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1 Introdution
Algebrai 2D urves (and 3D surfaes) are extremely powerful for shape reognition and single-omputation pose estimation beause of their fast �tting, invariants, and interpretable oeÆients,[10, 11, 13, 17, 18, 19, 21℄. Signi�ant advantages over Fourier Desiptors are their appliability tonon-star shapes, to open urves, to urves that ontain gaps, and to unordered urve data, Se. 2.Under irumstanes where these issues are not relevant, polynomials based on Fourier analysis maybe very e�etive, and an interesting formulation relating Fourier series and polynomials is given in[14℄. A weakness for use of algebrai urves and surfaes has been lak of stability of parameters. Thispaper, studies the problem and provides a solution.The lassial least-squares �tting of algebrai urves, Se. 3, espeially the more interesting ases ofhigher degree polynomials, su�ers three major problems: loal inonsisteny with the ontinuity of thedataset; loal over-sensitivity of the polynomial zero set around the data to small data perturbations;instability of the oeÆients due to exessive degrees of freedom in the polynomial. Substituting anapproximate Eulidean distane for algebrai distane [21℄ is muh more stable than the lassial leastsquares algorithm, in many ases gives useful �ts, but in other ases the improvement is not suÆientto solve these major problems. Similarly, the use of the exat Eulidean distane provides betterresults than the algebrai distane [16℄; nevertheless the �tting is sometimes not stable enough andthe minimization is solved iteratively, a time onsuming proess. Another attempt to improve thestability of the �t was the development of �tting algorithms whih ensure that the obtained zero setis bounded [8, 22, 13℄, but the last one is for 2nd degree urves only, and inreased stability for alland �tting speed for the former two are still desired. Non-linear parametrizations of polynomials thatare guaranteed to satisfy ertain topologial properties { boundedness and having a zero set that isontained within another shape suh as an ellipse { that have reently appeared [9℄ are interesting, and
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their relative merits need to be studied further. The problem of an exessive number of parametersin impliit polynomial (IP) representations was �rst studied in [15℄ in the framework of Bayesianestimation. The linear 3L �tting algorithm [10℄ exhibits signi�antly improved urve representationauray and stability but there is signi�ant value to further improvement in oeÆient stability inorder that algebrai urves be generally appliable for objet-reognition purposes.Following a short summary on algebrai urves in Se. 2 and the lassial least-squares �tting inSe. 3, we investigate the stability problems of 1D polynomials in Se. 4. In Se. 5, the solution of the�rst and seond problems by the 3L method [10℄ is analyzed from the point of view of Se. 4. In Se. 6,we present a new linear algorithm whih produes aurate and stable urve-data representations andstable oeÆients. Results of objet reognition experiments based on this algorithm and a new setof invariants [18℄ are presented in Se. 7.
2 Representations of Algebrai Curves
Formally, an algebrai urve is spei�ed by a 2D IP of degree n given by the following equation:

fn(x; y) = X0�j+k�najkxjyk = a00 + a10x+ a01y + : : :+ an0xn + an�1 1xn�1y + : : :+ a0nyn = 0
The homogeneous binary polynomial of degree r in x and y is a form, e.g., a20x2+a11xy+a02y2 is the2nd degree form. The homogeneous polynomial of degree n is the so-alled leading form. An algebraiurve of degree 2 is a oni, degree 3 a ubi, degree 4 a quarti, and so on. Polynomial fn(x; y) isrepresented by the oeÆient vetor (ajk)0�j;k;0�j+k�n whih has dimension p = 12(n+ 1)(n+ 2):

fn(x; y) = Y tA (1)
3



where 1 A = [ a00 a10 : : : an0 an�1 1 : : : a0n ℄t and Y = [ 1 x : : : xn xn�1y : : : yn ℄t . In general,the vetor notation is onvenient for IP �tting sine �tting an be set within a linear framework asdetailed in Se. 3. A shape is represented by the zero set of fn(x), i.e., the set of points fx; yg satisfyingthe IP equation fn(x; y) = 0 whih is the intersetion of the surfae de�ned by an expliit polynomialz = fn(x; y) with the plane z = 0, see Fig. 1.The IP framework for shape representation and reognition is generally ompared with FourierShape Desriptors. Here we briey summarize some of the di�erenes between these approahes. Thetwo main types of Fourier Desriptors are: (i) that whih represents a shape as a radius as a funtionof angle, and (ii) that whih uses a omplex valued funtion to represent the oordinates of the pointsalong the urve as a funtion of ar-length. There are ertain disadvantages to both approahes. (i)is limited to the set of star-shapes whih an be represented by a single-valued radius as a funtionof angle; however, interesting shapes generally do not fall into this ategory. (ii) requires the inputdata sets to be an ordered set of points. (i) an not be diretly used for open shapes, a preproessingstep to arti�ially lose the urve is required. (ii) an be used for open urves, but serious diÆultieswith ar-length normalization arise. Ar-length parametrization is the main drawbak of (ii) beausear-length an inrease signi�antly if noise is added on to the urve. Both have problems with varyingdata point density and gaps in the data. IPs do not su�er from any of the problems listed above: theyare diretly appliable to non-star shapes, open urves, unordered data sets and are robust to noisydata sets and inhomogoneously spaed data points. The main advantage of Fourier Desriptors overIPs have been their better stability beause they are an expliit representation. This paper fouses onthe stability issue with IPs.1Supersript t denotes vetor and matrix transpose.
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3 Classial Least-Squares Fitting
The lassial and simplest way to �t an algebrai urve to data is to minimize the algebrai distaneover the set of given data points (xj; yj), 1 � j � m, that is

