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tAn algebrai
 
urve is de�ned as the zero set of a polynomial in two variables. Algebrai
 
urvesare pra
ti
al for modeling shapes mu
h more 
ompli
ated than 
oni
s or superquadri
s. The maindrawba
k in representing shapes by algebrai
 
urves has been the la
k of repeatability in �ttingalgebrai
 
urves to data. Usually, arguments against using algebrai
 
urves involve referen
es tomathemati
ians Wilkinson (see [1℄ 
hapter 7) and Runge (see [3℄ 
hapter 4). The �rst goal ofthis arti
le is to understand the stability issue of algebrai
 
urve �tting. Then a �tting methodbased on ridge regression and restri
ting the representation to well behaved subsets of polynomialsis proposed, and its properties are investigated. The �tting algorithm is of suÆ
ient stability forvery fast position-invariant shape re
ognition, position estimation, and shape tra
king, based oninvariants and new representations. Among appropriate appli
ations are shape-based indexing intoimage databases.
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1 Introdu
tion
Algebrai
 2D 
urves (and 3D surfa
es) are extremely powerful for shape re
ognition and single-
omputation pose estimation be
ause of their fast �tting, invariants, and interpretable 
oeÆ
ients,[10, 11, 13, 17, 18, 19, 21℄. Signi�
ant advantages over Fourier Des
iptors are their appli
ability tonon-star shapes, to open 
urves, to 
urves that 
ontain gaps, and to unordered 
urve data, Se
. 2.Under 
ir
umstan
es where these issues are not relevant, polynomials based on Fourier analysis maybe very e�e
tive, and an interesting formulation relating Fourier series and polynomials is given in[14℄. A weakness for use of algebrai
 
urves and surfa
es has been la
k of stability of parameters. Thispaper, studies the problem and provides a solution.The 
lassi
al least-squares �tting of algebrai
 
urves, Se
. 3, espe
ially the more interesting 
ases ofhigher degree polynomials, su�ers three major problems: lo
al in
onsisten
y with the 
ontinuity of thedataset; lo
al over-sensitivity of the polynomial zero set around the data to small data perturbations;instability of the 
oeÆ
ients due to ex
essive degrees of freedom in the polynomial. Substituting anapproximate Eu
lidean distan
e for algebrai
 distan
e [21℄ is mu
h more stable than the 
lassi
al leastsquares algorithm, in many 
ases gives useful �ts, but in other 
ases the improvement is not suÆ
ientto solve these major problems. Similarly, the use of the exa
t Eu
lidean distan
e provides betterresults than the algebrai
 distan
e [16℄; nevertheless the �tting is sometimes not stable enough andthe minimization is solved iteratively, a time 
onsuming pro
ess. Another attempt to improve thestability of the �t was the development of �tting algorithms whi
h ensure that the obtained zero setis bounded [8, 22, 13℄, but the last one is for 2nd degree 
urves only, and in
reased stability for alland �tting speed for the former two are still desired. Non-linear parametrizations of polynomials thatare guaranteed to satisfy 
ertain topologi
al properties { boundedness and having a zero set that is
ontained within another shape su
h as an ellipse { that have re
ently appeared [9℄ are interesting, and
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their relative merits need to be studied further. The problem of an ex
essive number of parametersin impli
it polynomial (IP) representations was �rst studied in [15℄ in the framework of Bayesianestimation. The linear 3L �tting algorithm [10℄ exhibits signi�
antly improved 
urve representationa

ura
y and stability but there is signi�
ant value to further improvement in 
oeÆ
ient stability inorder that algebrai
 
urves be generally appli
able for obje
t-re
ognition purposes.Following a short summary on algebrai
 
urves in Se
. 2 and the 
lassi
al least-squares �tting inSe
. 3, we investigate the stability problems of 1D polynomials in Se
. 4. In Se
. 5, the solution of the�rst and se
ond problems by the 3L method [10℄ is analyzed from the point of view of Se
. 4. In Se
. 6,we present a new linear algorithm whi
h produ
es a

urate and stable 
urve-data representations andstable 
oeÆ
ients. Results of obje
t re
ognition experiments based on this algorithm and a new setof invariants [18℄ are presented in Se
. 7.
2 Representations of Algebrai
 Curves
Formally, an algebrai
 
urve is spe
i�ed by a 2D IP of degree n given by the following equation:

fn(x; y) = X0�j+k�najkxjyk = a00 + a10x+ a01y + : : :+ an0xn + an�1 1xn�1y + : : :+ a0nyn = 0
The homogeneous binary polynomial of degree r in x and y is a form, e.g., a20x2+a11xy+a02y2 is the2nd degree form. The homogeneous polynomial of degree n is the so-
alled leading form. An algebrai

urve of degree 2 is a 
oni
, degree 3 a 
ubi
, degree 4 a quarti
, and so on. Polynomial fn(x; y) isrepresented by the 
oeÆ
ient ve
tor (ajk)0�j;k;0�j+k�n whi
h has dimension p = 12(n+ 1)(n+ 2):

fn(x; y) = Y tA (1)
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where 1 A = [ a00 a10 : : : an0 an�1 1 : : : a0n ℄t and Y = [ 1 x : : : xn xn�1y : : : yn ℄t . In general,the ve
tor notation is 
onvenient for IP �tting sin
e �tting 
an be set within a linear framework asdetailed in Se
. 3. A shape is represented by the zero set of fn(x), i.e., the set of points fx; yg satisfyingthe IP equation fn(x; y) = 0 whi
h is the interse
tion of the surfa
e de�ned by an expli
it polynomialz = fn(x; y) with the plane z = 0, see Fig. 1.The IP framework for shape representation and re
ognition is generally 
ompared with FourierShape Des
riptors. Here we brie
y summarize some of the di�eren
es between these approa
hes. Thetwo main types of Fourier Des
riptors are: (i) that whi
h represents a shape as a radius as a fun
tionof angle, and (ii) that whi
h uses a 
omplex valued fun
tion to represent the 
oordinates of the pointsalong the 
urve as a fun
tion of ar
-length. There are 
ertain disadvantages to both approa
hes. (i)is limited to the set of star-shapes whi
h 
an be represented by a single-valued radius as a fun
tionof angle; however, interesting shapes generally do not fall into this 
ategory. (ii) requires the inputdata sets to be an ordered set of points. (i) 
an not be dire
tly used for open shapes, a prepro
essingstep to arti�
ially 
lose the 
urve is required. (ii) 
an be used for open 
urves, but serious diÆ
ultieswith ar
-length normalization arise. Ar
-length parametrization is the main drawba
k of (ii) be
ausear
-length 
an in
rease signi�
antly if noise is added on to the 
urve. Both have problems with varyingdata point density and gaps in the data. IPs do not su�er from any of the problems listed above: theyare dire
tly appli
able to non-star shapes, open 
urves, unordered data sets and are robust to noisydata sets and inhomogoneously spa
ed data points. The main advantage of Fourier Des
riptors overIPs have been their better stability be
ause they are an expli
it representation. This paper fo
uses onthe stability issue with IPs.1Supers
ript t denotes ve
tor and matrix transpose.
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3 Classi
al Least-Squares Fitting
The 
lassi
al and simplest way to �t an algebrai
 
