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Abstract:

In this paper, we present a novel approach to unsupervised texture segmentation that is based
on a very general statistical model of image neighborhoods. We treat image neighborhoods as
samples from an underlying, high-dimensional probability density function (PDF). We obtain an
optimal segmentation via the minimization of an entropy-based metric on the neighborhood PDFs
conditioned on the classification. Unlike previous work in this area, we model image neighborhoods
directly without preprocessing or the construction of intermediate features. We represent the
underlying PDFs nonparametrically, using Parzen windowing, thus enabling the method to model
a wide variety of textures. The entropy minimization drives a level-set evolution that provides a
degree of spatial homogeneity. We show that the proposed approach easily generalizes, from the
two class case, to an arbitrary number of regions by incorporating an efficient multi-phase level-set
framework. This paper presents results on synthetic and real images from the literature, including
segmentations of electron microscopy images of cellular structures.
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Abstract

In this paper, we present a novel approach to unsupervised
texture segmentation that is based on a very general statisti-
cal model of image neighborhoods. We treat image neigh-
borhoods as samples from an underlying, high-dimensional
probability density function (PDF). We obtain an optimal
segmentation via the minimization of an entropy-based met-
ric on the neighborhood PDFs conditioned on the classifi-
cation. Unlike previous work in this area, we model image
neighborhoods directly without preprocessing or the con-
struction of intermediate features. We represent the un-
derlying PDFs nonparametrically, using Parzen windowing,
thus enabling the method to model a wide variety of tex-
tures. The entropy minimization drives a level-set evolution
that provides a degree of spatial homogeneity. We show
that the proposed approach easily generalizes, from the two-
class case, to an arbitrary number of regions by incorporat-
ing an efficient multi-phase level-set framework. This pa-
per presents results on synthetic and real images from the
literature, including segmentations of electron microscopy
images of cellular structures.

1. Introduction
Image segmentation is one of the most extensively stud-
ied problems in computer vision. Many different ap-
proaches have been proposed for the partitioning of images
based on a variety of criteria including brightness (inten-
sity), color, texture, depth, and motion. This paper ad-
dresses the problem of segmenting textured images. By
texture segmentation we mean the partitioning of static,
grayscale images, with regions that are not easily distin-
guished from one another by their average intensity val-
ues. Textured regions do not necessarily adhere to the
piecewise-smooth or piecewise-constant assumptions that
underly most intensity-based segmentation problems; they
are defined by some kind of regularity in the higher-order
statistics of their pixel neighborhoods.

In recent years researchers have pushed the state-of-the-
art in texture segmentation in several important directions.
The first direction concerns the mechanism used to model or

quantify the regularity in image textures. Researchers have
been developing progressively richer descriptions of local
image structure and thereby capturing more complex and
subtle distinctions between regions. Another direction has
been in modeling the variability with textured regions, typ-
ically through more sophisticated, statistically-based met-
rics. Finally, the research in texture segmentation, like seg-
mentation in general, has pursued more robust mechanisms
for enforcing geometric regularity in texture segmentations,
usually through the construction of a patchwork of regions
that simultaneously minimize a set of geometric and statis-
tical criteria.

This paper advances the state-of-the-art in texture seg-
mentation by proposing a strategy that takes the richness
of the image descriptors and the generality of the statistical
representations to new levels. The proposed method relies
on a complete representation of image neighborhoods that
exist in a very high dimensional probability space. It re-
lies on nonparametric description of image statistics, and
therefore imposes very few assumptions on the statistical
structure of neighborhoods. Therefore, it is easily applica-
ble to a wide range of segmentation problems. The pro-
posed method also incorporates relatively recent advances
in the computation of level-set evolution, and hence offers
a practical way of combining sufficient levels of geometric
regularity with an extensive set of statistical computations.

2 Related Work

Many texture segmentation algorithms rely on signatures to
summarize the underlying spatial intensity patterns. This
strategy reduces the dimensionality (and complexity) of
neighborhood relationships, thereby making analysis more
manageable. For instance, intensity (or grayscale) his-
tograms, computed in local neighborhoods go a long way
toward capturing interesting differences in textures [15, 14].
As in this paper, that work relies on nonparametric den-
sity estimation. However, the grayscale intensity statistics
(i.e. 1D histograms), fail to capture the geometric structure
of neighborhoods, which is essential for distinguishing tex-
tured regions with similar grayscale distributions. Thus, we
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have taken nonparametric estimation to a very large number
of dimensions in order to capture local geometric structure.
Much of the previous work in texture analysis relies on fil-
ter banks to described the local structure of images. For in-
stance, Gabor filters [11] produce texture features that have
been used to discriminate textured regions [20, 23, 24]. Ga-
bor filters are a prominent example of a very large class of
oriented, multiscale filters [4, 27].