ealgebrai = X1�j�m(fn(xj ; yj))2 = At0� X1�j�mYjY tj1A| {z }MMt=S A (2)
by using vetor representation of fn as in (1). De�ne the matrix of monomials as the p �m matrixM = [Y1 Y2 : : : Ym℄ (or more generally, the design matrix), and S = MM t = P1�j�m YjY tj is thesatter matrix of the monomials. To avoid the trivial zero solution in the minimization of (2), aonstraint suh as kAk2 = 1 is imposed whih modi�es the problem to

minA 0�At0� X1�j�mYjY tj1AA+ �(AtA� 1)1A (3)
with the introdution of Lagrange multiplier �. The solution to (3) is given by the unit eigenvetorA assoiated with �min, the smallest eigenvalue of SA = �A [21℄. Consequently, the lassial least-squares �tting algorithm onsists of omputing the monomial satter matrix S from a set of datapoints, and then �nding the unit eigenvetor of S assoiated with its smallest eigenvalue. Althoughthis algorithm is aÆne invariant [4, 21℄, most of the time it is not of any pratial use due to thefollowing problems: The �tted zero set does not respet the ontinuity of the original data set asillustrated in Fig. 2(a)-(d) and Fig. 6(a) and (d). This problem undermines the use of lassial �ttingfor obtaining good representations of the data. Moreover, results are highly sensitive to small errorsin the data. Even seemingly negligible perturbations in the data an lead to zero sets that have noresemblane to the zerosets prior to the perturbations in the data, Fig. 2(a)-(d). Even with low orderdegrees, depending on the struture of the given data set, S may not provide a stable unique eigenvetor
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under small perturbations. For example, several eigenvalues an have similar values to the smallestone, and thus the solution will span a subspae in the oeÆient spae when small perturbations areadded to the data set. Consequently, lassial �tting is also pratially useless for reognition purposesbased on the oeÆients of the �tted polynomials.
4 Pathologial Polynomials
Although we are interested in 2D polynomials, i.e., funtions of x and y, it is instrutive to �rst studystability in the 1D ase. It is well known that some 1D polynomials, in partiular polynomials ofhigh degree, are ill-onditioned. Consider the pathologial example due to Wilkinson [1℄: (x+ 1)(x+2) : : : (x+20) = x20+210x19+ : : :+ 20!. This polynomial has very large oeÆients and its roots are�1, �2, �3,..., �20. An aurate alulation of the perturbed roots as given in [1℄ to �ve deimals aftera tiny hange of 2�23 is applied to the oeÆient of x19, are shown in Table 1. Though this exampledemonstrates how ill onditioned some polynomials are, it does not mean that all polynomials are so,and as a onsequene that all algorithms using high degree polynomials have to be rejeted as a prioriunstable. In fat, we will demonstrate that it is possible to work in a subspae of non-pathologialpolynomials. First, let's try to understand the pathology of this polynomial. A plot of this polynomialwould show varying osillation amplitude between its roots. This type of ill-onditioned behavior ofpolynomials is well-known in the ontext of interpolation theory. Indeed, the Wilkinson polynomialis an example of Lagrange interpolation at 20 points, and it is known that Lagrange interpolationsu�ers from osillation problems between data points. This is the so-alled Runge problem [3℄. Oneknown solution is to hange the way the interpolation is arried out. Hermite interpolation, where the�rst derivative of the polynomial is ontrolled in addition to the value of the polynomial at eah givenpoint, an be proven to onverge properly for all ontinuous funtions when the number of sampling
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points and thus the degree of the polynomial inreases.We are referring to interpolation theory and Hermite polynomials beause they provide us with veryuseful insight in trying to improve the lassial least-squares �tting algorithm. In essene, the problemwith polynomials is that the funtional relationship between its oeÆients and its roots is highly non-linear. Let pn(x) be a 1D polynomial de�ned as: pn(x) =P0�j�n ajxj = a0+a1x+a2x2+ : : :+anxn.Roots xk of this polynomial are de�ned by pn(xk) = 0. This last equation an be seen as an impliitequation for root xk where this root is a funtion of oeÆients aj . To determine the sensitivity ofthis root to small hanges of the oeÆients, we di�erentiate pn(xk) = 0 with respet to aj . We obtainxjk + dpndx (xk)�xk�aj = 0 whih is equivalent to
�xk�aj = � xjkdpndx (xk) : (4)

