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Abstract:

This paper outlines the basic steps in the design and implementation of a feature based Transmis-
sion Electron Microscopy (TEM) image registration application and highlights some of the imple-
mentation details, such as the detection of features, feature descriptor design, robust filtering of
mismatched descriptors, and transform estimation. Although the approach chosen is based on the
Scale Invariant Feature Transform (SIFT) method, it is optimized for the TEM image registration.



Implementation of an automati
 sli
e-to-sli
e registration toolPavel A. Koshevoy, Tolga Tasdizen, and Ross T. WhitakerApril 27, 2006Abstra
tThis paper outlines the basi
 steps in the design and implementation of a feature based TransmissionEle
tron Mi
ros
opy (TEM) image registration appli
ation and highlights some of the implementationdetails, su
h as the dete
tion of features, feature des
riptor design, robust �ltering of mismat
hed des
rip-tors, and transform estimation. Although the approa
h 
hosen is based on the S
ale Invariant FeatureTransform (SIFT) method, it is optimizied for the TEM image registration.1 MotivationThe goal of this proje
t is to provide a fully automati
 tool for sli
e-to-sli
e image registration of severalhundred sli
es assembled from high-resolution tile images. This tool is aimed at resear
hers working withTransmission Ele
tron Mi
ros
opy images. The 
hallenges lay in the fa
t that ea
h sli
e is arbitrarily orientedin the imaging plane, and may have been warped independently from all other sli
es.2 Problem statementGiven an ordered sequen
e of sli
es (e.g. S0, S1,... Sn) a transform must be 
onstru
ted for ea
h adja
entsli
e pair that would map from the image spa
e of sli
e Si to the spa
e of sli
e Si+1. This task will beaddressed within a feature mat
hing framework. The problem 
an be partitioned into several sub-problemsoutlined below:
• For ea
h sli
e, a gradient ve
tor image pyramid and a Di�eren
e-of-Gaussian image pyramid must be
onstru
ted.
• The extrema points of the DoG pyramid must be determined.
• The dominant gradient ve
tor orientation(s) in the neighborhood of ea
h extrema point must be de-te
ted.
• A des
riptor for every dete
ted gradient ve
tor orientation of the extrema point must be generated.
• For ea
h pair of adja
ent sli
es, mat
hing des
riptors must be found.
• Given the mat
hing des
riptors, a transform that best maps the extrema points from the image spa
eof sli
e A into the image spa
e of sli
e B must be 
al
ulated.3 Implementation detailsThe spe
i�
s of the 
onstru
tion of the image pyramids are thoroughly 
overed by David G. Lowe[2℄ andwill not be repeated here. Su�
e it to say, that a pyramid is a 
olle
tion of o
taves, where ea
h o
taverepresents a redu
tion of image resolution by a fa
tor of 2. Ea
h o
tave is partitioned into a set of s
aleswhere ea
h su

essive image is 
onvolved with a Gaussian �lter of in
reasing sigma value. The details ofe�
ient implementation of this are 
overed by Lowe[2℄.1



3.1 Dete
ting extrema pointsThe extrema points are the lo
al minima and maxima points of the Di�eren
e-of-Gaussian image pyramids.Lowe[2℄ proposed looking for an extrema point in a 3×3×3 neighborhood within a DoG pyramid. However,experimentation has shown that this te
hnique does not yield stri
t extrema points that are greater than orless than all of the neighbors. Relaxing the extrema 
riteria to allow the extrema point to be equal to itsneighbors yields a large number of adja
ent extrema points. Therefore, an alternative method of extremadete
tion is proposed.Let D1 be a non-boundary image within the DoG pyramid. Let D0 be the image pre
eeding D1 in thepyramid, and D2 the su

eeding image. Assuming there are minima points within the D0, D1, D2 sli
es ofthe pyramid, 
al
ulate
Amin = D0 − D1

Bmin = D2 − D1The resulting images Amin and Bmin are thresholded to remap the negative values to zero. The minimapoint image is 
al
ulated as
Emin = Amin × BminThe maxima point image is 
al
ulated analogously.