urve to data is to minimize the algebrai
 distan
eover the set of given data points (xj; yj), 1 � j � m, that is

ealgebrai
 = X1�j�m(fn(xj ; yj))2 = At0� X1�j�mYjY tj1A| {z }MMt=S A (2)
by using ve
tor representation of fn as in (1). De�ne the matrix of monomials as the p �m matrixM = [Y1 Y2 : : : Ym℄ (or more generally, the design matrix), and S = MM t = P1�j�m YjY tj is thes
atter matrix of the monomials. To avoid the trivial zero solution in the minimization of (2), a
onstraint su
h as kAk2 = 1 is imposed whi
h modi�es the problem to

minA 0�At0� X1�j�mYjY tj1AA+ �(AtA� 1)1A (3)
with the introdu
tion of Lagrange multiplier �. The solution to (3) is given by the unit eigenve
torA asso
iated with �min, the smallest eigenvalue of SA = �A [21℄. Consequently, the 
lassi
al least-squares �tting algorithm 
onsists of 
omputing the monomial s
atter matrix S from a set of datapoints, and then �nding the unit eigenve
tor of S asso
iated with its smallest eigenvalue. Althoughthis algorithm is aÆne invariant [4, 21℄, most of the time it is not of any pra
ti
al use due to thefollowing problems: The �tted zero set does not respe
t the 
ontinuity of the original data set asillustrated in Fig. 2(a)-(d) and Fig. 6(a) and (d). This problem undermines the use of 
lassi
al �ttingfor obtaining good representations of the data. Moreover, results are highly sensitive to small errorsin the data. Even seemingly negligible perturbations in the data 
an lead to zero sets that have noresemblan
e to the zerosets prior to the perturbations in the data, Fig. 2(a)-(d). Even with low orderdegrees, depending on the stru
ture of the given data set, S may not provide a stable unique eigenve
tor
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under small perturbations. For example, several eigenvalues 
an have similar values to the smallestone, and thus the solution will span a subspa
e in the 
oeÆ
ient spa
e when small perturbations areadded to the data set. Consequently, 
lassi
al �tting is also pra
ti
ally useless for re
ognition purposesbased on the 
oeÆ
ients of the �tted polynomials.
4 Pathologi
al Polynomials
Although we are interested in 2D polynomials, i.e., fun
tions of x and y, it is instru
tive to �rst studystability in the 1D 
ase. It is well known that some 1D polynomials, in parti
ular polynomials ofhigh degree, are ill-
onditioned. Consider the pathologi
al example due to Wilkinson [1℄: (x+ 1)(x+2) : : : (x+20) = x20+210x19+ : : :+ 20!. This polynomial has very large 
oeÆ
ients and its roots are�1, �2, �3,..., �20. An a

urate 
al
ulation of the perturbed roots as given in [1℄ to �ve de
imals aftera tiny 
hange of 2�23 is applied to the 
oeÆ
ient of x19, are shown in Table 1. Though this exampledemonstrates how ill 
onditioned some polynomials are, it does not mean that all polynomials are so,and as a 
onsequen
e that all algorithms using high degree polynomials have to be reje
ted as a prioriunstable. In fa
t, we will demonstrate that it is possible to work in a subspa
e of non-pathologi
alpolynomials. First, let's try to understand the pathology of this polynomial. A plot of this polynomialwould show varying os
illation amplitude between its roots. This type of ill-
onditioned behavior ofpolynomials is well-known in the 
ontext of interpolation theory. Indeed, the Wilkinson polynomialis an example of Lagrange interpolation at 20 points, and it is known that Lagrange interpolationsu�ers from os
illation problems between data points. This is the so-
alled Runge problem [3℄. Oneknown solution is to 
hange the way the interpolation is 
arried out. Hermite interpolation, where the�rst derivative of the polynomial is 
ontrolled in addition to the value of the polynomial at ea
h givenpoint, 
an be proven to 
onverge properly for all 
ontinuous fun
tions when the number of sampling
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points and thus the degree of the polynomial in
reases.We are referring to interpolation theory and Hermite polynomials be
ause they provide us with veryuseful insight in trying to improve the 
lassi
al least-squares �tting algorithm. In essen
e, the problemwith polynomials is that the fun
tional relationship between its 
oeÆ
ients and its roots is highly non-linear. Let pn(x) be a 1D polynomial de�ned as: pn(x) =P0�j�n ajxj = a0+a1x+a2x2+ : : :+anxn.Roots xk of this polynomial are de�ned by pn(xk) = 0. This last equation 
an be seen as an impli
itequation for root xk where this root is a fun
tion of 
oeÆ
ients aj . To determine the sensitivity ofthis root to small 
hanges of the 
oeÆ
ients, we di�erentiate pn(xk) = 0 with respe
t to aj . We obtainxjk + dpndx (xk)�xk�aj = 0 whi
h is equivalent to
�xk�aj = � xjkdpndx (xk) : (4)