(4) has important onsequenes. It is desired that small or large hanges in the oeÆients produesmall or large hanges, respetively, in the roots, and vie versa. Thus we should require that �xk�aj = 1.Due to the numerator xjk, we see that xk should be lose to values 1:0 or �1:0; otherwise, the e�et ofa small oeÆient perturbation has a larger e�et on roots with large absolute values. This explainswhy roots with large absolute values are less stable than others for the Wilkinson polynomial, Table 1.Due to the denominator of (4), we dedue that the sensitivity to a small oeÆient perturbation isalso diretly dependent on the value of the �rst derivative of the polynomial at the root loation.The Wilkinson's polynomial has derivatives 19!0!, �18!1!, 17!2!, : : :, �0!19! at �1, �2, �3, : : :, �20respetively. These huge variations in the �rst derivative dpndx ontributes to the instability of the rootswith respet to oeÆient perturbations. Using (4), we predit, with a �rst order Taylor expansion,the perturbations of the roots of the Wilkinson polynomial when 2�23 is added to a19 = 210: Thesevalues are in good aordane with the di�erenes between the original roots, �20; : : : ;�1 and the
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real perturbed roots, Table 1. Tables 1 and 2 provide an experimental validation of (4).
5 Gradient-one Fitting
The insight developed in Se. 4 into how polynomials an be ill-onditioned, enables us to determinea subset of well-onditioned polynomials. What is a well-onditioned polynomial? For the problem athand, it is a polynomial for whih the relationship between its roots and its oeÆients is suh thatsmall hanges in one indues small hanges in the other and larger hanges indue larger hanges. InSe.4, it was argued that a 1D polynomial should have root values and �rst derivative values at the rootloations, all lose to 1:0 or �1:0. We an extend this result to 2D polynomials: a set of polynomialssatisfying these onstraints exatly in 2D are the powers of the unit irle: 12n((x2+y2)n�1). Membersof the set of polynomials \lose" to these polynomials in the oeÆient spae are well-onditioned.The topology of this set remains to be studied in our future work.The �rst requirement for stable �tting is to apply a data set standardization to fore the datapoints to be lose to the unit irle, and thus indiretly to fore the zero set of the polynomial to beas lose as possible to the unit irle. The data set standardization onsists of entering the data-setenter of mass at the origin of the oordinate system and then saling it by dividing the oordinatesof eah point by the average of the square roots of the eigenvalues of the 2� 2 matrix of seond ordermoments (normalized by the number of points in the data set). This is a Eulidean invariant measureof the objet size and an be thought of as the average radius of the data points from the objetenter. Thus by data set standardization we are setting this measure of objet size to 1.The seond requirement is to ontrol the value of the �rst derivatives along the zero set, i.e, thegradient of the 2D polynomial: rfn(xj ; yj) = 24 �fn�x�fn�y

35 (xj; yj) (5)
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The gradient vetor along the zero set of the polynomial is always perpendiular to the urve de�nedby the zero set. Thus, if we an ompute the loal tangent to the urve at eah point of the data set,we propose to onstrain the gradient to be perpendiular to the loal tangent and with unit norm.This will fore the zero set of the polynomial to respet the loal ontinuity of the data set. Thealulation of the tangent to the data set at a point does not pose a serious problem. If the data set isordered as a urve, we alulate loal tangents to the data using the lines going through onseutivedata points. If the data is not ordered, a fast distane transform [23, 17℄ an be used to generate levelsets as in 3L [10℄ or to indiretly alulate tangent diretions. When working with real images, levelsets may also be generated as desribed in [12℄. Or if the input to the �tting algorithm omes froman edge detetor, edge orientations an be used as the tangent diretions. The normal diretion is thediretion perpendiular to the tangent diretion and pointing towards the outside of the objet. Inthe ase of open urves where no notion of inside/outside is available, both ases an be onsideredresulting in two �tted IPs whih have oeÆient vetors related by multipliation with �1. We donot apply any smoothing in omputing the tangents even in the presene of noise; indeed, it is the�tting proess whih takes are of smoothing the utuations in the tangent diretion along the urvegiven that there are enough points on the dataset (at least a few times the dimensionality of the IPoeÆient vetor). The proposed �tting tehnique is set as a least-squares problem with the followingadditional onstraints: Loal tangential and normal diretional derivatives of the IP must be as loseas possible to 0 and 1, respetively. These onstraints add two terms to (2) to yield
egrad = mXj=1�fn(xj ; yj)2 + � �(N tjrfn � 1)2 + (T tjrfn)2�� (6)

where Tj and Nj are the loal tangent and normal at (xj ; yj) and � is the relative weight on thegradient with respet to the f2 term. By using the vetor notation (1) in (5), we dedue the vetor
9



form of the gradient: rfn = 24 �Y�x�Y�y
35t| {z }dimension:2�p

A|{z}p�1 = rY tA
where p = 12(n+ 1)(n+ 2) is the number of oeÆients of a binary polynomial of degree n. And thenafter substitution in (6), we expand egrad as:
egrad = AtXYjY tj| {z }S A+ �AtXrYjNjN tjrY tj| {z }SN A+ �AtXrYjTjT tjrY tj| {z }ST A� 2�AtXrYjNj| {z }GN +�m

In this equation, S is the satter matrix of the monomials as introdued before, SN and ST are thesatter matries of the diretional derivatives of monomials in diretions perpendiular and tangent tothe data set, respetively, and GN is the sum of the gradients of the monomials in the normal diretion.This minimization is a linear least squares problem and the solution is then formally derived as:
A = �(S + �(SN + ST )| {z }S )�1GN (7)