Amax = D1 − D0

Bmax = D1 − D2Again, Amax and Bmax are thresholded to remap the negative values to zero. The maxima point image is
al
ulated as
Emax = Amax × BmaxThe resulting extrema point images Emin, Emax are thresholded to isolate strong maxima, and an 8-
onne
ted 
lustering algorithms is used to dete
t the peaks. For ea
h 
luster, the key point is positioned atthe 
enter-of-mass of the 
luster.3.2 Dete
ting des
riptor orientationsThe des
riptor has to be rotationally invariant, therefore it is ne
essary to sele
t a 
onsistent frame of refer-en
e for sampling the neighborhood around the extrema point. The method that is 
urrently implementedin the appli
ation follows the one des
ribed by Lowe[2℄. Essentially, the neighborhood gradient orientationangles are a

umulated into a 1D histogram. Ea
h 
ontribution is weighed by the gradient magnitude anda 2D Gaussian weighting fun
tion 
entered at the extrema point. The peaks of the histogram de�ne thefeature ve
tor orientation angles.3.3 Generating the des
riptorsDuring experimentation, several di�erent des
riptor generators were evaluated, in
luding 2 versions of thedes
riptor re
ommended by Lowe[2℄. All of them share the following properties:

• The des
riptors are based on extrema point neighborhood properties derived from the image (su
h asthe gradient ve
tor image, or the extrema image).
• The neighborhood is sampled within a lo
al 
oordinate system based on the des
riptor orientationangle.
• The radius of the sampling window has to be large enough (in pixels) to 
apture the neighborhoodproperties.
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The major di�eren
e between the alternate des
riptor generators and the design proposed by Lowe rests inthe way the sampling window is partitioned. Lowe re
ommends that the des
riptor 
onsist of a 4×4 
ell gridof 8-bin gradient orientation histograms, whi
h leads to a 128 dimensional des
riptor ve
tor. The downsideof this design is that it dis
ards information that falls outside the grid. The alternative design partitions theneighborhood into a set of 
on
entri
 annuli, where ea
h annulus is partitioned into a set of 
ells of equalarea. Ea
h 
ell may hold an orientation histogram as suggested by Lowe, or some other information (su
has the average extrema intensity values extra
ted from Emin and Emax, or dominant gradient ve
tor angle).Unfortunately, experimentation with alternative des
riptor designs has not shown performan
e improvementover the design proposed by Lowe. The performan
e was evaluated in terms of the number of known mat
hingdes
riptors being 
orre
tly mat
hed using brute for
e mat
hing.3.4 Mat
hing des
riptorsThe mat
hing pro
ess is slightly di�erent from the one outlined by Lowe. Lowe addresses a more general
omputer vision problem, where dete
tion of the same obje
t at di�erent s
ales is important. The ele
trontransmission mi
ros
opy images are typi
ally taken at the same s
ale, and undergo minor deformation on theglobal s
ale, making the s
ale invariant feature mat
hing unne
