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Abstract—For surface reconstruction problems with noisy and incomplete range data, a Bayesian estimation approach can improve

the overall quality of the surfaces. The Bayesian approach to surface estimation relies on a likelihood term, which ties the surface

estimate to the input data, and the prior, which ensures surface smoothness or continuity. This paper introduces a new high-order,

nonlinear prior for surface reconstruction. The proposed prior can smooth complex, noisy surfaces, while preserving sharp, geometric

features, and it is a natural generalization of edge-preserving methods in image processing, such as anisotropic diffusion. An exact

solution would require solving a fourth-order partial differential equation (PDE), which can be difficult with conventional numerical

techniques. Our approach is to solve a cascade system of two second-order PDEs, which resembles the original fourth-order system.

This strategy is based on the observation that the generalization of image processing to surfaces entails filtering the surface normals.

We solve one PDE for processing the normals and one for refitting the surface to the normals. Furthermore, we implement the

associated surface deformations using level sets. Hence, the algorithm can accommodate very complex shapes with arbitrary and

changing topologies. This paper gives the mathematical formulation and describes the numerical algorithms. We also show results

using range and medical data.

Index Terms—Surface reconstruction, robust estimation, anisotropic diffusion, level sets.

�

1 INTRODUCTION

THIS paper addresses the problem of Bayesian 3D surface
reconstruction. Specifically, we consider reconstruction

from multiple registered range images, but we also
demonstrate the application of the methods developed in
this paper to surface reconstructions from magnetic
resonance imaging (MRI) data. The importance of high-
quality surface reconstructions from range data is growing
as range measurement technologies become more accurate
and affordable. Despite the increased accuracy in these
measurement devices, significant challenges to surface
reconstruction remain. In particular, surface reconstruction
is complicated by measurement noise and variations in
measurement density. For instance, the measurement
density is high at regions of the surface that are visible in
multiple images. By contrast, parts of the surface that are
occluded in all of the images have no data.

We model the uncertainties arising from measurement
noise, overlapping measurements, and occlusion in a Baye-
sian framework, which formulates surface reconstruction as
themaximization of a posterior probability function. Accord-
ing to Bayes rule, maximum a posteriori (MAP) estimators
maximize the product of two distinct probabilities: the
likelihood of the measurement data conditioned on the
surface model and the prior probability distribution for the
model.We refer to these twoprobabilities, respectively, as the
likelihood and the prior. Amajor challenge of Bayesian surface
reconstruction is the determination of these two quantities.

This paper focuses on the prior probability distribution.
Specifically, we attempt to correctly generalize statistical
image reconstruction strategies [1], [2], [3], [4], [5] to surface
reconstruction, and we propose higher-order nonlinear
feature-preserving surface priors as the solution to this
problem.

In a variational optimization framework, penalty func-
tions on the surface curvature give rise to fourth-order partial
differential equations (PDE). In previous work [6], we
propose that the natural generalization of image processing
to surfaces occurs via the surface normal vectors and show
results for postprocessing of noisy surfaces. For example, a
smooth surface is one that has smoothly varying normal
vectors. Our strategy is to use a two-step approach: 1) operate
on the normal map of a surface to reduce its curvature and
2) fit a surface to the processed normals and the range data.
Iterating this two-stepprocess,wecanefficiently implement a
flow that resembles a fourth-order PDE. In this light, the
differencesbetweensurfaceprocessingand imageprocessing
are threefold. Normals exist on a manifold (the surface) and
cannot be processed using a flat metric, as is typically done
with images. Processing techniques must also accommodate
vector valued normals that are constrained to be unit length.
Because normals are coupled with the surface shape, the
normals should drag the surface along as their values are
modified during processing.

The remainder of this paper is organized as follows:
Section 2 presents a discussion of the related work in the
literature. Section 3 gives a brief summary of Bayesian
image and surface reconstruction formulations. In Section 4,
we formulate higher-order feature preserving surface
energy functions that give rise to a useful family of priors
and, in Section 5, we introduce a strategy to solve them.
Section 6 demonstrates results and compare them to results
from previous methods, and discuss some properties of the
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proposed approach. Section 7 presents conclusions and
directions for future research possibilities.

2 RELATED WORK

Surface reconstructionmethods can roughly be classified into
high-level and low-level approaches. The high-level ap-
proaches are generally formulated as a problem of finding
sets of geometric primitives that best represent the objects
beingmeasured [7], [8], [9], [10], [11]. High-level descriptions
of scenes are useful for certain computer vision tasks such as
object recognition; however, scenes described by simple
primitives have limited complexity. Low-level methods are
based on either explicit models such as surface meshes or
implicitmodels suchas level sets. The literaturedemonstrates
methods for zippering together meshes that describe differ-
ent sides of an object [12], and fitting deformable models that
expand inside a sequence of range images [13]. These
approaches are suitable for use with high quality range
images with relatively small amounts of noise. Several
authors propose volumetric methods [14], [15], [16], [17],
[18] that combine range measurements in a volumetric
medium. The reconstructed surfaces are the zero-sets, or
isosurfaces, of such volumes.

In this paper, we utilize the level set-based Bayesian range
map registration and surface reconstruction framework
developed by Whitaker and Gregor [17], [19], [18]. This
strategy uses maximum likelihood parameter estimation to
register the views before combining multiple range images
via a level set implementation that can represent any solid
object, regardless of shape and topology. The combination of
a Bayesian formulation with level set methods is effective for
complex, noisy scenes. TheBayesian formulation requires the
determination of the likelihood probability density function,
which depends on the range sensor properties, and the prior
probability density function, which models the space of the
physical objects being measured. The role of the likelihood
term is to force the fitted models to be accurate representa-
tions of the measured data. Whitaker and Gregor derive the
likelihood term from a line-of-sight error formulation, which
is shown to accurately model laser range finders [17], [18].
This paper seeks to improve the prior term which serves to
eliminate the measurement noise and other artifacts in the
fitted model by requiring it to adhere to certain expectations
about the application domain or scene.