Let S = S + �(SN + ST ), a p� p matrix. A and GN are vetors with p omponents.We named this algorithm gradient-one �tting. Like Hermite interpolation [3℄, gradient-one �ttingis Eulidean invariant, see [4℄ and Se. 6.3, respetively, but not aÆne invariant. Gradient-one �ttingis also sale invariant sine the data standardization step sets some Eulidean invariant measure ofthe size of the shape to 1 before �tting. We use the sattering radius of the data points as the shapesize measure; this measure is Eulidean invariant. Data set standardization introdues a numerialadvantage by improving the ondition number of the satter matrix S = S + �(SN + ST ) of theproblem (7). The ondition number gives an idea of the numerial stability of linear algorithms suhas the omputation of the inverse of a matrix [5℄. Data standardization improves the stability of the
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�ts; however, if the standardization step has to be omitted, in order to have sale invariane it isneessary to modify (7) to A = �(S + s2�(SN + ST ))�1GN , where s is the shape size measure.The neessity to introdue information about the �rst derivatives was �rst pointed out in [10℄ andhandled in a linear way with the so-alled 3-levels (3L) �tting algorithm. The idea of the 3L �tting isto onstrain the polynomial to �t not only the data set but also two level sets of the distane transformof this data set, thus preventing the presene of singularities of f(x; y) in the viinity of the data tobe �tted. Therefore, indiretly, 3L �tting puts onstraints on the gradient of the �tted IP. In fat, itan be proved that the gradient-one algorithm is similar to the 3L �tting algorithm expanded to the�rst order with respet to the inter-level distane parameter.In omparison to the lassial least-squares �ts (see Fig. 6(a) and (d)), results obtained on thesame data sets are muh better as shown in Fig. 6(b) and (e). Espeially, obtained �ts are loallyonsistent with the ontinuity of the data set. To gain further insight into how loal onsisteny isahieved by ontrolling the gradient aross the data set, we examine Fig. 3. Fig. 3(d) shows that thegradient diretion along the zero set obtained by gradient-one �tting onsistently points into the shapewhereas in Fig.3(b) it an be seen that this diretion swithes between inwards and outwards. Thezero set from solution of (3) is broken into piees as an be seen in Fig. 3(a) whereas in Fig. 3() thezeroset is a smooth representation of the data urve. Also notie that in the viinity of the data, thesurfae in Fig. 3(b) is atter than is the surfae in Fig. 3(d) whih means that with small perturbationsof the data, lassial �tting is prone to muh larger hanges in the zero set. In addition to betterstability of the zero set and better shape representation power, gradient-one �tting also provides betterinterpolation properties whih allow IPs to be robust to a ertain amount of missing data along theurve. The stability of the zero set ahieved by the gradient-one �tting algorithm is an importantimprovement over lassial �tting tehniques. It an be seen in Fig. 2(f) that the zero sets of theresulting �ts are stable under loal data perturbations. Even though, the perturbations in Fig. 2 (e)
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are muh larger than those in Fig. 2(a)-(d), the hanges in the �tted IPs are muh smaller in Fig. 2(f).Parameter � has important e�ets on the properties of the �ts. It ontrols the relative weight ofthe gradient onstraint with respet to the algebrai distane onstraint. The e�et of the gradientonstraint on the zero set of the �t is a smoothing of the high urvature areas. Fig. 4 is an exampleof smoothing of the zero set when � is inreasing. In all our experiments, � is �xed to 17 whih givessatisfying results as shown in Fig. 6(b) and (e). This value is a good trade-o� between the auray ofthe representation and the stability of the �tted parameters. However, better stability of the estimatedpolynomial oeÆients an be ahieved with equal weights on the gradient and data �t onstraints asshown in Fig. 4 beause the resulting �ts will be \loser" to the set of well behaved polynomials, thepowers of the unit irle. In a more general framework, � an be made a user-spei�ed funtion alongthe length of the urve providing more ontrol for interative urve representation purposes. It shouldalso be pointed out that information about the higher order derivatives suh as urvature an beinorporated into gradient-one �tting to provide additional onstraints.
6 Ridge Regression Fitting
6.1 Unstable Subspaes
Although, loal stability of the zero set around the data is exellent with gradient-one �tting, thereis still signi�ant room for improvement in the stability of the oeÆients of the polynomial and theglobal behaviour of the polynomial. CoeÆient vetors in ertain subspaes of the oeÆient spaemay produe very similar zero sets around the data set. As an example, assume that the data is aset of aligned points along x� y = 0, and that we are trying to �t a full oni. If we do the �t manytimes subjet to small perturbations of the data, we an observe that the resulting oeÆient vetorsspan a 3 dimensional subspae ontaining the solutions x(x� y) and y(x� y) as well as x� y. This is
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a onsequene of the fat that eah of these three solutions and all of their linear ombinations �t theoriginal data set equally well. The global instability of polynomials is also evident in the extra pieesof the zero set that lie away from the data, see Fig. 6 (d) and (e). Indeed, these piees are extremelysensitive to small perturbations in the data even though the zero set around the data is stable.We now examine global instability problems. S, de�ned in (7), is symmetri positive sine it is asum of satter matries, and thus an be written as S = U t�U where U is a rotation in the oeÆientspae. The elements of � and the olumns of U are the eigenvalues and eigenvetors of S, respetively.If there is exat ollinearity in the data, S will be singular and one or more eigenvalues will be 0.A muh more ommon problem is near ollinearity where some eigenvalues are very small omparedto others and S is nearly singular with a very large ondition number. Least Squares Estimationprodues the oeÆient vetor A that globally minimizes the error funtion in (6). Eigenvetors of Sassoiated with the very small eigenvalues do not ontribute to the polynomial signi�antly aroundthe dataset; thus suh vetors multiplied with large salars get added into the solution in pursuit ofslightly better solutions. This results in very large varianes for oeÆients in the subspaes spannedby these eigenvetors. In Fig. 5 the graph of a goodness of �t funtion in two variables is shown.Notie that the funtion drops o� steeply with the stable variable V , but hanges only very slowlywith unstable W . Thus, the solution of LSE whih seeks the highest point on the graph, marked LSin the Fig. 5, moves along the unstable ridge (heavy line in Fig. 5) with the addition of small amountsof noise to the data. Consequently, the variane of the variable W due to noise is muh larger thanthat of V . What we desire is that salars multiplying suh eigenvetors be pushed to zero rather thanup to unstabily-anelling in�nities. This requires modifying LSE as we explain next.
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6.2 Ridge Regression (RR)
As stated in Setion 6.1, we would like variables that do not ontribute signi�antly to the �t to befored to attain values as lose to zero as possible while other variables are e�etively unhanged.Sine the solution has to move along the ridge, the stabilization of the least square is known as RidgeRegression (RR) [6, 24℄. The method of RR modi�es S so that it is loser to what it would be for datain whih there is no ollinearity, that is, data in whih all the explanatory variables are unorrelatedwith one another. The modi�ed oeÆient vetor, Arr is obtained by

