(UQ : U4)) =311

The mapping with the least cost (in this case Uy : Uy : Uy) is preferred even when it has greater cascade
length.



In order to generate the mosaic, it is necessary to select the target tile into which every other tile will be
mapped. This is done by considering the total cost of the target tile candidates. The total cost is calculated
as the cumulative cost of the mapping from the target tile to every other tile in the mosaic. The candidate
with the lowest total cost becomes the target tile.

3.3 Distortion correction

In order to correct for distortion each tile has to be un-warped. During the various stages of the development
of this application, several transform types have been explored. The transform that is currently used is a
bivariate cubic Legendre polynomial, defined as follows

N i
P(0) = X x 303 agi; x P <X—_> <P, (Y—_>

i=0 j=0

N 3
U — U UV — Ve
y(u,v) = YmamXZZb‘7i_j><Pj(X ) XPi_j(Y )

i=0 j=0

where [u,. ’UC]T is the center of distortion. The transform is parameterized by coordinates u. v., normalization
constants X4, and Yy, and polynomial coefficients a; ;—; and b; ;—;. In order to simplify the computational
burden, it is assumed that X,,,, and Y,,4; correspond to the half-width and half-height of the tile. The
location of the center of distortion [u,. vC]T is unknown, therefore it is assumed to be at the center of the tile.
The gross tile displacement [T, Ty]T estimated from the tile matching is incorporated in [ucve]” as follows

Ue - - 5 1=z
2
height (U;
ve = 76292 () - T,

The polynomial coefficients are found iteratively by the ITK[3] optimization framework. The standard
ITK image registration framework consists of the following components

e Two images that must be matched (fixed image and moving image).
e A metric that quantifies the quality of the match between the images.
e A transform.

e An optimizer.

This framework is not directly applicable to simultaneous registration of more than 2 images, therefore an
alternative method had to be developed. Since more than one tile may overlap the same pixel, the average
intensity variance within overlapping regions was chosen as the tile mismatch metric, shown below

1 W-1H-1 1 N(u,v)—1
V= Z Z Z m , P; (iUz' (U;U,ai;o,m ) y Yi (uuvubi;0,07 )) — M (Uav)

u=0 v=0 2

Il
=]

where V is the average variance. A is the area (pixel count) of the overlapping regions. W and H are the
dimensions of the mosaic. N (u,v) is the number of tiles overlapping a pixel at the given mosaic coordinates
T . . . . . T
[u,v]" . = (u,v, a;0,0,...) and y; (u, v, bi0,0, ...) compute the tile coordinates given mosaic coordinates [u, v]
and transform parameters a;00, ..., bi;0,0, ... for tile U;. P (x,y) is the intensity value for tile U; at the
computed tile coordinates, and u (u,v) is the mean intensity value at the specified mosaic coordinates

w,v)—1

N(
1
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Thus, a transform that maps from the mosaic space into the tile space is computed for each image. In
order to estimate the bounding box of the mosaic, a transform from the tile space to the mosaic space must
be used. Since the corresponding transform is unavailable, the inverse mapping is calculated numerically via
the Newton’s method[2].

Within the ITK image optimization framework, the optimizer manipulates the parameters of the trans-
form for each tile in order to minimize the average variance within the overlapping regions of the mosaic.
Currently, we use a modified version of the itk::RegularStep GradientDescent Optimizer, where the relaxation
criteria has been altered to be independent of the derivative direction to rely solely on the function value.
The original ITK implementation of itk::ReqularStep GradientDescent Optimizer diverged near the minima of
the metric function.

The optimization proceeds in 2 stages. First, we assume that all of the tiles have been warped similarly,
therefore optimize all transform parameters of (except the fixed parameters uc, Ve, Xmaz, Ymaz) Of one tile
and share the changes with all other tile transforms. This compensates for large scale radial distortion
common to all tiles. Next, we assume that the remaining variance in the mosaic is due to unique distortions
present in each tile. Therefore, we restart the optimization with the shared parameters. This time we
optimize each tiles transform without sharing the parameters with other tiles. This produces the unique
transform parameters for each tile.

The variance minimization iterates until it converges or exceeds the maximum number of iterations
(specified by the user). The resulting transform parameters define the un-distortion transforms which best
match the neighboring tiles.