The use of priors have been extensively investigated in
related works in image processing. For instance, Mumford
and Shah formulate the problem of image segmentation in a
variational framework with a Bayesian rationale [1], [2].
Nordstrom [3] investigates the relationship of the Perona &
Malik (P&M) anisotropic diffusion approach to edge
detection [20] to the Mumford-Shah variational strategy.
Other authors [21], [5], [22] also present an unified view of
the reconstruction, nonlinear diffusion, and robust statistics
approaches. Our method is motivated by Nordstrom’s
biased anisotropic image diffusion.

In contrast to the research in image processing, investiga-
tion ofmore effective surface priors has not been emphasized
in previous surface reconstruction literature. This is partly
due to the prevalent strategy of fitting shape primitives to
data in computer vision. Primitives usually have only a few
shape parameters, i.e., height and radius for a cylinder. They
impose their own structure on to the data and act as our prior

belief about the contents of a scene and, hence, there is no
need for a separate prior probability term in the reconstruc-
tion. Loosely structured explicit models such as surface
meshes and implicit models such as level set surfaces of
volumes, can represent complicated scenes; however, these
low-level models do not impose a rigid shape structure.
Therefore, prior probability terms must be included in
surface reconstructionwith suchmodels to reduce the effects
of noise and fill in surfaces where there is no data.

Surface area penalty serves as a simple prior for surface
reconstruction [17], [19], [18], and a gradient descent on the
surface area energy results in mean curvature flow (MCF).
However, in the context of surface reconstruction, MCF
suffers from several problems including volume shrinkage
and elimination of sharp features (creases). A great deal of
research focuses on modified second-order flows that
produce better results than MCF. Using level set methods,
several authors have proposed smoothing surfaces by
weighted combinations of principal curvatures. For instance,
Whitaker [23] proposes a nonlinear reweighting scheme that
favors the smaller curvature and preserves cylindrical
structures. Lorigo et al. [24] propose a smoothing by the
minimum curvature.

A similar set of curvature-based algorithms have been
developed for surface meshes. For instance, Taubin [25]
proposes a nonshrinking Gaussian smoothing. Clarenz et al.
[26] propose a modified MCF as an anisotropic diffusion of
the surface. They threshold a weighted sum of the principal
curvatures to determine the surface locations where edge
sharpening is needed. Tangential displacement is added to
the standardMCFat these locations for sharpening the edges.
Another mesh-based modified MCF is proposed in [27]
where a threshold on the mean curvature is used to prevent
over-smoothing. Taubin proposes a “linear anisotropic
Laplacian operator” for meshes that is based on a separate
processing of the normals [28]. Although these flowsproduce
results that tend to preserve sharp features, they are not a
strict generalization of P&M anisotropic diffusion [20] from
images to surfaces. Because they are basedon reweightings of
curvature, these methods always smooth the surface in some
direction. Thus, they do not exhibit a sharpening of details,
which is achieved by the P&M equation (for images) through
an inverse diffusion process.

Chopp and Sethian [29] derive the intrinsic Laplacian of
curvature for a 2D implicit curve, and solve the resulting
fourth-order PDE. They argue that the numerical methods
used to solve fourth-order flows are not practical, because
they lack numerical stability. They propose several new
numerical schemes,butnoneare satisfactorydue to their slow
computation and inability to handle singularities. In related
works [30], [31], approximations of higher-order geometric
surface flows have been applied to surface fairing in
computer graphics.

3 BAYESIAN RECONSTRUCTION

This section provides a brief discussion of the
Bayesian formulation for the image/surface reconstruc-
tion framework.

3.1 Surface Reconstruction

Let S and M be a surface and the collective set of measured
data, respectively. We will assume thatM consists of a set of
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n registered range images, RðjÞ� �n

j¼1
. For all the examples in

thispaper,weused the registrationmethodsdescribed in [19],
[18]. Then, the posterior probability of S given the data is

P S j Mð Þ ¼ P M j Sð ÞP Sð Þ
P ðMÞ ; ð1Þ

where P M j Sð Þ is the likelihood term and P Sð Þ is the prior.
Because the goal is to find the surface that maximizes the
posterior, the denominator P ðMÞ, which is a constant
normalization factor that is independentofS, canbedropped.
Typically, MAP estimators are implemented as minimiza-
tions of the negative logarithm of the posterior probability

ŜS ¼ arg inf
S

� lnP M j Sð Þ � lnP Sð Þ½ �; ð2Þ

where ŜS is the estimator.
Using the independence of the range images, the log-

likelihood can be expressed as a sum lnP M j Sð Þ ¼
�
Pn

j¼1 lnP RðjÞ j S
� �

. Whitaker et al. [17], [19], [18] formu-
late the conditional likelihood of a range image as a volume
integral over the object � enclosed by S. In this way, the
gradient descent for the log-likelihood term is expressed as a
function, fðxÞ, where x denotes surface locations in the
volume. This function provides a weighted sum of the
effects of measurements from different scans on the point x.
Details of fðxÞ are beyond the scope of this paper, for a more
in depth discussion, we refer the reader to [17].

Consequently, the gradient descent that minimizes (2) is
described by the surface motion

@S
@t

¼ �fðSÞN � �P Sð Þ; ð3Þ

where � denotes the Euler-Lagrange operator and N is the
surface normal. Notice that the effects of the likelihood and
the prior terms on the gradient descent are additive; hence,
they can be analyzed separately. The priors we introduce in
this paper are not particular to the range data reconstruction
problem; they are suitable for use in any Bayesian surface
reconstructionproblem. For example, the results of this paper
can also be applied to tomographical surface reconstruction
[32]. Section 4.2 presents results with MRI data as well as
range data.