Arr = �(S + kD)�1GN (8)
where D is a positive de�nite and symmetri matrix and k is the RR parameter. Although D ouldin priniple be hosen as any positive de�nite matrix, in this paper we restrit ourselves to the simplease where D is a diagonal matrix. The addition of a diagonal matrix D to the satter matrix S hasthe e�et of adding a bias whih produes oeÆient vetors with smaller norms (smaller jj Arr jj). Inthis sense, RR is analogous to weight deay regularization used in training Neural Networks. Elementsof D are funtions of the sum of squared values of the monomials (in other words, D is a funtion ofthe main diagonal of S). A spei� hoie for the elements of D that meets the rotational invarianerequirements and whih has a desired limiting behavior is proposed and explained in further detailin Setion 6.3. Notie that as k is inreased, S + kD approahes D, and A approahes the limitAlimit = �kD�1GN . We examine the limiting behavior of GN in Setion 6.4.When there is ollinearity, (8) biases the solution loser to GN . For the example given in thebeginning of this setion, GN = [ 0 n �n 2 �xj �yj � �xj �2 �yj ℄t : Thus, if the data set is enteredat the origin, the solution obtained by RR is biased toward [ 0 1 �1 0 0 0 ℄t, i.e. the equation
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of the line x� y = 0 we are searhing for. It an easily be shown [24℄ that
Arr = U�U tA (9)

� is a diagonal matrix of shrinkage fators and U is as de�ned in Se. 6.1. In other words, RRmodi�es the Least Squares Estimate by �rst rotating it to obtain unorrelated omponents, shrinkingeah omponent by some amount and �nally restoring the original oordinate system by anotherrotation. The ruial point is the amount of shrinkage applied to eah omponent. If D in (8) werehosen to be the identity matrix, then it is shown in [24℄ that
� = diag(Æi) ; Æi = �i�i + k (10)

where k is the RR parameter and �i are the eigenvalues of S, i.e., the diagonal omponents of �.The shrinkage fator Æi multiplies the i'th eigenvalue of S�1 whih is ��1i , thus the i'th eigenvetor isshrunk by a fator of Æi in the solution. Sine the eigenvetors related to the very small eigenvaluesof S are unstable, we would like to shrink them while leaving other eigenvetors largely una�eted.With (8), this is aomplished as shown by (10). Consider a simple ase similar to the one depited inFig. 5 where there are two variables one of whih is signi�antly less stable than the other. This wouldresult in an ill-onditioned matrix S with eigenvalues,e.g., �1 = 1 and �2 = 10�4, and S�1 havingeigenvalues 1 and 104 whih are the reiproals of �1 and �2, respetively. If we selet k = 10�3 weobtain the shrinkage fators Æ1 = 0:999 and Æ2 = 0:0909. Thus, the eigenvalues of (S + kI)�1 willbe 1 � 0:999 = 0:999 and 104 � 0:0909 = 909. Notie that the stable eigenvetor orresponding tothe larger eigenvalue of S (equivalently the smaller of S�1) remains relatively unhanged whereas theondition number is improved from 1041 = 104 to 9090:999 � 909, an approximately 11 fold improvement.We address the question of hoosing the value of k in Setion 6.5.15



Fig. 6() and (f) shows �ts of degrees 6 and 8 obtained by RR. Comparing these results withthe results from standard gradient-one �tting shown in Fig. 6(b) and (e), we observe two importantproperties of RR: (i) the extra piees of the zero set in the �t to the pliers shape is gone and both �tsare bounded, and (ii) the smoothing introdued around the data set is negligible. These propertiesfollow from the fat that stable dimensions are left largely una�eted by RR while unstable ones areshrunk to insigni�ant values.The e�et of inreasing the parameter k from 0 to higher values is shown in Fig. 7. Notie thatthe unbounded piees that are lose to the data in �tting with no RR, k = 0, start to move awaywith inreasing k. Atually, these piees totally disappear and the polynomial zero set beomesbounded. Reall that in Setion 6.1 it was pointed out that unboundedness and extra piees of thezero set were symptoms of the instability in �tting. Thus RR ahieves the goal of getting rid of thesee�ets, a qualitative improvement in �tting. In Setion 7 we present results of experiments that showthe quantitative improvement in stability obtained by RR whih we believe is strongly linked to thequalitative improvements summarized above. We also prove in Setion 6.4 that a �t to data for alosed shape is guaranteed to onverge to a bounded IP urve as k goes to in�nity.
6.3 Rotational Invariane of RR
The question of the invariane of the �tting algorithm to Eulidean transformations of the data isimportant to insure repeatability of the results. In this setion, we show that the Gradient-one �ttingis rotation and translation invariant and that the matrix D must be of a speial form to keep therotational invariane property in RR.When a Eulidean transformation is applied to the data set, vetor Y of monomials is transformedas Y 0 = V (�; tx; ty)Y , where the p � p matrix V is a funtion of only �, the applied rotation angle,and (tx; ty), the applied translation. The zero set of the polynomial is de�ned by AtY = 0. After
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substitution Y = V �1Y 0, the transformed oeÆients are A0 = (V t)�1A. A0 resulting from �tting toEulidean transformed data is A0 = (S0 + �(S0N + S0T ))�1G0N , from (7). We now show this is exatly(V t)�1A. Substituting for A from (7)
(V t)�1A = (V t)�1 (S + � (SN + ST ))�1 V �1V GN = �V SV t + � �V SNV t + V STV t���1 V GN