(4) has important 
onsequen
es. It is desired that small or large 
hanges in the 
oeÆ
ients produ
esmall or large 
hanges, respe
tively, in the roots, and vi
e versa. Thus we should require that �xk�aj = 1.Due to the numerator xjk, we see that xk should be 
lose to values 1:0 or �1:0; otherwise, the e�e
t ofa small 
oeÆ
ient perturbation has a larger e�e
t on roots with large absolute values. This explainswhy roots with large absolute values are less stable than others for the Wilkinson polynomial, Table 1.Due to the denominator of (4), we dedu
e that the sensitivity to a small 
oeÆ
ient perturbation isalso dire
tly dependent on the value of the �rst derivative of the polynomial at the root lo
ation.The Wilkinson's polynomial has derivatives 19!0!, �18!1!, 17!2!, : : :, �0!19! at �1, �2, �3, : : :, �20respe
tively. These huge variations in the �rst derivative dpndx 
ontributes to the instability of the rootswith respe
t to 
oeÆ
ient perturbations. Using (4), we predi
t, with a �rst order Taylor expansion,the perturbations of the roots of the Wilkinson polynomial when 2�23 is added to a19 = 210: Thesevalues are in good a

ordan
e with the di�eren
es between the original roots, �20; : : : ;�1 and the
7



real perturbed roots, Table 1. Tables 1 and 2 provide an experimental validation of (4).
5 Gradient-one Fitting
The insight developed in Se
. 4 into how polynomials 
an be ill-
onditioned, enables us to determinea subset of well-
onditioned polynomials. What is a well-
onditioned polynomial? For the problem athand, it is a polynomial for whi
h the relationship between its roots and its 
oeÆ
ients is su
h thatsmall 
hanges in one indu
es small 
hanges in the other and larger 
hanges indu
e larger 
hanges. InSe
.4, it was argued that a 1D polynomial should have root values and �rst derivative values at the rootlo
ations, all 
lose to 1:0 or �1:0. We 
an extend this result to 2D polynomials: a set of polynomialssatisfying these 
onstraints exa
tly in 2D are the powers of the unit 
ir
le: 12n((x2+y2)n�1). Membersof the set of polynomials \
lose" to these polynomials in the 
oeÆ
ient spa
e are well-
onditioned.The topology of this set remains to be studied in our future work.The �rst requirement for stable �tting is to apply a data set standardization to for
e the datapoints to be 
lose to the unit 
ir
le, and thus indire
tly to for
e the zero set of the polynomial to beas 
lose as possible to the unit 
ir
le. The data set standardization 
onsists of 
entering the data-set
enter of mass at the origin of the 
oordinate system and then s
aling it by dividing the 
oordinatesof ea
h point by the average of the square roots of the eigenvalues of the 2� 2 matrix of se
ond ordermoments (normalized by the number of points in the data set). This is a Eu
lidean invariant measureof the obje
t size and 
an be thought of as the average radius of the data points from the obje
t
enter. Thus by data set standardization we are setting this measure of obje
t size to 1.The se
ond requirement is to 
ontrol the value of the �rst derivatives along the zero set, i.e, thegradient of the 2D polynomial: rfn(xj ; yj) = 24 �fn�x�fn�y

35 (xj; yj) (5)
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The gradient ve
tor along the zero set of the polynomial is always perpendi
ular to the 
urve de�nedby the zero set. Thus, if we 
an 
ompute the lo
al tangent to the 
urve at ea
h point of the data set,we propose to 
onstrain the gradient to be perpendi
ular to the lo
al tangent and with unit norm.This will for
e the zero set of the polynomial to respe
t the lo
al 
ontinuity of the data set. The
al
ulation of the tangent to the data set at a point does not pose a serious problem. If the data set isordered as a 
urve, we 
al
ulate lo
al tangents to the data using the lines going through 
onse
utivedata points. If the data is not ordered, a fast distan
e transform [23, 17℄ 
an be used to generate levelsets as in 3L [10℄ or to indire
tly 
al
ulate tangent dire
tions. When working with real images, levelsets may also be generated as des
ribed in [12℄. Or if the input to the �tting algorithm 
omes froman edge dete
tor, edge orientations 
an be used as the tangent dire
tions. The normal dire
tion is thedire
tion perpendi
ular to the tangent dire
tion and pointing towards the outside of the obje
t. Inthe 
ase of open 
urves where no notion of inside/outside is available, both 
ases 
an be 
onsideredresulting in two �tted IPs whi
h have 
oeÆ
ient ve
tors related by multipli
ation with �1. We donot apply any smoothing in 
omputing the tangents even in the presen
e of noise; indeed, it is the�tting pro
ess whi
h takes 
are of smoothing the 
u
tuations in the tangent dire
tion along the 
urvegiven that there are enough points on the dataset (at least a few times the dimensionality of the IP
oeÆ
ient ve
tor). The proposed �tting te
hnique is set as a least-squares problem with the followingadditional 
onstraints: Lo
al tangential and normal dire
tional derivatives of the IP must be as 
loseas possible to 0 and 1, respe
tively. These 
onstraints add two terms to (2) to yield
egrad = mXj=1�fn(xj ; yj)2 + � �(N tjrfn � 1)2 + (T tjrfn)2�� (6)

where Tj and Nj are the lo
al tangent and normal at (xj ; yj) and � is the relative weight on thegradient with respe
t to the f2 term. By using the ve
tor notation (1) in (5), we dedu
e the ve
tor
9



form of the gradient: rfn = 24 �Y�x�Y�y
35t| {z }dimension:2�p

A|{z}p�1 = rY tA
where p = 12(n+ 1)(n+ 2) is the number of 
oeÆ
ients of a binary polynomial of degree n. And thenafter substitution in (6), we expand egrad as:
egrad = AtXYjY tj| {z }S A+ �AtXrYjNjN tjrY tj| {z }SN A+ �AtXrYjTjT tjrY tj| {z }ST A� 2�AtXrYjNj| {z }GN +�m

In this equation, S is the s
atter matrix of the monomials as introdu
ed before, SN and ST are thes
atter matri
es of the dire
tional derivatives of monomials in dire
tions perpendi
ular and tangent tothe data set, respe
tively, and GN is the sum of the gradients of the monomials in the normal dire
tion.This minimization is a linear least squares problem and the solution is then formally derived as:
A = �(S + �(SN + ST )| {z }S )�1GN (7)

Let S = S + �(SN + ST ), a p� p matrix. A and GN are ve
tors with p 
omponents.We named this algorithm gradient-one �tting. Like Hermite interpolation [3℄, gradient-one �ttingis Eu
lidean invariant, see [4℄ and Se
. 6.3, respe
tively, but not aÆne invariant. Gradient-one �ttingis also s
ale invariant sin
e the data standardization step sets some Eu
lidean invariant measure ofthe size of the shape to 1 before �tting. We use the s
attering radius of the data points as the shapesize measure; this measure is Eu
lidean invariant. Data set standardization introdu
es a numeri
aladvantage by improving the 
ondition number of the s
atter matrix S = S + �(SN + ST ) of theproblem (7). The 
ondition number gives an idea of the numeri
al stability of linear algorithms su
has the 
omputation of the inverse of a matrix [5℄. Data standardization improves the stability of the
10