3.2 Image Reconstruction

In this section, we discuss the use of priors in image
reconstruction and their relationship to P&M anisotropic
diffusion. Mumford and Shah [1], [2] propose an energy
minimization approach for image reconstruction/segmen-
tation. The Mumford-Shah energy is the sum of three terms:
1) the quadratic data-model discrepancy, 2) a quadratic
penalty on the variation of the piecewise smooth model
over the image domain except on a set of discontinuities
which are modeled by a separate binary model, and 3) the
length of the discontinuities. The first term is the data
likelihood term, and the latter two terms act as the prior in
this energy. This minimization problem is difficult to solve
because of its dependence on binary functions.

Nordstrom [3] established the connection between the
Mumford-Shah energy minimization approach to segmen-
tation and the P&M anisotropic diffusion approach to edge
detection [20]. This connection is made by observing P&M
diffusion from a variational perspective. The P&M diffusion
PDE is the gradient descent derived by the first variation of

Z
U

G k rI k2
� �

dx dy; ð4Þ

where U is the image domain. In its original form, P&M
diffusion was introduced to replace Laplacian smoothing,
which is equivalent to the solution of the heat equation
@I=@t ¼ r � rI, with a nonlinear PDE

@I=@t ¼ r � g k rI k2
� �

rI
� �

; ð5Þ

where I is the gray-level image and g, the derivative ofGwith
respect to k rI k2 , is the edge stopping function. Perona &
Malik suggest using g ¼ e�krIk2=2�2

, where � is a positive, free
parameter that controls the level of contrast of edges that can
affect the smoothing process. Notice that gðk rI k2Þ ap-
proaches 1 for k rI k� � and 0 for k rI k� �. Edges are
generally associated with large image gradients and, thus,
diffusion across edges is prevented while relatively flat
regions undergo smoothing. A mathematical analysis shows
that solutions to (5) can actually exhibit an inverse diffusion
near edges and enhance or sharpen smooth edges that have
gradients greater than � [33]. These properties make P&M
diffusion a good candidate for edge detection.

Nordstrom’s biased anisotropic diffusion converts the
variational form of anisotropic diffusion to a reconstruction
energy by adding a data term to (4). This yields the
variational energyZ

U

ðIo � IÞ2 þG k rI k2
� �h i

dx dy; ð6Þ

where Io is the input image.Thenonlinear anisotropicpenalty
on the variation of the model, Gðk rI k2Þ, acts as the prior.
This penalty term is practically equivalent to the sum of the
quadratic model variation and the linear length of disconti-
nuities terms in the Mumford-Shah formulation. Hence, the
addition of the data-model discrepancy term transforms
P&Mdiffusion into avariational frameworkwithout theneed
for an explicit binary image for modeling the discontinuities.
This is an important practical advantage overminimizing the
Mumford-Shah energy.

In this paper, we use energies of the same form as
Nordstrom’s biased anisotropic diffusion. We propose that
the correct generalization of P&M anisotropic diffusion and
related image processing methods to surfaces entails the use
of higher-order nonlinear priors. We also demonstrate that
penalty functions on the surface normals can be used to
generate this family of higher-order priors.

4 GEOMETRIC SURFACE PRIORS

Using the Gibbs distribution, probability distributions for
priors are commonly expressed in terms of energy
functions. Let E Sð Þ be a function that maps surfaces to
scalar energy values. Then, the prior can be constructed as

P Sð Þ ¼ 1

Z
e��E Sð Þ; ð7Þ

where � is a parameter that controls the sharpness of the
distribution and Z is a normalizing constant which ensures
that the probability distribution function integrates to unity
[34]. According to (7), surfaces with lower energy states
have a higher probability of occurrence. Geiger and Yuille
[34] observe that the parameter � reflects the strength of the
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prior. All surfaces are equally likely when � ¼ 0; whereas,
for � ! 1, only those surfaces with the lowest possible
energy have nonzero probabilities of occurrence. Substitut-
ing the Gibbs prior (7) for the prior term in (3) gives

� � lnP ðSÞ ¼ �� ln
1

Z
e��EðSÞ ¼ ��EðSÞ; ð8Þ

where � now appears as a relative weight on the surface
energy term in (3) with respect to the log-likelihood term.
Because the gradient descent of the negative logarithm of
the prior is the Euler-Lagrange of the energy function EðSÞ,
the rest of this paper is concerned with constructing and
solving higher-order feature preserving energy functions
that model real surfaces more accurately than previous
energy functions investigated in the literature.

Surface area is a commonly utilized surface prior energy
based on the underlying assumption that, among surfaces
that represent a data set equally well, those with smaller
area are relatively simpler and, therefore, have a higher
probability of occurrence. A gradient descent minimization
of surface area gives the mean curvature flow PDE [33]

�EðSÞ ¼ HN ¼ �1 þ �2

2

� �
N; ð9Þ

where �1, �2 are the principal curvatures, H is the mean
curvature of the surface S, and N is the surface normal.
Despite the simplicity of its solution, surface area is not a
realistic shape prior. Difficulties associated with this ap-
proach will be demonstrated in Section 6. This implies that a
successful model of the smoothness constraints on realistic
surfaces requires a general, higher-order andnonlinear prior.

A second-order energy function is the integral of total
curvature, the sum of the squares of the principal curvatures,Z

S

�2
1 þ �2

2 dS ð10Þ

which has been shown to deform surfaces into spheres when
minimized [35]. For surfaces with a fixed topology, total
curvature is equivalent to the squareof themeancurvatureby
theGauss-Bonnet theorem.Amoregeneral energy function isZ

S

G �2
1 þ �2

2

� �
dS; ð11Þ

where G is a general nonlinear function of total curvature.
Minimizing this general energy together with the data
likelihood term requires solving fourth-order surface PDEs.