Other authors have proposed even more compact repre-
sentations. For instance, Bigun et al. [2] use the structure
tensor (second-order moment matrix—used, for instance, to
analyze flow-like patterns [30]), for texture segmentation.
Rousson et al. [22] refine this strategy by using vector-
valued anisotropic diffusion instead of Gaussian blurring
to compute the structure tensor. However, this strategy re-
quires that the structure tensors of the image has a sufficient
degree of homogeneity within patches and sufficient degree
of difference between patches. Not all images meet these
criteria, and we propose to use the full statistics of image
neighborhoods; in other words, the complete set of unfil-
tered pixel intensities.

Recently, researchers have investigated modeling image
statistics more directly. For instance, Doretto et al. [6] use a
hidden Markov process to model the relationships between
all pixels within regions, and they apply their method to dy-
namic textures, capturing relationships in space and time.
However, that method assumes a Gaussian process, a very
strong assumption that cannot easily account for complex or
subtle texture geometries. We take an alternative approach,
which is to use a more general statistical model but limit
this model to the analysis of small to medium image neigh-
borhoods.

Researchers analyzing the statistics of natural images in
terms of local neighborhoods have drawn conclusions that
are consistent with Markov random field models of im-
ages [12]. For instance, Huang et al. [13] analyze single
pixel statistics, two-point statistics and derivative statistics
of natural images. They found that the mutual information
between the intensities of two adjacent pixels in natural im-
ages is rather large and attributed this to the presence of
spatial correlation in the images. Lee et al. [16] and Silva et
al. [5] analyze the statistics of 3 × 3 high-contrast patches
in optical images, in the corresponding high-dimensional
spaces, and find the the data to be concentrated in clus-
ters and low-dimensional manifolds exhibiting a nontrivial
topologies.

Popat et al. [21] were among the first to use nonparamet-
ric Markov sampling in images. They attempt to capture
the higher-order nonlinear image statistics via cluster-based
nonparametric density estimation and apply their technique
for image restoration, image compression and texture clas-
sification. However, their method takes a supervised ap-
proach for learning neighborhood relationships. The work

in this paper also relies on the hypothesis that natural im-
ages exhibit some regularity in neighborhood structure, but
this regularity is discovered for each image individually in
a nonparametric manner. The proposed method builds on
the work in [1], which lays down the foundations for un-
supervised learning of higher-order image statistics. That
work however, proposes reducing the entropy of image-
neighborhood statistics as a method for denoising grayscale
images.

The literature dealing with texture synthesis also sheds
some light on the proposed method. Texture synthesis algo-
rithms rely on image statistics from an input image to con-
struct novel images that exhibit a qualitative resemblance
to the input [3, 9, 29]. This paper describes a very differ-
ent application, but the texture synthesis work demonstrates
the power of neighborhood statistics in capturing essential
aspects of image structure.

This paper also relies on a rather extensive body of work
on variational methods for image segmentation. In particu-
lar the Mumford-Shah model [18], its extensions to motion,
depth, and texture [18], and its implementation via level-set
flows [28]. In particular we use the very fast approximation
proposed by Esedoglu [10], and extend it to include multi-
ple regions within a probabilistic framework.

3. Methodology

This section overviews the random field image model with
the associated notation and then describes the optimal seg-
mentation formulation based on an entropy minimization.

3.1. Random Field Image Model

A random field/process [7] is a family of random variables
X(Ω; T ), for an index set T , where, for each fixed T = t,
the random variable X(Ω; t) is defined on the sample space
Ω. If we let T be a set of points defined on a discrete Carte-
sian grid and fix Ω = ω, we have a realization of the random
field called the digital image, X(ω, T ). In this case {t}t∈T

is the set of pixels in the image. For two-dimensional im-
ages t is a two-vector. If we fix T = t and let ω vary then
X(t) is a random variable on the sample space. We denote
a specific realization X(ω; t) (the image), as a deterministic
function x(t).

If we associate with T a family of pixel neighborhoods
N = {Nt}t∈T such that Nt ⊂ T , and u ∈ Nt if and only
if t ∈ Nu, then N is called a neighborhood system for the
set T and points in Nt are called neighbors of t. We define
a random vector Z(t) = {X(t)}t∈Nt , denoting its realiza-
tion by y(t), corresponding to the set of intensities at the
neighbors of pixel t. For the formulation in this paper, we
assume that the intensities in each texture patch arise out
of a stationary ergodic process. For notational simplicity

2



we use the short hand for random variables X(t) as X and
their realizations x(t) as x, dropping the index t.