essary. Therefore, for the purposes of TEMimage registration, the des
riptors are mat
hed against other des
riptors sele
ted from the same o
tave ands
ale of the pyramid. In order to a
hieve s
ale invarian
e, all that is required is the mat
hing of des
riptorsfrom any o
tave and s
ale of a pyramid against any other o
tave and s
ale of the other pyramid. This would,of 
ourse, in
rease the number of mismat
hes.A brute for
e implementation of des
riptor mat
hing is not unreasonable for the purposes of this proje
t.However, following in Lowes footsteps the 
urrent implementation uses an optimized kd-tree[5℄ with a best-bin-�rst nearest neighbor sear
h algorithm[3℄.3.5 Filtering out bad mat
hesLowe has suggested two �ltering stages for removing poorly mat
hed des
riptors.The �rst stage is based on the thresholding of the ratio of Eu
lidian distan
e (in des
riptor spa
e) betweenthe query des
riptor and its 
losest mat
h to the distan
e between the query des
riptor and its se
ond 
losestmat
h. This is founded on the observation that a well mat
hed des
riptor is usually distin
t enough fromthe se
ond 
losest mat
h that the ratio of distan
es would fall below 0.5, where as the ratio of distan
es fora mismat
hed des
riptor and its se
ond 
losest mat
h is typi
ally greater than 0.5.Unfortunately, our experimental results on mat
hing TEM images have shown that the ratio of thedes
riptor distan
e ratio between 
losest and se
ond 
losest mat
h is not nearly as well separated for 
orre
tmat
hes and mismat
hes, therefore this property 
an not be used for �ltering out bad mat
hes, as it dis
ardspra
ti
ally all of the 
orre
t mat
hes as well.The se
ond stage proposed by Lowe is based on 
lustering with the Hough transform[7℄, whi
h will notbe 
overed here. Su�
e it to say that in our implementation it was not as e�e
tive as the alternative methoddes
ribed below. The performan
e of the two �lters was 
ompared in terms of the ratio of the dete
ted
orre
t mat
hes to the number of mat
hes in the �ltered set.An alternative �lter that appears to be extremely e�e
tive for TEM images is based on the ratio ofthe distan
e (in image spa
e) between nearest extrema points in image Si, to the distan
e between theirmat
hing points in the image Si+1. This �lter relies on the assumption that the s
ales of the images beingmat
hed are the same, whi
h is true for the TEM images. Sin
e the s
ales are the same, the distan
e betweennearest neighbors in one image and the mat
hing image should be nearly identi
al. If the ratio of the twodistan
es deviates signi�
antly from 1.0, it 
an be assumed that one of the mat
hes is wrong. When it isdetermined that one of the points is mismat
hed, both of the mat
hes are dis
arded. The downside of this�ltering approa
h is that for every dis
arded mismat
h, it may also be dis
arding a good mat
h as well.3.6 Estimating the transformThe remaining set of mat
hes may still 
ontain some mismat
hes, whi
h presents a problem for a LeastSquares solution. Matthew Brown[4℄ proposed the use of RANSAC[6℄ to sele
t a set of mat
hes that de�ne3