5 A SPLITTING STRATEGY FOR HIGHER-ORDER

PRIORS

Several methods for solving fourth-order PDEs have been
proposed in the literature. Chopp and Sethian [29] derive the
intrinsic Laplacian of curvature for a 2D implicit curve and
solve the resulting fourth-order PDE. They investigate
several numerical schemes, but find none to be satisfactory
in terms of stability. This exact solution is also computation-
ally expensive.

A two-step approximate solution to the intrinsic
Laplacian of mean curvature flow for meshes is proposed
in [31]. However, that approach can only be applied to
meshes and relies on analytic properties of the steady-state
solutions for that specific surface flow, �H ¼ 0, by fitting

surface primitives that have such properties. Thus, the
formalism does not generalize to variational formulations
where the solution need not satisfy �H ¼ 0.

Another splitting strategy can be found in [37], where the
authors penalize the smoothness of a vector field while
simultaneously forcing the gradient directions of a gray-scale
image to closely match the vector field. The penalty function
on the normal field is proportional to the divergence of the
normal vectors. This forms a high-order interpolation
function, which is shown to be useful for image inpainting
—recovering missing patches of data in 2D images. The
strategy of simultaneously penalizing the divergence of a
normal field, and the mismatch of this field with the image
gradient is an approximation to the original fourth-order
system. Similarly, our approach also splits the fourth-order
system using normal vectors. However, we emphasize the
processing of normals on an arbitrary surface manifold
(rather than the flat geometry of an image) and use a pair of
cascaded PDEs instead of solving them simultaneously. Our
cascading approach is closely related to the full fourth-order
system, but does not result in an exact solution. A detailed
discussion of this relationship can be found in Appendix A.

Our proposed two-step solution allows the surface shape
to lag the normals as they are filtered and then refitted by a
separate process. This is found to be computationally more
efficient than simultaneously solving the two equations and
coupling them with a penalty term as in Ballester et al. [37].
Fig. 1 shows this three stepprocess graphically in 2D—shapes
give rise to normal maps, which, when filtered, give rise to
new shapes.

5.1 Notation

To facilitate the discussion in this section, we employ the
Einstein notation convention, where subscripts indicate
tensor indexes, and repeated subscripts within a product
represent a summation over the index (across the dimensions
of theunderlying space).Additionally,weuse the convention
that subscripts on quantities represent derivatives, except
where they are in parenthesis, in which case they refer to a
vector-valued variable. Thus, �i is the gradient vector of a
scalar quantity � : IRn 7!IR. The Hessian is �ij, and the
Laplacian is �ii. A vector field is vðiÞ, where v : IRn 7!IRn, and
the divergence of that field is vðiÞi. The magnitude of the
gradient of � is k �i k¼

ffiffiffiffiffiffiffiffiffi
�i�i

p
.

Level set surface models rely on the notion of a regular
surface, a collection of 3D points with a topology that allows
each point to be modeled locally as a function of two
variables. We can describe the deformation of such a
surface using the 3D velocity of each of its constituent
points, i.e., @sðiÞðtÞ=@t for all sðiÞ 2 S. We represent the
deformable surface implicitly as

S ¼ sðiÞðtÞ j � sðiÞðtÞ; t
� �

¼ 0
� �

; ð12Þ

where t is a time parameter. Surfaces defined in this way
divide a volume into two parts: inside (� > 0) and outside
(� < 0). It is common to choose � to be the signed distance
transform of S, or an approximation thereof.

The surface remains a level set of � over time and, thus,
taking the total derivative with respect to time gives

@�

@t
¼ ��j

@sðjÞ
@t

: ð13Þ
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Because the gradient �j is proportional to the surface normal,
@sðjÞ=@t affects � only in the direction of the surface normal—
motion in any other direction results merely in a reparame-
terization. To compute the appropriate speed term @�=@t, we
rewrite the energy defined in (11) in a level set framework

Gð�Þ ¼
Z
U

Gð�2
1 þ �2

2Þ k �i k dx; ð14Þ

where U � I R3 is the domain of �. The k �i k multiplicative
factor provides a per-level-set weighting, and minimization
of this energy defines @�=@t. A discussion of @�=@t follows.

5.2 Curvature from Normal Maps

When using implicit representations, one must account for
the fact that derivatives of functions defined on the
surface are computed by projecting their 3D derivatives
onto the surface tangent plane. Let NðiÞ be the normal
map, which is a field of normals that are everywhere
perpendicular to the family of embedded isosurfaces of
�—thus, NðiÞ ¼ �i= k �k k¼ �i=

ffiffiffiffiffiffiffiffiffiffi
�k�k

p
.1 The 3� 3 projection

matrix for the implicit surface normal is PðijÞ ¼ �i�j=�k�k,
and PðijÞVðiÞ returns the projection of VðiÞ onto NðiÞ. Let IðijÞ
be the identity matrix. Then, the projection onto the plane
that is perpendicular to the vector field NðiÞ is the tangent
projection operator, TðijÞ ¼ IðijÞ � PðijÞ.

The shape matrix [38] of a surface describes its curvature
independent of the parameterization. For an implicit sur-
face, it is obtained by differentiating the normal map and
projecting the derivative, NðiÞj, onto the surface tangent
plane. The Euclidean norm of the shape matrix is the sum of
squared principal curvatures

�2 ¼ NðiÞjTðjkÞ


 



 

2: ð15Þ

We now express the level set energy function defined in (14)
in terms of the normals of the level set surface as a
volumetric integral

G NðiÞ
� �

¼
Z
U

G NðiÞjTðjkÞ


 



 

2� �

k �i k dx: ð16Þ

The first variation of this energy with respect to the normals
is a second order PDE. It is crucial to observe that, even

though the projection operator TðjkÞ is a function of �, it is
independent of the normals because � is fixed as we process
the normals. Hence, TðjkÞ does not increase the order of the
first variation of (16). In contrast, taking the first variation of
(14) with respect to � directly would yield a fourth order
PDE on �, resulting in a much harder system to solve.