4 Demonstration of the correctness of implementation

The tile matching and tile ordering examples were computed using an earlier version of the un-warping
transform defined as follows

z(u,v) = uec+ (u—wu) xS (u,v)
y(u,v) = v+ (v—1u.) xS (u,v)

N-1 2n
S (u,v) = an X (%)
n=0 max

R(u,v) = \/(u—uc)2 + (v —vc)2

where [u, ’UC]T is the center of radial distortion. The transform is normalized by R,,q,. Thus, the radial
distortion transform is parameterized by coordinates u.v., normalization constant R,,,,; and polynomial
coefficients kg...kny—1. In order to simplify the computational burden, it is assumed that R,,,, corresponds
to the maximum distance from the center of distortion to the corners of the tile. The location of the center
of distortion is unknown, therefore it is assumed to be at the center of the tile. Additionally, the number of
polynomial coefficients is limited to N = 2. Thus, only k¢ and k; are needed to define the transform.

4.1 Tile matching

Figure 2 on the next page shows two matching image tiles. These tiles have undergone a mild radial distortion
with parameters kg = 0.95 and k1 = 0.05. The overlap area between these tiles is roughly 8%. Figure 3 shows
the displacement PDF corresponding to these two tiles, as well as the isolated pixel clusters corresponding
to the PDF maxima. There are a total of 19 maxima isolated in the PDF. Filtering the maxima leaves only
one eligible maximum for consideration, which indicates that the tiles are well matched.



Figure 2: matching tiles
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maxima clusters PDF maxima

Figure 4 on the following page shows two mismatched tiles. Figure 5 shows the corresponding displace-
ment PDF and PDF maxima. There are 30 maxima isolated in this PDF. After filtering there are still 5
maxima left. Ideally there would be only one maximum left, therefore this PDF indicates that the tiles do
not match.



Figure 4: mismatched tiles

maxima clusters PDF maxima

4.2 Tile ordering

Figure 6 on the next page illustrates the order in which the tiles are added to the mosaic. As can be seen, the
algorithm lays out the red tiles such that they have significant overlap with previous tiles (shown in blue).



Figure 6: tile ordering

4.3 Distortion correction

To verify the un-warping capabilities of the application a set of 9 artificially warped tiles was generated.
Each tile was warped by a radial distortion transform with parameters kg = 0.95 £ 0.05 x drand() and
k1 = 0.0540.05 x drand(). This ensures that each tile has been uniquely warped. Figure 7 on the following
page shows the result of displacement estimation for each tile, as well as the variance within the overlapping
regions of the mosaic.
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Figure 7: initial mosaic

This figure illustrates the tiling of the mosaic and initial variance within the overlapping regions of the
mosaic. Here, the maximum variance is 7750, and the mean variance is 144.

The initial mosaic is first un-warped using shared transform parameters across all transforms. This is
meant to compensate for any common global distortion present in all tiles. This stage of un-warping reduces
the average variance from 144 to 112, as illustrated in figure 8 on the next page. The image on the bottom
demonstrates variance within the overlapping regions of the mosaic.
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Figure 8: shared parameters optimization results

The result of shared transform parameters optimization. Here, the maximum variance is 4940, and the mean
variance is 112.

Following the optimization using the shared transform parameters, the process is repeated with unique

transform parameters for each tile. This stage of un-warping reduces the average variance from 112 to 2.71,
as illustrated in Figure 9 on the following page .
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Figure 9: unique parameters optimization results

The result of unique transform parameters optimization. Here, the maximum variance is 80.7, and the mean
variance is 2.71.

5 Results

Figure 10 on the next page shows 12 tiles of one mosaic. These tiles were matched to each other resulting
in initial mean variance of 100. Following the shared transform parameters optimization, the mean variance
was reduced down to 52.8. The unique transform parameters optimization reduced the mean variance down
to 43. The remaining variance may be due to higher order distortion, or differences in tile illumination
inherent in each tile or contributed by the Contrast Limited Adaptive Histogram Equalization (CLAHE)
preprocessing that was applied to each tile. A close up demonstration of the achieved variance reduction
can be seen in figure 11 on page 15.
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Figure 10: sample electron microscopy tiles

These are the sample Transmission Electron Microscopy tiles from one slice of a rabbit retina tissue. Each
tile has been enhanced with Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. The
tag at the lower left corner of each tile disrupts the initial tile matching in the frequency domain, therefore
a bottom portion of the image containing the tag has to be cropped out prior to transforming the image via
FFT. During variance minimization the tag is masked out, leaving the rest of the image in tact. The effect
of masking out the tag can be seen in the mosaics shown in figures 7, 8 and 9.
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Figure 11: variance reduction

These images illustrate the variance reduction due to tile un-warping within the overlap regions of the mosaic.
The images on the left are from the initial mosaic prior to un-warping, while the images on the right are
from the final mosaic where each tile has been un-warped with unique transform parameters.
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