3.2. Texture Segmentation via Entropy Mini-
mization

Let pk(Z = z) be the probability of observing the image
neighborhood z given that the center pixel of the neighbor-
hood belongs to the texture class k. The total entropy asso-
ciated with a set of K texture probability distributions is

h = −
K∑

k=1

∫
�m

pk(Z = z) log pk(Z = z)dz (1)

where m = |Nt| is the neighborhood size. Let {Tk}K
k=1 de-

note a mutually exclusive and exhaustive decomposition of
the image domain into regions generated by the K texture
classes. Let Rk : T → [0, 1] denote the indicator function
for Tk, i.e. Rk(t) = 1 for t ∈ Tk and Rk(t) = 0 oth-
erwise. The total entropy generated by a particular region
decomposition is

h = −
K∑

k=1

∫
T

Rk(t)pk(z(t)) log pk(z(t))dt (2)

We consider the optimal decomposition to be the set of
functions Rk where h attains a minimum. The strategy in
this paper is, therefore, to minimize the total entropy given
in (2) by manipulating the regions defined by Rk. This
rather large nonlinear optimization problem has, potentially,
many local minima. Furthermore, as a practical considera-
tion, textures incorporate some degree of randomness, and
regions that are too small will not generate a sufficient num-
ber of samples to estimate their statistics. To regularize the
solution, and alleviate these problems, variational formula-
tions typically penalize the boundary length of the segmen-
tation [18]. With this modification the objective function
becomes

E = h + α

K∑
k=1

∫
T

‖ ∇Rk(t) ‖ dt, (3)

where α is a regularization parameter.

3.3. Level Set Formulation
The level set framework [19] is an attractive option for solv-
ing the variational problem defined by (3), because it does
not restrict the shapes or topologies of regions. However,
the method carries some significant computational costs—
in particular the CFL condition for stability limits the mo-
tion of the moving wavefront (patch boundaries) to one
pixel per iteration.

Recently, Esedoglu and Tsai introduced a fast level set
algorithm based on threshold dynamics for minimizing

Mumford-Shah type energies [10]. In this paper, we adopt
their approach to implement the speed term given in (4),
but rely on a multiphase extension of the basic formulation
to enable multiple regions [17, 28]. We now let {Rk}K

k=1

be a set of level-set functions. The segmentation for texture
k is then defined as Tk = {t ∈ T |Rk(t) > Rj(t),∀j �= k}.
The level set speed term for minimizing the energy defined
in (3) is therefore

∂Rk(t)
∂τ

= pk(z(t)) log pk(z(t)) + α∇ ·
( ∇Rk(t)
‖ ∇Rk(t) ‖

)
,

(4)
where τ denotes the time evolution variable.

In accordance with Esedoglu and Tsai’s scheme [10],
given an initialization for texture regions {Rk}K

k=1, the al-
gorithm iterates over the following steps:

1. Estimate pk(z(t))

2. R′
k = Rm

k + βpk(z(t)) log pk(z(t))

3. R′′
k = Kε ⊗ R′

k, where Kε is a Gaussian kernel with a
standard deviation ε and ⊗ denotes convolution.

4. Set Rm+1
k (t) = 1 if Rk(t) > Rj(t) for all j �= k, set

Rm+1
k (t) = 0 otherwise.

5. Stop when the change in the segmentation, i.e. the sets
{Rk}, falls below a small threshold.

For a discussion of the relationship of the new parameters,
namely ε and β, to the parameter α in the traditional level
set framework, we refer the reader to [10]. For this work,
the critical problem lies in the estimation of pk(z(t)), which
is addressed in the next section. These updates represent an
approximation to a gradient descent algorithm on the image
entropy. We use an initial segmentation of randomly gen-
erated regions and segment the image in an unsupervised
manner, as shown in Section 4.

3.4. Nonparametric Density Estimation
Entropy optimization entails the estimation of higher-order
conditional PDFs. This introduces the challenge of high-
dimensional, scattered-data interpolation, even for modest
sized image neighborhoods. High-dimensional spaces are
notoriously challenging for data analysis (regarded as the
the curse of dimensionality [26, 25]), because they are so
sparsely populated. Despite theoretical arguments suggest-
ing that density estimation beyond a few dimensions is im-
practical, the empirical evidence from the literature is more
optimistic [25, 21]. The results in this paper confirm that
observation. Furthermore, stationarity implies that the ran-
dom vector Z exhibits identical marginal PDFs, and thereby
lends itself to more accurate density estimates [25, 26]. We
also rely on the neighborhoods in natural images having a
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lower-dimensional topology in the multi-dimensional fea-
ture space [16, 5]. Therefore, locally (in the feature space)
the PDFs of images are lower dimensional entities that lend
themselves to better density estimation.