As we process the normal map to minimize (16), allowing
� to lag, wemust ensure that the normal vectorsmaintain the
unit length constraint. Solutions to constrained optimization
problems defined on nonflat manifolds are discussed in [39],
[40]. Using the method of Lagrange multipliers, the first
variation of the constrained energy becomes

dG
dNðjÞ

¼ 2 IðijÞ �NðiÞNðjÞ
� �

g �2
� �

NðjÞmTðmkÞ
� �� �

k
; ð17Þ

where g is the derivative of G with respect to �2, and �2 is
as defined in (15). The subscript k outside the square
brackets denotes the divergence operation. The unit length
constraint for the normal vectors introduces the projection
operator IðijÞ �NðiÞNðjÞ to (17), i.e., the changes are
perpendicular to the unit normal vectors. In a numerical
implementation with finite time steps, a separate, explicit
normalization step is also needed. A gradient descent of
this metric @NðiÞ=@t ¼ �dG=dNðiÞ results in a PDE that
minimizes (16). We will discuss several choices for G in
Section 6.

5.3 Surface Refitting

We have shown how to evolve the normals to minimize
functions of total curvature; however, the final goal is to
process the surface, which requires deforming �. Therefore,
the next step is to relate the deformation of the level sets of
� to the evolution of NðiÞ. Suppose that we are given the
normal map NðiÞ to some set of surfaces, but not necessarily
level sets of �—as is the case if we filter NðiÞ and let � lag.
We can manipulate � to fit the normal field NðiÞ by
minimizing a penalty function that quantifies the discre-
pancy between the gradient vectors of � and the target
normal map. This penalty function is

Dð�Þ ¼
Z
U

ffiffiffiffiffiffiffiffiffi
�i�i

p
� �iNðiÞ

h i
dx: ð18Þ

The first variation of this penalty function with respect to
� is
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1. We use different indices, i and k, for the gradient and the magnitude of
the gradient, respectively, to make it clear that the division is performed
after the summation in the denominator.

Fig. 1. Shown here in 2D, the surface flow process begins with a shape and constructs a normal map from the distance transform (left), modifies the
normal map according to a PDE derived from a penalty function (center), and refits the shape to the normal map (right).



dD
d�

¼ � �iffiffiffiffiffiffiffiffiffiffi
�k�k

p �NðiÞ

� �
i

¼ � H� �HN
� �

; ð19Þ

whereH� is themean curvatureof the level set surface andHN

ishalf thedivergenceof thenormalmap.Thegradientdescent
PDE that minimizes (18) is d�=dt ¼ �jj�kjjdD=d�. The factor
of jj�kjj, which is typical with level set formulations, comes
from manipulation of the shape of the level set, which is
embedded in�. The surfacemovesaccording to thedifference
between its own curvature and that of the normal field.

Let

RðiÞ ¼
�iffiffiffiffiffiffiffiffiffiffi
�k�k

p �NðiÞ

denote the residuals at steady state. Because we must
have dD

d� ¼ 0 at stead state, we observe that RðiÞi ¼ 0. This
result states that the residual vectors between the
processed normals and the unit gradients of the refitted
surface are a divergence free field.

The gradient descent for the MAP surface estimator (3) is
a weighted sum of the refitting term, derived in (19), and a
data term. Therefore, the final update rule for � is

@�

@t
¼ �fðSÞN þ � k r� k ½H� �HN�; ð20Þ

where � is a free parameter that determines the relative
weight of the prior term with respect to the data term. We
will refer to � as the prior weight.

The normal processing stage and the surface refitting
stage can now be combined. The entire process is depicted
in Fig. 2. We iterate dN=dt for a fixed number, 20 in our
implementation, so that the difference between � and the
surface defined by the normals remain small. The surface
fitting to the combined normal map and data terms is
formulated as a gradient descent in (20). This process
comprises the d�=dt loop in Fig. 2. The overall algorithm
shown in Fig. 2 repeats these two steps to minimize the
penalty functions in terms of the surface. This main loop
iterates until the root mean square (rms) change in � as a

result of the application of d�=dt becomes small, less than
10�6 in our implementation, which signals convergence.
The overall system behavior resembles the fourth-order
PDE that minimizes surface curvature. This mathematical
relationship is explored in further detail in Appendix A.

6 EXPERIMENTS

In Section 5, we developed a framework allowing the use of
priors that are general functions of the variations of the
surface normals. We now explore two such functions and
compare them to the surface area prior. Total curvature of a
surface as defined in (10) can be obtained in our formulation
by choosingG to be the identity function, i.e.,Gð�2Þ ¼ �2. The
derivative ofGwith respect to �2 is gð�2Þ ¼ 1. We refer to this
choice of G as the isotropic prior because it corresponds to
solving the heat equation on the normalmapwith a constant,
scalar conduction coefficient. Minimizing the total curvature
of surface normals works well for smoothing surfaces and
eliminating noise, but, like Gaussian blurring, it also deforms
or removes important features.

The generalization of P&M anisotropic diffusion to
surfaces is achieved from variational principles by choosing
the appropriate function of the total curvature in (16), such as

Gð�2Þ ¼ 2�2 1� e
� �2

2�2


 �
; and gð�2Þ ¼ e

� �2

2�2 : ð21Þ

We name this choice of G, graphed in Fig. 3b, the anisotropic
prior. Theminimizationof thepenalty function in (16)with the
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Fig. 2. Flow chart.