But from Setion 3, S is Y Y t, and thus transforms as S0 = V SV t. Similarly, the matries ontainingthe information on the normals and tangents transform as: S0T = V STV t, S0N = V SNV t using thefat that normals are Eulidean ovariant. GN transforms like Y , thus G0N = V GN . This leads toA0 = (S0 + �(S0N + S0T ))�1G0N as was to be shown. Consequently, Gradient-one �tting is EulideanInvariant. Notie that the Eulidean properties of V (�; tx; ty) is used only for the omputation ofthe normal omponents. This leads to a possible extension to aÆne invariant �tting if a method torobustly ompute aÆne invariant normals is developed.If we apply the same substitutions to (8), we obtain [V �1(S0 + �(S0N + S0T ))(V t)�1+ kD℄V tA0rr =V �1G0N : RR �tting will be Eulidean invariant if A0 = (S0+�(S0N +S0T )+kD0)�1G0N whih is exatly(8) in the transformed referene system. From the equations in the preeding paragraph, we seethat this requirement is satis�ed if V DV t = D. This means that the invariane of the algorithmto Eulidean transformations ditates the struture of the matrix D. It is known [21℄ that, if theEulidean transformation is redued to a pure rotation, V an be deomposed as V = B� 12RB 12where B is the diagonal matrix of binomial oeÆients:
Bvv = (i+ j)!i!j! ; v = j + (i+ j + 1)(i+ j)2 (11)

and R is a blok diagonal rotation matrix. Rotation blok Rk is assoiated with the kth form, for eahk. See [21℄ for details. Upon substitution of V in V DV t = D, we have B�1=2RB1=2DB1=2RtB�1=2 = D17



whih simpli�es to RBDRt = BD under the asumption thatD is diagonal. It is suÆient for satisfyingthe previous equation that D is blok by blok, the inverse of B. Therefore, a D suÆient for rotationinvariane is: Dvv = �i+j i!j!(i+ j)! ; v = j + (i+ j + 1)(i+ j)2 (12)
where �i+j is a free parameter for the i+ j'th blok. In problems where invariane is not of onern,Prinipal Component Methods [7℄ whih do not provide any freedom in the hoie of D, an be usedalternatively. Sine invariane is a major onern for us, we hoose to work in the more generalframework of RR.There are n+1 parameters, orresponding to the n+1 bloks and forms. We are free to set theseparameters in a Eulidean invariant way. The simplest approah would be to set all to 1. Using thebinomial oeÆients one more, we set eah of these parameters to the invariantly weighted sum ofthe diagonal elements of S assoiated with the i+ j'th form. In other words,

�i+j = Xr;l�0;r+l=i+j (r + l)!r!l! mXq=1x2rq y2lq
the weighted total sattering of the terms in i+j'th degree form. This hoie of �i+j is Eulidean invari-ant. The motivation for this hoie omes from the fat that RR is equivalent to adding independentrandom noise on the matrix of monomials. When we ompute S =MM t, the expeted hange on theo� diagonal terms are 0 beause of the independene of the noise added to eah monomial. However,the varianes, of the noises added to the monomials, add onto the main diagonal of S exatly as inRR. So our hoie of �i+j is equivalent to adding independent noise to eah monomial with varianeproportional to a Eulidean invariant funtion of the sattering of all the monomials in its form. Thisis very losely related to weight deay regularization used to overome problems of over�tting in it-erative optimization shemes [2℄. We have found that this hoie brings signi�ant improvements in
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power of shape representation over simply setting �i+j = 1 for all i; j.
6.4 Boundedness Properties and Limiting Behavior of RR
The limit of the solution of (8) as k goes to in�nity is Alimit = D�1GN , up to a sale fator. Itturns out that the polynomial spei�ed by Alimit has important properties. Indeed when the datashape is losed and the degree of the �tted polynomial is even, the IP urve onverges to the urvegiven by Alimit whih is always bounded, as shown in Fig. 8. The proof that follows is based on thedivergene theorem for losed 2D urves. To begin, using (12), omponents aij of vetor Alimit anbe approximated as an integral along a ontour, C, when the data shape is losed and the samplingof the urve is not too oarse: aij = (i+ j)!�i+ji!j! IC N tr(xiyj)
Therefore, by applying the divergene theorem and using the vetor identity r�rg = r2g it beomes:

aij = (i+ j)!�i+ji!j! Z Z r2(xiyj)dxdy = (i+ j)!�i+ji!j! Z Z i(i� 1)xi�2yj + j(j � 1)xiyj�2dxdy
where r2g is the Laplaian of funtion g and the double integral applies in the data shape's interior.Using (1), and introduing the monomial vetor Y 0 = (x0iy0j), the zero set of Alimit is

AtlimitY 0 = X0�i+j�n aijx0iy0j = 0
To prove that the zero set of this polynomial is always bounded, it is enough to show that the leadingform of this polynomial is always stritly positive. By using the two previous equations we �nd:Xi>1;j>1;i+j=naijx0iy0j = 1�n [ R R x02 Xi>1;j>1;i+j=n (i+j)!(i�2)!j!(xx0)i�2(yy0)jdxdy +R R y02 Xi>1;j>1;i+j=n (i+j)!i!(j�2)!(xx0)i(yy0)j�2dxdy ℄
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Then, we derive that:
Xi+j=naijx0iy0j = n(n� 1)�n (x02 + y02) Z Z (xx0 + yy0)n�2dxdy