We use the Parzen-window nonparametric density esti-
mation technique [8] with an n-dimensional Gaussian ker-
nel Gn(z̃,Ψn). We have no a priori information on the
structure of the PDFs, and therefore we choose an isotropic
Gaussian, i.e. Ψn=σIn, where In is the n × n identity
matrix. For a stationary ergodic process, the multivariate
Parzen-window estimate is

pk(Z = z) ≈ 1
|Ak|

∑
tj∈Ak

Gn(z − zj ,Ψn) (5)

where the set Ak is a small subset of Tk, chosen randomly
and zj is shorthand for z(tj).

Using optimal values of the Parzen-window parameters
is critical for success, and that can be especially difficult in
such high-dimensional spaces. The best choice depends on
a variety of factors including the sample size |Ak| and the
natural variability in the data. To address this problem we
have developed a method for automatically choosing opti-
mal value of this parameter [1]. We choose σ to minimize
the entropy of the associated PDF via a Newton-Raphson
optimization scheme. This entropy minimizing choice for
σ is consistent with the entropy minimization segmenta-
tion formulation. Our experiments show that for sufficiently
large |Ak| additional samples do not significantly affect the
estimates of entropy and σ, and thus |Ak| can also be gen-
erated automatically from the input data.

The quality of the results also depends on the neighbor-
hood size—bigger neighborhoods are generally more effec-
tive but take longer to compute. Typically 9 × 9 neigh-
borhoods suffice. To obtain rotational invariance we use
a metric in the feature space that controls the influence of
each neighborhood pixel so that the distances in this space
are less sensitive to neighborhood rotations [1]. In this
way, feature space dimensions corresponding to corners of
the square neighborhood collapse so that they do not influ-
ence the filtering. Likewise image boundaries are handled
through such anisotropic metrics so that they do not distort
the neighborhood statistics of the image.

4. Results
In this section, we discuss results from experiments with
real and artificial data. For the level-set initialization
we used a checkerboard image, with K different labeled
checks. The number K is a user parameter and should be
chosen to match the desired number of texture classes. Fig-
ure 1(a) is an electron microscopy image of a cell. This
image is challenging to segment using edge or intensity in-
formation because it is not piecewise homogeneous. The

(a) (b) (d)

(c) (e)

Figure 1: (a) An electron microscope image of a cell, (b)
initialization with checkerboard pattern, (c) result of 2-
class segmentation, (d) different initialization with smaller
checkerboard pattern, and (e) result.

discriminating feature of these two cell types (type A: up-
per left and bottom right, type B: middle) is their textures
formed by the arrangements of sub-cellular structures. Fig-
ure 1(b) illustrates a checkerboard pattern with two classes
used to initialize the algorithm. Figure 1(c) shows the re-
sult of the proposed algorithm starting from this initializa-
tion. The two cell types are segmented with a high degree
of accuracy; however, notice that the membranes between
the cells are grouped together with the middle cell. A third
texture class could be used for the membrane, but this is
not a trivial extension due to the thin, elongated geometric
structure of the membrane and the difficulties of sampling
associated with such structures. Figure 1(d) and (e) show
another initialization with a finer scale checkerboard pat-
tern and the segmentation results, respectively. The final
segmentation is almost the same as before demonstrating
the robustness of the algorithm to initializations.

Figure 2(a) is a kind of image often used in the texture
segmentation literature. Figure 2(b) demonstrates a suc-
cessful segmentation of this image using the proposed al-
gorithm.

Figure 3 depicts an image having multiple classes and a
successful segmentation with the proposed algorithm using
the multiphase level-set framework.
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(a) (b)

Figure 2: (a) Zebra image and (b) final segmentation.

(a) (b)

Figure 3: (a) An image of 4 different Brodatz textures. (b) A
segmentation into 4 regions using the multiphase version of
the level-set algorithm.

5. Conclusions

We have presented a novel approach toward texture seg-
mentation that exploits higher-order image statistics in an
entropy-minimizing framework. The method automatically
learns the image statistics via nonparametric density esti-
mation and, unlike typical prevalent techniques, does not
impose an adhoc image model. We incorporate an efficient
multiphase level-set evolution framework [10] to obtain an
optimal segmentation. The method relies on the informa-
tion content of input data for setting important parameters,
and does not require significant parameter tuning. Hence it
is easily applicable to a wide spectrum of images.

The computational complexity of the proposed method
is significant: O(|T ||Ak|ED) where D is the image di-
mension and E is the extent of the neighborhood along a
dimension. This is exponential in E, and our current re-
sults are limited to 2D images. The literature suggests some
potential improvements (e.g. [31]). However, the purpose
of this paper is to introduce the theory and methodology—
algorithmic improvements are the subject of future work.
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