Fig. 3. (a) A heavy tailed Gaussian probability distribution function. This
function can be scaled to integrate to 1 because, in our discrete
implementation, � has a finite upper bound. (b) Graph of G versus � with
� ¼ 0:2. G is also the logarithm of (a).



anisotropic prior gives a vector-valued anisotropic diffusion
on the level set surface—a generalization of P&Mdiffusion to
surfaces—that preserves/enhances creases. Creases are the
generalization of edges in images to surfaces. The preserva-
tion of creases is achieved by the flat tails of G, that limit the
penalty on high curvature areas. Note that � is fixed at 0.2 for
all the experiments in this paper. In contrast to its behavior in
P&M image diffusion, this parameter does not need to be
changedfordifferent surfacereconstructions. In thecontextof
P&M image diffusion, the units of � are in gray levels;
consequently, the optimal choice of � is image dependent.
However, in surface reconstruction, theunits are in curvature
as can be observed in (21). The only dependence is the scale of
interest, i.e., the curvatures of interest. This makes it possible
to choose a�value that gives consistent results over a rangeof
surfaces that are approximately of the same scale.

The anisotropic prior can also be analyzed from a
statistical point of view. Typically, robust estimators use
heavy tailed Gaussian probability distributions such as the
one illustrated in Fig. 3a. Such probability distribution
functions assign nonzero probabilities to outliers, large
� values in our case. The logarithm of the heavy tailed
Gaussian has the same form as the anisotropic G we have
chosen. In fact, using the Gibbs distribution (7), we
observe that the prior probability distribution achieved
by Gð�Þ is proportional to P ¼ e�Gð�Þ. The parameter � in
(21) controls the � values for which G and P flatten out.

Section 6.1 presents a discussion of the quantitative
differences between the isotropic and anisotropic priors and
the surface area prior using synthetic data as ground truth.
We also investigate the effects of the prior weight on the
results. Section 6.2 presents surface reconstruction examples
from real data measured by laser range finders and
magnetic resonance imaging devices.

6.1 Experiments with Synthetic Data

The experiments presented in this section use geometric
shapes for which we can construct analytical distance
transforms. We use the following experiment setup:

1. Build range images from the analytical distance
transform using the model for the laser range finder
located at several positions.

2. Add independent Gaussian noise to the range
images to simulate measurement noise.

3. Reconstruct a surface model from the noisy range
images.

4. Compare the resulting surface model to the analy-
tical shape by computing the rms geometric distance
between the two surfaces.

We first examine a sphere with radius 1 unit. All other
distances are relative to this measurement unit. For this
experiment, we simulate six range finders located at a
distance of 3.5 units from the center of the sphere along the
six cardinal directions. Independent Gaussian noise with a
standard deviation that is 10 percent of the sphere’s radius
(0.1 units), is added to each range image. One of the noisy
range images is shown in Fig. 4 as a depth map. We
reconstruct surface models from these noisy range images
using the three priors under investigation with a range of
weights, �. For each choice, we run the algorithm described
until it reaches convergence as described in Section 5. We
then calculate the rms distance between the original model
and the reconstructed model and denote this distance by E.

Fig. 5 plots E against the log� for the different priors
under examination. The units on the y-axis are the same as
the units used to described the size of the shape. It can be
observed from Fig. 5 that the limit of E as � ! 0 is
approximately 0.0125. This limit is the error obtained if
surface reconstruction is performed without a prior (relying
only on the data). It is smaller than the noise added to the
range images because of the averaging effect of using
multiple range images. The anisotropic and the isotropic
priors at their optimal weight provide a 75 percent
reduction on this error. On the other hand, surface area
provides slightly better than a 50 percent reduction at its
optimal weight. These best reconstructions are illustrated in
Fig. 6. We contend that the shapes of the error plots are
more important than the results at optimal choices of
weight. The plot for the surface area prior dips down
sharply around � ¼ 1 which indicates a small range of
useful weights for this prior. The surface area prior
performs especially poorly as � is increased beyond 1. This
is due to the fact shrinkage in the surface models caused by
the surface area prior. In practice, this will cause difficulties
for the user in choosing a weight that works for different
reconstruction scenarios. In contrast, both of the higher-
order priors have relatively flat error plots because their
limiting behaviors match the model in this example.
Isotropic reconstruction performs as well as the anisotropic
reconstruction because the sphere does not contain creases.
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Fig. 4. A noisy range image of a sphere plotted as a depth map.

Fig. 5. Rms geometric distance between the analytical sphere and the
reconstructed surface.



To further examine the differences between the priors, we
experiment with a cube and another piecewise planar shape
which we call the “3D-plus-shape.” In these experiments, we
used eight range finder locations (one in each octant). Fig. 8a
shows the the surface initialization from the noisy range
images of the cube with sides 1 unit long. Independent
Gaussian noise with standard deviation 0.1 was added to the
simulated data to create the noisy range images. The results
(see Fig. 8) with the surface area and isotropic priors are
noisier andhave roundedcorners. In contrast, the resultswith
anisotropic reconstruction are successfully denoised and
have sharp creases. Using higher� values for the surface area
and isotropic priors to eliminate the noise results in further
shapedistortion.The last example, shown inFig. 9a, amplifies
the differences observed with the cube experiment. It is not
possible to denoise the surface without causing severe
distortion to the shape with the other priors; see Figs. 9c, 9d,
9e, and 9f. Anisotropic curvature reconstruction does not
suffer fromthis tradeoff betweensmoothinganddistortion. It
provides a very good (denoised and relatively undistorted)
reconstruction across a range of values for the prior weight;
see Figs. 9g and 9h. The error plots for the cube and the
“3D-plus-shape” shown in Fig. 7 confirm that the anisotropic
reconstruction error flattens out as � increases beyond its
optimal value.

6.2 Surface Reconstruction from Measured
Range Data

In this section, we first investigate these surface priors in the
context of the reconstruction of an office scene shown in
Fig. 10. This example involves 12 range scans of a roomwhich
were registered using the methods described in [18]. One of
these 12 range images is shown in Fig. 10a. The model
initialization is shown inFig. 10b. Inaddition tomeasurement
noise, this initialization contains artifacts such as multiple
disconnected pieces seen in the upper right corner. Fig. 11
illustrates the results obtainedwith the surface area, isotropic
and anisotropic priors. As in Section 6.1, we allow the
algorithms to run until convergence is reached. The prior
term weights were selected as those that produced the
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Fig. 6. (a) Surface model initialization from noisy data. Resulting surface
model for the (b) surface area prior with � ¼ 1, (c) the isotropic prior with
� ¼ 5, and (d) the anisotropic prior with � ¼ 10.