�ts; however, if the standardization step has to be omitted, in order to have s
ale invarian
e it isne
essary to modify (7) to A = �(S + s2�(SN + ST ))�1GN , where s is the shape size measure.The ne
essity to introdu
e information about the �rst derivatives was �rst pointed out in [10℄ andhandled in a linear way with the so-
alled 3-levels (3L) �tting algorithm. The idea of the 3L �tting isto 
onstrain the polynomial to �t not only the data set but also two level sets of the distan
e transformof this data set, thus preventing the presen
e of singularities of f(x; y) in the vi
inity of the data tobe �tted. Therefore, indire
tly, 3L �tting puts 
onstraints on the gradient of the �tted IP. In fa
t, it
an be proved that the gradient-one algorithm is similar to the 3L �tting algorithm expanded to the�rst order with respe
t to the inter-level distan
e parameter.In 
omparison to the 
lassi
al least-squares �ts (see Fig. 6(a) and (d)), results obtained on thesame data sets are mu
h better as shown in Fig. 6(b) and (e). Espe
ially, obtained �ts are lo
ally
onsistent with the 
ontinuity of the data set. To gain further insight into how lo
al 
onsisten
y isa
hieved by 
ontrolling the gradient a
ross the data set, we examine Fig. 3. Fig. 3(d) shows that thegradient dire
tion along the zero set obtained by gradient-one �tting 
onsistently points into the shapewhereas in Fig.3(b) it 
an be seen that this dire
tion swit
hes between inwards and outwards. Thezero set from solution of (3) is broken into pie
es as 
an be seen in Fig. 3(a) whereas in Fig. 3(
) thezeroset is a smooth representation of the data 
urve. Also noti
e that in the vi
inity of the data, thesurfa
e in Fig. 3(b) is 
atter than is the surfa
e in Fig. 3(d) whi
h means that with small perturbationsof the data, 
lassi
al �tting is prone to mu
h larger 
hanges in the zero set. In addition to betterstability of the zero set and better shape representation power, gradient-one �tting also provides betterinterpolation properties whi
h allow IPs to be robust to a 
ertain amount of missing data along the
urve. The stability of the zero set a
hieved by the gradient-one �tting algorithm is an importantimprovement over 
lassi
al �tting te
hniques. It 
an be seen in Fig. 2(f) that the zero sets of theresulting �ts are stable under lo
al data perturbations. Even though, the perturbations in Fig. 2 (e)
11



are mu
h larger than those in Fig. 2(a)-(d), the 
hanges in the �tted IPs are mu
h smaller in Fig. 2(f).Parameter � has important e�e
ts on the properties of the �ts. It 
ontrols the relative weight ofthe gradient 
onstraint with respe
t to the algebrai
 distan
e 
onstraint. The e�e
t of the gradient
onstraint on the zero set of the �t is a smoothing of the high 
urvature areas. Fig. 4 is an exampleof smoothing of the zero set when � is in
reasing. In all our experiments, � is �xed to 17 whi
h givessatisfying results as shown in Fig. 6(b) and (e). This value is a good trade-o� between the a

ura
y ofthe representation and the stability of the �tted parameters. However, better stability of the estimatedpolynomial 
oeÆ
ients 
an be a
hieved with equal weights on the gradient and data �t 
onstraints asshown in Fig. 4 be
ause the resulting �ts will be \
loser" to the set of well behaved polynomials, thepowers of the unit 
ir
le. In a more general framework, � 
an be made a user-spe
i�ed fun
tion alongthe length of the 
urve providing more 
ontrol for intera
tive 
urve representation purposes. It shouldalso be pointed out that information about the higher order derivatives su
h as 
urvature 
an bein
orporated into gradient-one �tting to provide additional 
onstraints.
6 Ridge Regression Fitting
6.1 Unstable Subspa
es
Although, lo
al stability of the zero set around the data is ex
ellent with gradient-one �tting, thereis still signi�
ant room for improvement in the stability of the 
oeÆ
ients of the polynomial and theglobal behaviour of the polynomial. CoeÆ
ient ve
tors in 
ertain subspa
es of the 
oeÆ
ient spa
emay produ
e very similar zero sets around the data set. As an example, assume that the data is aset of aligned points along x� y = 0, and that we are trying to �t a full 
oni
. If we do the �t manytimes subje
t to small perturbations of the data, we 
an observe that the resulting 
oeÆ
ient ve
torsspan a 3 dimensional subspa
e 
ontaining the solutions x(x� y) and y(x� y) as well as x� y. This is
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a 
onsequen
e of the fa
t that ea
h of these three solutions and all of their linear 
ombinations �t theoriginal data set equally well. The global instability of polynomials is also evident in the extra pie
esof the zero set that lie away from the data, see Fig. 6 (d) and (e). Indeed, these pie
es are extremelysensitive to small perturbations in the data even though the zero set around the data is stable.We now examine global instability problems. S, de�ned in (7), is symmetri
 positive sin
e it is asum of s
atter matri
es, and thus 
an be written as S = U t�U where U is a rotation in the 
oeÆ
ientspa
e. The elements of � and the 
olumns of U are the eigenvalues and eigenve
tors of S, respe
tively.If there is exa
t 
ollinearity in the data, S will be singular and one or more eigenvalues will be 0.A mu
h more 
ommon problem is near 
ollinearity where some eigenvalues are very small 
omparedto others and S is nearly singular with a very large 
ondition number. Least Squares Estimationprodu
es the 
oeÆ
ient ve
tor A that globally minimizes the error fun
tion in (6). Eigenve
tors of Sasso
iated with the very small eigenvalues do not 
ontribute to the polynomial signi�
antly aroundthe dataset; thus su
h ve
tors multiplied with large s
alars get added into the solution in pursuit ofslightly better solutions. This results in very large varian
es for 
oeÆ
ients in the subspa
es spannedby these eigenve
tors. In Fig. 5 the graph of a goodness of �t fun
tion in two variables is shown.Noti
e that the fun
tion drops o� steeply with the stable variable V , but 
hanges only very slowlywith unstable W . Thus, the solution of LSE whi
h seeks the highest point on the graph, marked LSin the Fig. 5, moves along the unstable ridge (heavy line in Fig. 5) with the addition of small amountsof noise to the data. Consequently, the varian
e of the variable W due to noise is mu
h larger thanthat of V . What we desire is that s
alars multiplying su
h eigenve
tors be pushed to zero rather thanup to unstabily-
an
elling in�nities. This requires modifying LSE as we explain next.
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6.2 Ridge Regression (RR)
As stated in Se
tion 6.1, we would like variables that do not 
ontribute signi�
antly to the �t to befor
ed to attain values as 
lose to zero as possible while other variables are e�e
tively un
hanged.Sin
e the solution has to move along the ridge, the stabilization of the least square is known as RidgeRegression (RR) [6, 24℄. The method of RR modi�es S so that it is 
loser to what it would be for datain whi
h there is no 
ollinearity, that is, data in whi
h all the explanatory variables are un
orrelatedwith one another. The modi�ed 
oeÆ
ient ve
tor, Arr is obtained by