is always positive for even degrees. As an important onsequene of this proof, it is always possible to�nd some k > 0 suh that the �tted polynomial (to a losed shape) has bounded level sets, as desired.
6.5 Choosing the RR Parameter
The bias of an estimator is the distane between the true value of the parameter being estimated, Atrue,and the expeted value of the estimator, Arr. The variane of an estimator is its expeted squaredeviation from its expeted value, jj Arr �Arr jj2. k ontrols the bias-variane tradeo�. Usually, thevariane is signi�antly redued by deliberately introduing a small amount of bias so that the nete�et is a redution in total mean squared error whih is de�ned as bias2+variane. Introduing biasis equivalent to restriting the range of funtions for whih a model an aount. Typially this isahieved by removing degrees of freedom. Contrary to other approahes suh as Prinipal ComponentMethods [15, 7℄, RR does not expliitly remove degrees of freedom but instead smoothly redues thevariability of parameters. This makes the model less sensitive to small perturbations. Seletion of theparameter k in pratie an be done in one of two ways depending on what the resulting �t will beused for:Choosing k for Shape Modeling. Here the main goal of �tting is to obtain a good representation of theshape without too muh smoothing, with bounded zero sets and without extraneous piees in the zeroset. In Fig. 8, it an be seen that inreasing k results in �rst smoothing high urvature parts of theshape and then onvergene to a bounded shape that does not visually represent the data. So the aimhere is to hoose the smallest possible value of k that gets rid of unstable artifats like unboundedness,
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see Fig. 9 for examples where k was hosen in this manner. This an be done iteratively sine �ttingfor modeling an usually be done o�-line. Parameter k an be inreased from 0 to larger values untilsigni�ant amounts of error start to be introdued into the �t. Polynomial Interpolated Measure(PIM) [11℄ an be used to trak this error as a di�erene in the polynomial at k = 0 and at the valueof k under onsideration.Choosing k for Reognition. Here the main goal is to minimize the total mean squared error of esti-mator Arr. Suh an optimal value of k is empirially shown to exist and is found in Se. 7. Choosingthe optimal value of k analytially remains to be done in our future work. Optimal values of k oulddi�er for di�erent data sets. In [20℄, it is shown that k an be omputed from a data independentthreshold � , on the ondition number of S + kD. The optimal value of � will be data independent.
7 Experiments
7.1 Perturbation Models
Before we present experimental results, it is important to larify how the perturbed data sets in theseexperiments were generated. Most researhers in the �eld of omputer vision use random white noise(the noise added to eah point in the data is independent of others) in their experiments on shapereognition, and thus most algorithms are optimized to handle this type of noise. White noise whenused with very small standard deviations is good for simulating quantization errors; however, it isnot a good model for generating deformed opies of a shape as might be skethed by a human or asmight appear after segmentation from an image of an objet taken under slightly di�erent viewingonditions. We would like to be able to model these variations of shape sine our motivation is to useIP �tting for indexing into image databases by query by sketh and query by example. Figs. 10(a) and(b) show the silhouette of a �sh and white noise with standard deviations 0:05 and 0:1, respetively.
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It is lear that these shapes annot represent the shape variations we desire. The solution we proposeis simply to use olored noise instead of white noise. First generate a white noise sequene equalin length to the number of data points. Then onvolve this sequene with an averaging window oflength 0.15 times the number of data points. This sequene is added in the diretion perpendiularto the data at eah point. Figs. 10() and (d) were obtained with this method. Comparing thesewith Figs. 10(a) and (b), it appears that olored noise models represent meaningful shape distortionswhereas white noise an only represent quantization errors. The onnetion between distortions inshapes skethed by humans and appropriate olored noise models will be investigated in future work.Also, the arbitrary hoie of setting the length of the averaging window to be 0.15 times the length ofthe data sequene an be hanged to obtain di�erent e�ets in the distortion produed. Another typeof perturbation used in our experiments is missing data where a random point on the given shape ispiked and a number of onseutive points are removed. Removing intervals introdues muh strongerperturbations then removing an equal number of randomly spaed points.
7.2 Objet Reognition Experiments
Various objet reognition experiments were performed to verify that RR improves objet reognitionperformane. A set of 27 objets, Fig. 11, inluding real world objets and arti�ial free-form shapesranging from simple to omplex, was used for all of the experiments outlined in this setion. It isimportant to note that some objets have very similar shapes suh as the �ghter airrafts, eels, and�shes. This makes objet reognition for this set of objets a non-trivial task.Reognition performane was tested under various perturbation models whih are ombinations ofolored noise, missing data and rotation as explained in Se. 7.1. Given a perturbation model, 1000samples (perturbed shapes) are generated from eah base shape. Eah sample is �t with an IP usingthe methods outlined in the previous setions, thus produing a sample in oeÆient-vetor spae for
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eah perturbed shape. Then, a reently developed omplete set of invariants [18℄ is omputed for eahoeÆient-vetor sample. One of the most important advantages for reognition of this spei� set ofinvariants is that eah invariant is either a linear or quadrati funtion of the oeÆients or an angledetermined by a pair of omponents of the oeÆient-vetor. This leads us to believe that they shouldout-perform highly non-linear algebrai invariants in robustness. Finally, a mean and full ovarianematrix in the invariant spae is learned for eah objet. Test sets (100 samples of eah objet) aregenerated in the same manner independently of the training set.Average reognition rates for the 27 objets are plotted against the logarithm of the RR parameterk in Fig. 12. Reognition rates obtained without using RR are shown with the horizontal lines. InFig. 12(a) 4th degree polynomials were used with a perturbation model of 10% olored noise andrandom rotations ombined. Optimal hoie of the RR parameter provides approximately 3% inreaseover the already high rate of 96.5%. Note that there is an optimal value of k, this is expetedsine k ontrols the bias-variane tradeo� in invariant spae and some value of k has to minimizebias2 + variane. The following experiments verify this fat with the further important impliationthat for this set of objets, best reognition performane is obtained using approximately k = 10�3
regardless of the degree of the polynomial or the perturbation model being used. One question to beinvestigated is if this optimal value of k will generalize to larger sets of objets.The experiments presented in Fig. 12(b) use a stronger perturbation model ombining 10% olorednoise, 10% missing data and random rotations. Both 4th and 6th degree polynomials were tested.For degree 4, optimal hoie of k provides 7% improvement in reognition ahieving approximately97%. For degree 6, a muh more substantial 16% improvement is obtained raising the best reognitionperformane to approximately 99%. These top rates are impressive when one looks at some typialperturbed samples generated in this experiment, Fig 13. Note that random rotations are omitted inFig 13 for easy omparison with the original shape. Using 6th degree IPs provides only a 2% advantage