a 
onsistent transform.Essentially, a few mat
hes are sele
ted at random to solve for the transform parameters. The numberof initially sele
ted mat
hes depends on the number of transform parameters. For example, a 2nd order(a�ne) bivariate Legendre polynomial transform has 6 parameters, it therefore requires 3 distin
t mat
hes.A 4th-order bivariate Legendre polynomial transform has 20 parameters, it requires 10 distin
t mat
hes.On
e a transform has been estimated, the rest of the mat
hes are veri�ed as inliers or outliers. For ea
hmat
h point pair, the point expressed in the spa
e of image Si is mapped via the transform into the spa
eof image Si+1. The distan
e of the mapped point to its mat
h is used to 
lassify the mat
h as an inlier oran outlier based on some threshold. The inliers and the original set of mat
hes are then used to re-estimatethe transform. This 
an be an iterative pro
ess, where at ea
h iteration the mat
hes are 
lassi�ed as inliersand outliers, until 
onvergen
e or a maximum number of iterations is rea
hed. Sin
e the goal is to optimizethe number of inliers, the pro
ess is repeated with a new set of initial random mat
hes, and the best resultsare kept.For further improvement, it is possible to sort the mat
hes a

ording to some metri
, su
h as the Eu
lideandistan
e between the des
riptors in the des
riptor spa
e. Then, instead of uniform sampling, importan
esampling may be used to sele
t initial mat
hes for RANSAC.3.7 Further re�nement of the transform estimateGiven a transform estimate, it may be possible to remat
h the des
riptors between the two images byrestri
ting the set of mat
h 
andidates to a lo
al neighborhood within the transform target image spa
e.For example, an initial set of des
riptor mat
hes may be used to estimate a low order transform (e.g.a�ne) between images Si and Si+1. Given the low order transform, ea
h des
riptor from image Si is mappedinto image Si+1. Only the des
riptors that fall within a lo
al neighborhood of the mapped des
riptor are
onsidered for mat
hing. This eliminates a number of potential mismat
hes that would be in
onsistent withthe a�ne transform. On
e all the des
riptors have been re-mat
hed, RANSAC 
an be used again to estimatea higher order transform.4 ResultsAn example of typi
al images that must be pro
essed by our appli
ation is given in �gure 1 on the followingpage. A Di�eren
e-of-Gaussian and a gradient ve
tor pyramid of 2 o
taves with 3 s
ales per o
tave was
onstru
ted for ea
h image. The extrema of the DoG pyramid are dete
ted: 2951 points in the left image,2953 points in the right image. For ea
h dete
ted extrema point the lo
al gradient ve
tor neighborhood isexamined to determine dominant gradient ve
tor orientations. For ea
h dete
ted orientation a des
riptor is
onstru
ted. This results in 4732 des
riptors in the left image, and 4601 des
riptors in the right image. Anillustration of the dete
ted des
riptors is given in �gure 2 on the next page. The des
riptors are mat
hedresulting in 4601 mat
hes. These mat
hes are �ltered down to 459 mat
hes � see �gure 3 on page 6 foran illustration. RANSAC is used to sele
t inliers 
onsistent with an a�ne transform whi
h results in 165mat
hes illustrated in �gure 4 on page 6. The resulting registration is shown in �gure 5 on page 7.Referen
es[1℄ Lindeberg, T. 1994. S
ale-spa
e theory: A basi
 tool for analysing stru
tures at di�erent s
ales. Journalof Applied Statisti
s, 21(2):224-270.[2℄ Lowe, D.G. 2004. Distin
tive Image Features from S
ale-Invariant Keypoints. International Journal ofComputer Vision.[3℄ Beis, J. and Lowe, D. G. 1997. Shape Indexing Using Approximate Nearest-Neighbour Sear
h in High-Dimensional Spa
es. In Conferen
e on Computer Vision and Pattern Re
ognition, Puerto Ri
o, pp. 1000-1006. 4



Figure 1: Sample sli
es

Two 
onse
ution sli
es. Ea
h sli
e was assembled from 12 high resolution Transmission Ele
tron Mi
ros
opyimages of a rabbit retina.
Figure 2: The des
riptors

Visualization of the unmat
hed des
riptor ve
tors dete
ted in the two images: 4732 des
riptors in the imageon the left, 4601 � on the right. 5



Figure 3: The �ltered des
riptor mat
hes

Visualization of the �ltered mat
hes � 459 out of 4601 mat
hes remain.
Figure 4: RANSAC �ltered mat
hes

Visualization of the RANSAC �ltered mat
hes � 165 
onsistent mat
hes are sele
ted out of 459 remainingmat
hes. 6



Figure 5: sli
e to sli
e registration

Visualization of the sli
e-to-sli
e registration results.

7



[4℄ Brown, M. and Lowe, D.G. 2002. Invariant Features from Interest Point Groups. In British Ma
hineVision Conferen
e, Cardi�, Wales, pp. 656-665.[5℄ Friedman, J.H., Bentley, J.L. and Finkel, R.A. 1977. An Algorithm for Finding Best Mat
hes in Loga-rithmi
 Expe
ted Time. ACM Transa
tions on Mathemati
al Software, 3(3):209-226.[6℄ Fis
hler, M.A. and Bolles, R.C. 1981. Random Sample Consensus: A Paradigm for Model Fitting withAppli
ations to Image Analysis and Automated Cartography. Communi
ations of the ACM, 24(6):381-395.[7℄ D. H. Ballard. 1981. Generalizing the Hough transform to dete
t arbitrary patterns. Pattern Re
ognition,13(2):111-122.

8