Arr = �(S + kD)�1GN (8)
where D is a positive de�nite and symmetri
 matrix and k is the RR parameter. Although D 
ouldin prin
iple be 
hosen as any positive de�nite matrix, in this paper we restri
t ourselves to the simple
ase where D is a diagonal matrix. The addition of a diagonal matrix D to the s
atter matrix S hasthe e�e
t of adding a bias whi
h produ
es 
oeÆ
ient ve
tors with smaller norms (smaller jj Arr jj). Inthis sense, RR is analogous to weight de
ay regularization used in training Neural Networks. Elementsof D are fun
tions of the sum of squared values of the monomials (in other words, D is a fun
tion ofthe main diagonal of S). A spe
i�
 
hoi
e for the elements of D that meets the rotational invarian
erequirements and whi
h has a desired limiting behavior is proposed and explained in further detailin Se
tion 6.3. Noti
e that as k is in
reased, S + kD approa
hes D, and A approa
hes the limitAlimit = �kD�1GN . We examine the limiting behavior of GN in Se
tion 6.4.When there is 
ollinearity, (8) biases the solution 
loser to GN . For the example given in thebeginning of this se
tion, GN = [ 0 n �n 2 �xj �yj � �xj �2 �yj ℄t : Thus, if the data set is 
enteredat the origin, the solution obtained by RR is biased toward [ 0 1 �1 0 0 0 ℄t, i.e. the equation
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of the line x� y = 0 we are sear
hing for. It 
an easily be shown [24℄ that
Arr = U�U tA (9)

� is a diagonal matrix of shrinkage fa
tors and U is as de�ned in Se
. 6.1. In other words, RRmodi�es the Least Squares Estimate by �rst rotating it to obtain un
orrelated 
omponents, shrinkingea
h 
omponent by some amount and �nally restoring the original 
oordinate system by anotherrotation. The 
ru
ial point is the amount of shrinkage applied to ea
h 
omponent. If D in (8) were
hosen to be the identity matrix, then it is shown in [24℄ that
� = diag(Æi) ; Æi = �i�i + k (10)

where k is the RR parameter and �i are the eigenvalues of S, i.e., the diagonal 
omponents of �.The shrinkage fa
tor Æi multiplies the i'th eigenvalue of S�1 whi
h is ��1i , thus the i'th eigenve
tor isshrunk by a fa
tor of Æi in the solution. Sin
e the eigenve
tors related to the very small eigenvaluesof S are unstable, we would like to shrink them while leaving other eigenve
tors largely una�e
ted.With (8), this is a

omplished as shown by (10). Consider a simple 
ase similar to the one depi
ted inFig. 5 where there are two variables one of whi
h is signi�
antly less stable than the other. This wouldresult in an ill-
onditioned matrix S with eigenvalues,e.g., �1 = 1 and �2 = 10�4, and S�1 havingeigenvalues 1 and 104 whi
h are the re
ipro
als of �1 and �2, respe
tively. If we sele
t k = 10�3 weobtain the shrinkage fa
tors Æ1 = 0:999 and Æ2 = 0:0909. Thus, the eigenvalues of (S + kI)�1 willbe 1 � 0:999 = 0:999 and 104 � 0:0909 = 909. Noti
e that the stable eigenve
tor 
orresponding tothe larger eigenvalue of S (equivalently the smaller of S�1) remains relatively un
hanged whereas the
ondition number is improved from 1041 = 104 to 9090:999 � 909, an approximately 11 fold improvement.We address the question of 
hoosing the value of k in Se
tion 6.5.15



Fig. 6(
) and (f) shows �ts of degrees 6 and 8 obtained by RR. Comparing these results withthe results from standard gradient-one �tting shown in Fig. 6(b) and (e), we observe two importantproperties of RR: (i) the extra pie
es of the zero set in the �t to the pliers shape is gone and both �tsare bounded, and (ii) the smoothing introdu
ed around the data set is negligible. These propertiesfollow from the fa
t that stable dimensions are left largely una�e
ted by RR while unstable ones areshrunk to insigni�
ant values.The e�e
t of in
reasing the parameter k from 0 to higher values is shown in Fig. 7. Noti
e thatthe unbounded pie
es that are 
lose to the data in �tting with no RR, k = 0, start to move awaywith in
reasing k. A
tually, these pie
es totally disappear and the polynomial zero set be
omesbounded. Re
all that in Se
tion 6.1 it was pointed out that unboundedness and extra pie
es of thezero set were symptoms of the instability in �tting. Thus RR a
hieves the goal of getting rid of thesee�e
ts, a qualitative improvement in �tting. In Se
tion 7 we present results of experiments that showthe quantitative improvement in stability obtained by RR whi
h we believe is strongly linked to thequalitative improvements summarized above. We also prove in Se
tion 6.4 that a �t to data for a
losed shape is guaranteed to 
onverge to a bounded IP 
urve as k goes to in�nity.
6.3 Rotational Invarian
e of RR
The question of the invarian
e of the �tting algorithm to Eu
lidean transformations of the data isimportant to insure repeatability of the results. In this se
tion, we show that the Gradient-one �ttingis rotation and translation invariant and that the matrix D must be of a spe
ial form to keep therotational invarian
e property in RR.When a Eu
lidean transformation is applied to the data set, ve
tor Y of monomials is transformedas Y 0 = V (�; tx; ty)Y , where the p � p matrix V is a fun
tion of only �, the applied rotation angle,and (tx; ty), the applied translation. The zero set of the polynomial is de�ned by AtY = 0. After
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substitution Y = V �1Y 0, the transformed 
oeÆ
ients are A0 = (V t)�1A. A0 resulting from �tting toEu
lidean transformed data is A0 = (S0 + �(S0N + S0T ))�1G0N , from (7). We now show this is exa
tly(V t)�1A. Substituting for A from (7)
(V t)�1A = (V t)�1 (S + � (SN + ST ))�1 V �1V GN = �V SV t + � �V SNV t + V STV t���1 V GN