Fig. 7. Rms geometric distance between the reconstructed surface and

the analytical models for (a) the cube and (b) the “3D-plus-shape.”

Fig. 8. (a) Surface model initialization from noisy data. Resulting surface

model for (b) the surface area prior with � ¼ 1, (c) the isotropic prior with

� ¼ 1, and (d) the anisotropic prior with � ¼ 10.



qualitatively best results. The results with the anisotropic
prior remain close to the actual surface while eliminating
noise. On the other hand, the surface area prior that produces
a comparable amount of denoising demonstrates shape
distortion such as the breaking of the arms of the chairs and
the rounding of the creases on the desk and computer
equipment. The isotropic curvature prior does not cause any
severe shape distortions, but it smoothes edges, creases, and
corners as expected. This experiment illustrates the impor-
tance of the anisotropic prior in reconstructions involving
scenes with high curvature features and sharp creases.

Fig. 12 demonstrates the robustness of the different priors
by a detailed examination of a small portion of the scene.
Figs. 12a and 12b are the initialization and the visible imagery
for one of the chairs in the scene. Figs. 12c, 12e, and 12g
illustrate the results obtained by qualitatively choosing
succesful values for �. Figs. 12d, 12f, and 12h illustrate the
results if � is chosen to be 10 times this value. These results
show that the anisotropic curvature is least sensitive to the
choice of the prior weight. Also, observe that the beam
connecting thebase to the seat is beingpinched-off in Fig. 12d.

Fig. 13 illustrates the reconstruction of amilitary vehicle with
the anisotropic curvature prior. This reconstruction also used
12 range images. Both reconstructions require approximately
one hour of computation on a Intel 1.7 GHz Xeon processor.

As discussed before, the prior term and the methods
presented in this paper are not specific to reconstruction
from range data. We now demonstrate results of our
method used in conjunction with an algorithm for level set
surface segmentation from volumetric MRI data. For this
purpose, we adopt the data term introduced in [41], [42].
This data term deforms the surface model in such a way
that voxels falling between a low and a high intensity
threshold will be contained in the interior of the surface.
Fig. 14a shows one slice of the the volumetric MRI data. We
initialize the surface as a box that is slightly smaller than the
size of the data. The intersection of this initial surface with
the slice is shown as a light gray contour.

In the lack of a prior term, we the data term forces the
surface to match every detail in the data, creating a noisy
segmentation, see Fig. 15. Using the same anisotropic prior as
before, we obtain a smoother, less noisy, and feature
preserving segmentation. Fig. 14b shows a slice of the
resulting surface. This segmentation requires approximately
two hours of computation on an Intel 1.7 GHz Xeon processor.
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Fig. 9. (a) Analytical “3D-plus-shape” and (b) surface model initialization

from noisy data. Resulting surface model for the surface area prior with

(c) � ¼ 1 and (d) � ¼ 10. For the isotropic prior with (e) � ¼ 1 and

(f) � ¼ 10. For the anisotropic prior with (g) � ¼ 10 and (h) � ¼ 100.

Fig. 10. (a) One of the range images used in the surface reconstruction

experiment and (b) surface initialization.



7 CONCLUSION

Anisotropic diffusion and image reconstruction techniques
based on robust metrics have been shown to be very useful
tools in image processing. We generalize these methods to
surface reconstruction by considering a general family of
penalty functions of curvature. The minimization of these
second-order penalty functions require solving fourth-order
PDEs on level sets. We avoid an exact solution because this
would require very small time steps in a numerical
implementation [29]. Instead, we propose a cascaded pair
of PDEs that resemble the original fourth-order PDE.

Thesplittingof theoriginal fourth-orderPDEintoacascade

system is achieved via the surface normals. This method is

based on the proposition that the natural generalization of
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Fig. 11. Results with (a) surface area, (b) isotropic curvature, and
(c) anisotropic priors.

Fig. 12. (a) Initial surface model for chair and (b) a visible light image of
the chair taken from a similar point of view. Results for the surface area
prior with weights (c) 1 and (d) 10. Results for the isotropic prior with
weights (e) 1 and (f) 10. Results for the anisotropic prior with weights (g) 1
and (h) 10.



imageprocessing to surfaces occurs via the normals.Normals
areprocessedseparatelyfromthesurfaceusingametriconthe
surface manifold, rather than a simple, flat metric. By
processing the normals separately from the surface, we can
solve a pair of cascaded second-order equations instead of a
fourth-order equation. Typically, we allow one equation (the
surface) to lag the other. This method is numerically more

stable and computationally less expensive than solving the

fourth-order PDE directly and resembles the original fourth-

order system.However, it is notmathematically equivalent to

it. We solve these equations using implicit surfaces, repre-

senting the implicit function on a discrete grid andmodeling

the deformation with the method of level sets. The method

applies equally well to surfaces that can be represented in a

volume.
We have shown that an anisotropic penalty on curvature

computed from the surface normals leads to a surface

reconstruction prior that preserves creases while denoising

the input. This process demonstrates important quantitative

andqualitativeadvantagesoverprocesses thatuse thesurface
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Fig. 13. Reconstruction of a military vehicle (with the anisotropic prior)

from range data.

Fig. 14. A sagittal slice from a head MRI volume. The highlighted
contours represent the intersection of the level set surface with the slice:
(a) initialization and (b) segmented model with the anisotropic prior.

Fig. 15. Segmentation of the facial surface (a) with a data term only and

(b) with the data term and the anisotropic prior.



area prior. The data term can be chosen independently from
the prior; therefore, the ideas introduced in this paper can be
applied to other forms of surface reconstruction such as
applications in tomography.