23



in reognition over using using 4th degree; moreover for some non-optimal values of k and with noRR it atually does worse. There are two important dedutions here: 1. Sine 6th degree IPs havemore oeÆients (degrees of freedom) they are more prone to problems of unstable subspaes then4th degree IPs, espeially for simpler shapes that might not require a 6th degree polynomial. Sinethis is exatly the problem RR sets out to solve, the observation made above is totally expeted. 2.It might seem tempting to restrit objet reognition to the use of 4th degree IPs; however, as willbe made lear in the next example there are muh more substantial gains to be made with the use ofhigher degrees in some ases. We now use even a stronger model of perturbation, by keeping the 10%olored noise and rotation and doubling the amount of missing data to 20%. Robustness to missingdata ruially depends on a good representation. Fig. 12() on�rms this statement; 4th degree IPsyield a top reognition rate of approxiamtely 88%, 6th degree IPs are able to improve this rate toapproximately 94%. Having established that using high degree IPs are neessary in ertain problems,it is also very important to one more realize the ruial role played by RR in the suess of highdegree IPs; using the optimal value of k provided a gain of over 35% ompared to no RR, with 6thdegree IPs in this example.
8 Conlusions
In the ontinuing quest for ahieving maximum stability in the representation of urve data by algebraiurves (i.e., the zero sets of polynomials in x and y) and in the stability of the polynomial oeÆients,this paper makes two important ontributions. The �rst is an understanding of the role of datanormalization and polynomial gradient-onstraint in improving representation and oeÆient stability.This also sheds light on why the 3L �tting algorithm [10℄ is so muh more stable than previous �ttingalgorithms. The seond ontribution is the use of rotation-invariant RR, in the �tting, for improving
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the stability of both the representation and the oeÆients even further. RR drives those portionsof the polynomial zero-set, that are not appropriate to the urve data, far from the data. It alsoshrinks to near-zero those polynomial oeÆients not important for representing the urve data. Theremaining oeÆients are stable and result in inreased stability when used for pose-invariant objetreognition or objet pose estimation.
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�1:00000 �4:00000 �6:99970 �20:84691 �13:99236� 2:518831i�2:00000 �5:00000 �8:00727 �10:09527� 0:643501i �16:73074� 2:812621i�3:00000 �6:00001 �8:91725 �11:79363� 1:652331i �19:50244� 1:940331iTable 1: Roots of the perturbed Wilkinson Polynomial-9.7998e-25 2.6102e-10 -0.00030308 0.90528 -72.188 286.9980 -36.83739.7620e-18 -7.2448e-08 0.0071163 -5.5366 158.9022 -227.0224 5.1379-1.9477e-13 6.9438e-06 -0.10006 23.6634 -252.6122 118.6832Table 2: Estimates for root perturbations.

28



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

X
Y

N

Figure 1: A irle is the zero set of a seond degree polynomial.
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Figure 2: (a)-(d) Classial least-squares algorithm gives unstable 4th degree IP �ts under even thesmallest perturbations to the data. (e) A muh more signi�ant perturbation, (f) 10 superimposed 4thdegree polynomial �ts with the gradient-one algorithm to perturbed data sets like the one in (e).
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(a) (b) ()
(d) (e) (f)

Figure 6: (a) and (d): Classial Fitting Algorithm. (b) and (e): Gradient-one Fitting Algorithm. ()and (f): RR Fitting Algorithm. Degree 6 and 8 are used for the airplane and pliers shapes, respetively.Notie that there are no extra omponents in () and (f).

Figure 7: 6th degree IP �ts with the gradient-one algorithm and RR for inreasing values of param. k.

Figure 8: Left, 6th degree polynomial �ts with the gradient-one algorithm and RR for inreasing valuesof parameter k (k = 0, k = 0:0001, 0:001, 0:01, 0:05, 0:5, 2:0 and 32, respetively). We an observethat the �tted zero set is beoming smoother and onverging to a point.
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Figure 9: Fits for 4th, 6th, and 8th degrees with shapes of di�erent omplexities. No extra omponentsare lose to data sets. The RR parameter was hosen manually for eah shape in this example.

(a) (b)
() (d)Figure 10: Comparison of noisy data simulation using white noise (a)-(b) with standard deviations0:05 and 0:1, respetively, and olored noise ()-(d) with standard deviations 0:05 and 0:1, respetively.

Figure 11: Objets used in the experiments.
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Figure 12: 1000 perturbations of eah objet are used as the training set. Another 100 independent per-turbations of eah objet are used as the test set. Perturbation models are (a) 10% olored noise + ro-tation, (b) 10% olored noise + 10% missing data + rotation and () 10% olored noise + 20% missingdata + rotation.

Figure 13: A few shapes perturbed with 10% olored noise and 10% missing data.
34