But from Se
tion 3, S is Y Y t, and thus transforms as S0 = V SV t. Similarly, the matri
es 
ontainingthe information on the normals and tangents transform as: S0T = V STV t, S0N = V SNV t using thefa
t that normals are Eu
lidean 
ovariant. GN transforms like Y , thus G0N = V GN . This leads toA0 = (S0 + �(S0N + S0T ))�1G0N as was to be shown. Consequently, Gradient-one �tting is Eu
lideanInvariant. Noti
e that the Eu
lidean properties of V (�; tx; ty) is used only for the 
omputation ofthe normal 
omponents. This leads to a possible extension to aÆne invariant �tting if a method torobustly 
ompute aÆne invariant normals is developed.If we apply the same substitutions to (8), we obtain [V �1(S0 + �(S0N + S0T ))(V t)�1+ kD℄V tA0rr =V �1G0N : RR �tting will be Eu
lidean invariant if A0 = (S0+�(S0N +S0T )+kD0)�1G0N whi
h is exa
tly(8) in the transformed referen
e system. From the equations in the pre
eding paragraph, we seethat this requirement is satis�ed if V DV t = D. This means that the invarian
e of the algorithmto Eu
lidean transformations di
tates the stru
ture of the matrix D. It is known [21℄ that, if theEu
lidean transformation is redu
ed to a pure rotation, V 
an be de
omposed as V = B� 12RB 12where B is the diagonal matrix of binomial 
oeÆ
ients:
Bvv = (i+ j)!i!j! ; v = j + (i+ j + 1)(i+ j)2 (11)

and R is a blo
k diagonal rotation matrix. Rotation blo
k Rk is asso
iated with the kth form, for ea
hk. See [21℄ for details. Upon substitution of V in V DV t = D, we have B�1=2RB1=2DB1=2RtB�1=2 = D17



whi
h simpli�es to RBDRt = BD under the asumption thatD is diagonal. It is suÆ
ient for satisfyingthe previous equation that D is blo
k by blo
k, the inverse of B. Therefore, a D suÆ
ient for rotationinvarian
e is: Dvv = �i+j i!j!(i+ j)! ; v = j + (i+ j + 1)(i+ j)2 (12)
where �i+j is a free parameter for the i+ j'th blo
k. In problems where invarian
e is not of 
on
ern,Prin
ipal Component Methods [7℄ whi
h do not provide any freedom in the 
hoi
e of D, 
an be usedalternatively. Sin
e invarian
e is a major 
on
ern for us, we 
hoose to work in the more generalframework of RR.There are n+1 parameters, 
orresponding to the n+1 blo
ks and forms. We are free to set theseparameters in a Eu
lidean invariant way. The simplest approa
h would be to set all to 1. Using thebinomial 
oeÆ
ients on
e more, we set ea
h of these parameters to the invariantly weighted sum ofthe diagonal elements of S asso
iated with the i+ j'th form. In other words,

�i+j = Xr;l�0;r+l=i+j (r + l)!r!l! mXq=1x2rq y2lq
the weighted total s
attering of the terms in i+j'th degree form. This 
hoi
e of �i+j is Eu
lidean invari-ant. The motivation for this 
hoi
e 
omes from the fa
t that RR is equivalent to adding independentrandom noise on the matrix of monomials. When we 
ompute S =MM t, the expe
ted 
hange on theo� diagonal terms are 0 be
ause of the independen
e of the noise added to ea
h monomial. However,the varian
es, of the noises added to the monomials, add onto the main diagonal of S exa
tly as inRR. So our 
hoi
e of �i+j is equivalent to adding independent noise to ea
h monomial with varian
eproportional to a Eu
lidean invariant fun
tion of the s
attering of all the monomials in its form. Thisis very 
losely related to weight de
ay regularization used to over
ome problems of over�tting in it-erative optimization s
hemes [2℄. We have found that this 
hoi
e brings signi�
ant improvements in
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power of shape representation over simply setting �i+j = 1 for all i; j.
6.4 Boundedness Properties and Limiting Behavior of RR
The limit of the solution of (8) as k goes to in�nity is Alimit = D�1GN , up to a s
ale fa
tor. Itturns out that the polynomial spe
i�ed by Alimit has important properties. Indeed when the datashape is 
losed and the degree of the �tted polynomial is even, the IP 
urve 
onverges to the 
urvegiven by Alimit whi
h is always bounded, as shown in Fig. 8. The proof that follows is based on thedivergen
e theorem for 
losed 2D 
urves. To begin, using (12), 
omponents aij of ve
tor Alimit 
anbe approximated as an integral along a 
ontour, C, when the data shape is 
losed and the samplingof the 
urve is not too 
oarse: aij = (i+ j)!�i+ji!j! IC N tr(xiyj)
Therefore, by applying the divergen
e theorem and using the ve
tor identity r�rg = r2g it be
omes:

aij = (i+ j)!�i+ji!j! Z Z r2(xiyj)dxdy = (i+ j)!�i+ji!j! Z Z i(i� 1)xi�2yj + j(j � 1)xiyj�2dxdy
where r2g is the Lapla
ian of fun
tion g and the double integral applies in the data shape's interior.Using (1), and introdu
ing the monomial ve
tor Y 0 = (x0iy0j), the zero set of Alimit is