The main shortcoming of this method is the computation

time, which is significant. However, the current process

lends itself to parallelism. The advent of cheap, specialized,

stream-processing hardware promises significantly faster

implementations when the inherent parallelism in the

process is exploited [43], [41], [42]. Multithreading could

also be utilized to exploit the parallelism in the process.

Regarding the algorithm itself, the use of adaptive or

multiresolution level set strategies could also improve the

processing time.

APPENDIX A

MATHEMATICAL FOUNDATION

The proposed algorithm for imposing second-order priors
on surfaces does not, strictly speaking, produce a fourth-
order flow. We have avoided a true fourth-order imple-
mentation because such flows impose small time steps on
the corresponding numerical algorithms. The proposed
method is a second-order flow which has a fundamental
relationship to the second-order penalty function described
in Section 4. As noted by Ambrosio and Masnou [36], the
relationship between such second-order systems (see also
[37]) and the corresponding fourth-order variational pro-
blem is not fully understood.

The purpose of this appendix is to describe, in a more
precise way, the relationship between the proposed second-
order system and the corresponding fourth-order flow. The
argument is that if the normals are the normals of the
corresponding level-sets of � and the normals are processed
by an infinitesimal amount, then the refitting process
creates a flow on the level-set surfaces which is the same
as the corresponding fourth-order flow. This does not imply
that the proposed method approximates the fourth-order
flow, because we do not constrain the normals and the
surface to move together in a coupled manner. However,
the discussion below does give the mathematical under-
pinnings of the proposed method and helps us understand
why the results conform, qualitatively, to our expectations
of the fourth-order flow.

In this discussion, we use vector notation for clarity, and
we denote the energy G�. We can rewrite this energy
function by observing that the principal curvatures are
functions of the derivatives of �

G� ¼
Z
U

G �ð Þ k r� k dx: ð22Þ

Let d� : IR3 ! IR be a volume of incremental changes applied
to � : IR3 ! IR. The change to G induced by d� can be
expressed as the volume integral of the total derivative of the
penalty function, dG �ð Þ k r� k , which is the product of d�
and the variation of the penalty function with respect to �

dG� ¼
Z
U

d G k r� kð Þ
d�

d� dx: ð23Þ

Applying the product rule to d Gkr�kð Þ
d� , we obtain

dG� ¼
Z
U

dG

d�
k r� k d� dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dG�;1

þ
Z
U

G
d k r� k

d�
d� dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dG�;2

: ð24Þ

The total derivative dG �ð Þ k r� k can be written in terms of
the surface normals by using the equality

dG

d�
d� ¼ dG

dN
� dN; ð25Þ

given that the normal map is a function of �. Then, the first
term in (24) can be written as

dG�;1 ¼
Z
U

dG

dN
� dN k r� k dx: ð26Þ

To simplify (26), we derive dN as a function of N and dr�

dN ¼ ðI�N�NÞ dr�

k r� k : ð27Þ

Substituting (27) for dN in (26) and using the commutivity
of differentiation (dr� ¼ rd�), we get

dG�;1 ¼
Z
U

ðI �N�NÞdG
dN


 �
� rðd�Þ dx: ð28Þ

We treat this energy minimization as an adiabatic problem,
in which energy flow across the boundary of U is zero.
Hence, using Neumann boundary conditions for U and
integrating by parts, we obtain

dG�;1 ¼
Z
U

r � ðI �N�NÞdG
dN


 �
d� dx: ð29Þ

We now examine the second term in (24), dG�;2. As in
Section 5.2, we treatG as a function ofN; therefore, due to the
decoupling betweenN and �, G can be considered indepen-
dent of �. Using this assumption, we can rewrite dG�;2 as

dG�;2 ¼
Z
U

dGN k r� k
d�

d� dx; ð30Þ

where the superscript on GN indicates that G is fixed with
respect to �. Taking the first variation of dGN k r� k yields

dG�;2 ¼
Z
U

r � GN r�

k r� k


 �
d� dx; ð31Þ

since for a vector v, dkvk
dv ¼ v

kvk . Finally, combining (23), (29),
and (31), we can derive the desired relationship between the
variations with respect to � and N

d G k r� kð Þ
d�

¼ r � ðI �N�NÞdG
dN

þGN r�

k r� k


 �
: ð32Þ

Let us now consider the flow achieved by processing (17)
and (19) back to back in one iteration of the main loop in
Fig. 2 again. At the beginning of iteration n, the normals are
computed from �n. If we evolve the normals for one step
according to (17), instead of processing them multiple
iterations, the new normals are

Nnþ1 ¼ Nn � ðI �N�NÞdG
dN

; ð33Þ
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where we write dG
dN instead of dG

dN because we are referring to

theupdate forNat a specific point in space. Ifwe immediately

apply (19) to fit � to this new normal map, we get

dD

d�
¼ H�n �r � Nn � ðI�N�NÞdG

dN


 �
; ð34Þ

where D is the local function defined in (18). Because Nn is

derived directly from �n, we have r �N ¼ H�n

, which gives

the rule in our algorithm to make up this infinitesimal lag:

dD

d�
¼ r � ðI �N�NÞdG

dN
: ð35Þ

Comparing with (32), we find the rule to descend on the

energy as a function of �

d G k r� kð Þ
d�

¼ dD

d�
þr � GN r�

k r� k


 �
: ð36Þ

Thus, we see that we can mimic the fourth-order flow as a

combination of secondorder terms; one that fits the surface to

the normal field and the other thatmoves the surface between

normalmaps to find the set of normals thatminimize the total

curvature. In our experiments, we have found that the

contribution of the second term is very small and does not

change the results qualitatively. Therefore, we drop it for the

sake of computational efficiency and implement only dD
d� as

described in Section 4. Becausewe discretize the equations in

time in an uncoupled manner and recompute the normals

asynchronously at the beginning of each iteration, the

resulting numerical scheme is not strictly fourth order.
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