AtlimitY 0 = X0�i+j�n aijx0iy0j = 0
To prove that the zero set of this polynomial is always bounded, it is enough to show that the leadingform of this polynomial is always stri
tly positive. By using the two previous equations we �nd:Xi>1;j>1;i+j=naijx0iy0j = 1�n [ R R x02 Xi>1;j>1;i+j=n (i+j)!(i�2)!j!(xx0)i�2(yy0)jdxdy +R R y02 Xi>1;j>1;i+j=n (i+j)!i!(j�2)!(xx0)i(yy0)j�2dxdy ℄
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Then, we derive that:
Xi+j=naijx0iy0j = n(n� 1)�n (x02 + y02) Z Z (xx0 + yy0)n�2dxdy

is always positive for even degrees. As an important 
onsequen
e of this proof, it is always possible to�nd some k > 0 su
h that the �tted polynomial (to a 
losed shape) has bounded level sets, as desired.
6.5 Choosing the RR Parameter
The bias of an estimator is the distan
e between the true value of the parameter being estimated, Atrue,and the expe
ted value of the estimator, Arr. The varian
e of an estimator is its expe
ted squaredeviation from its expe
ted value, jj Arr �Arr jj2. k 
ontrols the bias-varian
e tradeo�. Usually, thevarian
e is signi�
antly redu
ed by deliberately introdu
ing a small amount of bias so that the nete�e
t is a redu
tion in total mean squared error whi
h is de�ned as bias2+varian
e. Introdu
ing biasis equivalent to restri
ting the range of fun
tions for whi
h a model 
an a

ount. Typi
ally this isa
hieved by removing degrees of freedom. Contrary to other approa
hes su
h as Prin
ipal ComponentMethods [15, 7℄, RR does not expli
itly remove degrees of freedom but instead smoothly redu
es thevariability of parameters. This makes the model less sensitive to small perturbations. Sele
tion of theparameter k in pra
ti
e 
an be done in one of two ways depending on what the resulting �t will beused for:Choosing k for Shape Modeling. Here the main goal of �tting is to obtain a good representation of theshape without too mu
h smoothing, with bounded zero sets and without extraneous pie
es in the zeroset. In Fig. 8, it 
an be seen that in
reasing k results in �rst smoothing high 
urvature parts of theshape and then 
onvergen
e to a bounded shape that does not visually represent the data. So the aimhere is to 
hoose the smallest possible value of k that gets rid of unstable artifa
ts like unboundedness,
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see Fig. 9 for examples where k was 
hosen in this manner. This 
an be done iteratively sin
e �ttingfor modeling 
an usually be done o�-line. Parameter k 
an be in
reased from 0 to larger values untilsigni�
ant amounts of error start to be introdu
ed into the �t. Polynomial Interpolated Measure(PIM) [11℄ 
an be used to tra
k this error as a di�eren
e in the polynomial at k = 0 and at the valueof k under 
onsideration.Choosing k for Re
ognition. Here the main goal is to minimize the total mean squared error of esti-mator Arr. Su
h an optimal value of k is empiri
ally shown to exist and is found in Se
. 7. Choosingthe optimal value of k analyti
ally remains to be done in our future work. Optimal values of k 
oulddi�er for di�erent data sets. In [20℄, it is shown that k 
an be 
omputed from a data independentthreshold � , on the 
ondition number of S + kD. The optimal value of � will be data independent.
7 Experiments
7.1 Perturbation Models
Before we present experimental results, it is important to 
larify how the perturbed data sets in theseexperiments were generated. Most resear
hers in the �eld of 
omputer vision use random white noise(the noise added to ea
h point in the data is independent of others) in their experiments on shapere
ognition, and thus most algorithms are optimized to handle this type of noise. White noise whenused with very small standard deviations is good for simulating quantization errors; however, it isnot a good model for generating deformed 
opies of a shape as might be sket
hed by a human or asmight appear after segmentation from an image of an obje
t taken under slightly di�erent viewing
onditions. We would like to be able to model these variations of shape sin
e our motivation is to useIP �tting for indexing into image databases by query by sket
h and query by example. Figs. 10(a) and(b) show the silhouette of a �sh and white noise with standard deviations 0:05 and 0:1, respe
tively.
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It is 
lear that these shapes 
annot represent the shape variations we desire. The solution we proposeis simply to use 
olored noise instead of white noise. First generate a white noise sequen
e equalin length to the number of data points. Then 
onvolve this sequen
e with an averaging window oflength 0.15 times the number of data points. This sequen
e is added in the dire
tion perpendi
ularto the data at ea
h point. Figs. 10(
) and (d) were obtained with this method. Comparing thesewith Figs. 10(a) and (b), it appears that 
olored noise models represent meaningful shape distortionswhereas white noise 
an only represent quantization errors. The 
onne
tion between distortions inshapes sket
hed by humans and appropriate 
olored noise models will be investigated in future work.Also, the arbitrary 
hoi
e of setting the length of the averaging window to be 0.15 times the length ofthe data sequen
e 
an be 
hanged to obtain di�erent e�e
ts in the distortion produ
ed. Another typeof perturbation used in our experiments is missing data where a random point on the given shape ispi
ked and a number of 
onse
utive points are removed. Removing intervals introdu
es mu
h strongerperturbations then removing an equal number of randomly spa
ed points.
7.2 Obje
t Re
ognition Experiments
Various obje
t re
ognition experiments were performed to verify that RR improves obje
t re
ognitionperforman
e. A set of 27 obje
ts, Fig. 11, in
luding real world obje
ts and arti�
ial free-form shapesranging from simple to 
omplex, was used for all of the experiments outlined in this se
tion. It isimportant to note that some obje
ts have very similar shapes su
h as the �ghter air
rafts, eels, and�shes. This makes obje
t re
ognition for this set of obje
ts a non-trivial task.Re
ognition performan
e was tested under various perturbation models whi
h are 
ombinations of
olored noise, missing data and rotation as explained in Se
. 7.1. Given a perturbation model, 1000samples (perturbed shapes) are generated from ea
h base shape. Ea
h sample is �t with an IP usingthe methods outlined in the previous se
tions, thus produ
ing a sample in 
oeÆ
ient-ve
tor spa
e for
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ea
h perturbed shape. Then, a re
ently developed 
omplete set of invariants [18℄ is 
omputed for ea
h
oeÆ
ient-ve
tor sample. One of the most important advantages for re
ognition of this spe
i�
 set ofinvariants is that ea
h invariant is either a linear or quadrati
 fun
tion of the 
oeÆ
ients or an angledetermined by a pair of 
omponents of the 
oeÆ
ient-ve
tor. This leads us to believe that they shouldout-perform highly non-linear algebrai
 invariants in robustness. Finally, a mean and full 
ovarian
ematrix in the invariant spa
e is learned for ea
h obje
t. Test sets (100 samples of ea
h obje
t) aregenerated in the same manner independently of the training set.Average re
ognition rates for the 27 obje
ts are plotted against the logarithm of the RR parameterk in Fig. 12. Re
ognition rates obtained without using RR are shown with the horizontal lines. InFig. 12(a) 4th degree polynomials were used with a perturbation model of 10% 
olored noise andrandom rotations 
ombined. Optimal 
hoi
e of the RR parameter provides approximately 3% in
reaseover the already high rate of 96.5%. Note that there is an optimal value of k, this is expe
tedsin
e k 
ontrols the bias-varian
e tradeo� in invariant spa
e and some value of k has to minimizebias2 + varian
e. The following experiments verify this fa
t with the further important impli
ationthat for this set of obje
ts, best re
ognition performan
e is obtained using approximately k = 10�3
regardless of the degree of the polynomial or the perturbation model being used. One question to beinvestigated is if this optimal value of k will generalize to larger sets of obje
ts.The experiments presented in Fig. 12(b) use a stronger perturbation model 
ombining 10% 
olorednoise, 10% missing data and random rotations. Both 4th and 6th degree polynomials were tested.For degree 4, optimal 
hoi
e of k provides 7% improvement in re
ognition a
hieving approximately97%. For degree 6, a mu
h more substantial 16% improvement is obtained raising the best re
ognitionperforman
e to approximately 99%. These top rates are impressive when one looks at some typi
alperturbed samples generated in this experiment, Fig 13. Note that random rotations are omitted inFig 13 for easy 
omparison with the original shape. Using 6th degree IPs provides only a 2% advantage
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in re
ognition over using using 4th degree; moreover for some non-optimal values of k and with noRR it a
tually does worse. There are two important dedu
tions here: 1. Sin
e 6th degree IPs havemore 
oeÆ
ients (degrees of freedom) they are more prone to problems of unstable subspa
es then4th degree IPs, espe
ially for simpler shapes that might not require a 6th degree polynomial. Sin
ethis is exa
tly the problem RR sets out to solve, the observation made above is totally expe
ted. 2.It might seem tempting to restri
t obje
t re
ognition to the use of 4th degree IPs; however, as willbe made 
lear in the next example there are mu
h more substantial gains to be made with the use ofhigher degrees in some 
ases. We now use even a stronger model of perturbation, by keeping the 10%
olored noise and rotation and doubling the amount of missing data to 20%. Robustness to missingdata 
ru
ially depends on a good representation. Fig. 12(
) 
on�rms this statement; 4th degree IPsyield a top re
ognition rate of approxiamtely 88%, 6th degree IPs are able to improve this rate toapproximately 94%. Having established that using high degree IPs are ne
essary in 
ertain problems,it is also very important to on
e more realize the 
ru
ial role played by RR in the su

ess of highdegree IPs; using the optimal value of k provided a gain of over 35% 
ompared to no RR, with 6thdegree IPs in this example.
8 Con
lusions
In the 
ontinuing quest for a
hieving maximum stability in the representation of 
urve data by algebrai

urves (i.e., the zero sets of polynomials in x and y) and in the stability of the polynomial 
oeÆ
ients,this paper makes two important 
ontributions. The �rst is an understanding of the role of datanormalization and polynomial gradient-
onstraint in improving representation and 
oeÆ
ient stability.This also sheds light on why the 3L �tting algorithm [10℄ is so mu
h more stable than previous �ttingalgorithms. The se
ond 
ontribution is the use of rotation-invariant RR, in the �tting, for improving
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the stability of both the representation and the 
oeÆ
ients even further. RR drives those portionsof the polynomial zero-set, that are not appropriate to the 
urve data, far from the data. It alsoshrinks to near-zero those polynomial 
oeÆ
ients not important for representing the 
urve data. Theremaining 
oeÆ
ients are stable and result in in
reased stability when used for pose-invariant obje
tre
ognition or obje
t pose estimation.
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Figure 1: A 
ir
le is the zero set of a se
ond degree polynomial.

(a) (b) (
)

(d) (e) (f)
Figure 2: (a)-(d) Classi
al least-squares algorithm gives unstable 4th degree IP �ts under even thesmallest perturbations to the data. (e) A mu
h more signi�
ant perturbation, (f) 10 superimposed 4thdegree polynomial �ts with the gradient-one algorithm to perturbed data sets like the one in (e).

29



−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
−10

−5

0

5

(a) (b)

−2

−1

0

1

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
−25

−20

−15

−10

−5

0

5

(
) (d)Figure 3: Comparison of polynomial zero sets and polynomial graphs obtained by 
lassi
al �tting (a)-(b)to gradient-one �tting (
)-(d).
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Figure 4: (a) 6th degree IP �ts with the gradient-one algorithm for three di�erent values �. (b) Theaverage per
entage standard deviation of the 
oeÆ
ients with respe
t to their average norm under
olored noise (see Se
.7.1) for in
reasing values of �.
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Figure 5: Graph of an error fun
tion of two variables; here V is the stable variable while W is relativelyunstable. The unstable ridge is marked by a heavier line.
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(a) (b) (
)
(d) (e) (f)

Figure 6: (a) and (d): Classi
al Fitting Algorithm. (b) and (e): Gradient-one Fitting Algorithm. (
)and (f): RR Fitting Algorithm. Degree 6 and 8 are used for the airplane and pliers shapes, respe
tively.Noti
e that there are no extra 
omponents in (
) and (f).

Figure 7: 6th degree IP �ts with the gradient-one algorithm and RR for in
reasing values of param. k.

Figure 8: Left, 6th degree polynomial �ts with the gradient-one algorithm and RR for in
reasing valuesof parameter k (k = 0, k = 0:0001, 0:001, 0:01, 0:05, 0:5, 2:0 and 32, respe
tively). We 
an observethat the �tted zero set is be
oming smoother and 
onverging to a point.
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Figure 9: Fits for 4th, 6th, and 8th degrees with shapes of di�erent 
omplexities. No extra 
omponentsare 
lose to data sets. The RR parameter was 
hosen manually for ea
h shape in this example.

(a) (b)
(
) (d)Figure 10: Comparison of noisy data simulation using white noise (a)-(b) with standard deviations0:05 and 0:1, respe
tively, and 
olored noise (
)-(d) with standard deviations 0:05 and 0:1, respe
tively.

Figure 11: Obje
ts used in the experiments.
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Figure 12: 1000 perturbations of ea
h obje
t are used as the training set. Another 100 independent per-turbations of ea
h obje
t are used as the test set. Perturbation models are (a) 10% 
olored noise + ro-tation, (b) 10% 
olored noise + 10% missing data + rotation and (
) 10% 
olored noise + 20% missingdata + rotation.

Figure 13: A few shapes perturbed with 10% 
olored noise and 10% missing data.
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