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Abstract

An algebraic curve is defined as the zero set of a polynomial in two variables. Algebraic curves
are practical for modeling shapes much more complicated than conics or superquadrics. The main
drawback in representing shapes by algebraic curves has been the lack of repeatability in fitting
algebraic curves to data. Usually, arguments against using algebraic curves involve references to
mathematicians Wilkinson (see [1] chapter 7) and Runge (see [3] chapter 4). The first goal of
this article is to understand the stability issue of algebraic curve fitting. Then a fitting method
based on ridge regression and restricting the representation to well behaved subsets of polynomials
is proposed, and its properties are investigated. The fitting algorithm is of sufficient stability for
very fast position-invariant shape recognition, position estimation, and shape tracking, based on
invariants and new representations. Among appropriate applications are shape-based indexing into

image databases.
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1 Introduction

Algebraic 2D curves (and 3D surfaces) are extremely powerful for shape recognition and single-
computation pose estimation because of their fast fitting, invariants, and interpretable coefficients,
[10, 11, 13, 17, 18, 19, 21]. Significant advantages over Fourier Desciptors are their applicability to
non-star shapes, to open curves, to curves that contain gaps, and to unordered curve data, Sec. 2.
Under circumstances where these issues are not relevant, polynomials based on Fourier analysis may
be very effective, and an interesting formulation relating Fourier series and polynomials is given in
[14]. A weakness for use of algebraic curves and surfaces has been lack of stability of parameters. This
paper, studies the problem and provides a solution.

The classical least-squares fitting of algebraic curves, Sec. 3, especially the more interesting cases of
higher degree polynomials, suffers three major problems: local inconsistency with the continuity of the
dataset; local over-sensitivity of the polynomial zero set around the data to small data perturbations;
instability of the coefficients due to excessive degrees of freedom in the polynomial. Substituting an
approximate Euclidean distance for algebraic distance [21] is much more stable than the classical least
squares algorithm, in many cases gives useful fits, but in other cases the improvement is not sufficient
to solve these major problems. Similarly, the use of the exact Euclidean distance provides better
results than the algebraic distance [16]; nevertheless the fitting is sometimes not stable enough and
the minimization is solved iteratively, a time consuming process. Another attempt to improve the
stability of the fit was the development of fitting algorithms which ensure that the obtained zero set
is bounded [8, 22, 13], but the last one is for 2nd degree curves only, and increased stability for all
and fitting speed for the former two are still desired. Non-linear parametrizations of polynomials that
are guaranteed to satisfy certain topological properties — boundedness and having a zero set that is

contained within another shape such as an ellipse — that have recently appeared [9] are interesting, and



their relative merits need to be studied further. The problem of an excessive number of parameters
in implicit polynomial (IP) representations was first studied in [15] in the framework of Bayesian
estimation. The linear 3L fitting algorithm [10] exhibits significantly improved curve representation
accuracy and stability but there is significant value to further improvement in coefficient stability in
order that algebraic curves be generally applicable for object-recognition purposes.

Following a short summary on algebraic curves in Sec. 2 and the classical least-squares fitting in
Sec. 3, we investigate the stability problems of 1D polynomials in Sec. 4. In Sec. 5, the solution of the
first and second problems by the 3L method [10] is analyzed from the point of view of Sec. 4. In Sec. 6,
we present a new linear algorithm which produces accurate and stable curve-data representations and
stable coefficients. Results of object recognition experiments based on this algorithm and a new set

of invariants [18] are presented in Sec. 7.

2 Representations of Algebraic Curves

Formally, an algebraic curve is specified by a 2D IP of degree n given by the following equation:

fa(z,y) = Z ijl“jyk = ago + 107 + A1y + - .. + AnoZ" + An_1 12" Y+ ...+ agny” =0
0<j+k<n

The homogeneous binary polynomial of degree r in z and y is a form, e.g., a0z + a112y + agey? is the
274 degree form. The homogeneous polynomial of degree n is the so-called leading form. An algebraic
curve of degree 2 is a conic, degree 3 a cubic, degree 4 a quartic, and so on. Polynomial f,(z,y) is

represented by the coefficient vector (ajk)o<;k:0<j+k<n Which has dimension p = 1(n + 1)(n + 2):

fn(may) =Y'A (1)



where ! A = [ago a10...0n0 @11 -.. agn]t andY =[1z ... 2" 2" 'y ... y"]t. In general,
the vector notation is convenient for IP fitting since fitting can be set within a linear framework as
detailed in Sec. 3. A shape is represented by the zero set of f,(z), i.e., the set of points {z, y} satisfying
the IP equation f,(z,y) = 0 which is the intersection of the surface defined by an explicit polynomial
z = fu(x,y) with the plane z = 0, see Fig. 1.

The TP framework for shape representation and recognition is generally compared with Fourier
Shape Descriptors. Here we briefly summarize some of the differences between these approaches. The
two main types of Fourier Descriptors are: (i) that which represents a shape as a radius as a function
of angle, and (ii) that which uses a complex valued function to represent the coordinates of the points
along the curve as a function of arc-length. There are certain disadvantages to both approaches. (i)
is limited to the set of star-shapes which can be represented by a single-valued radius as a function
of angle; however, interesting shapes generally do not fall into this category. (ii) requires the input
data sets to be an ordered set of points. (i) can not be directly used for open shapes, a preprocessing
step to artificially close the curve is required. (ii) can be used for open curves, but serious difficulties
with arc-length normalization arise. Arc-length parametrization is the main drawback of (ii) because
arc-length can increase significantly if noise is added on to the curve. Both have problems with varying
data point density and gaps in the data. IPs do not suffer from any of the problems listed above: they
are directly applicable to non-star shapes, open curves, unordered data sets and are robust to noisy
data sets and inhomogoneously spaced data points. The main advantage of Fourier Descriptors over
IPs have been their better stability because they are an explicit representation. This paper focuses on

the stability issue with IPs.

'Superscript * denotes vector and matrix transpose.



3 Classical Least-Squares Fitting

The classical and simplest way to fit an algebraic curve to data is to minimize the algebraic distance

over the set of given data points (z;,y;), 1 < j < m, that is

€algebraic = Z (fn(l'],yj))z = A Z }/JY‘;t A (2)
1<j<m 1<j<m
MMt*=S

by using vector representation of f, as in (1). Define the matrix of monomials as the p X m matrix
M = [Y; Y3...Y,,] (or more generally, the design matriz), and S = MM! = Zlgjngijt is the
scatter matriz of the monomials. To avoid the trivial zero solution in the minimization of (2), a

constraint such as || A2 = 1 is imposed which modifies the problem to

min (At ( > Yij) A4 NA'A - 1)) (3)

1<j<m

with the introduction of Lagrange multiplier A\. The solution to (3) is given by the unit eigenvector
A associated with A, the smallest eigenvalue of SA = AA [21]. Consequently, the classical least-
squares fitting algorithm consists of computing the monomial scatter matrix S from a set of data
points, and then finding the unit eigenvector of S associated with its smallest eigenvalue. Although
this algorithm is affine invariant [4, 21], most of the time it is not of any practical use due to the
following problems: The fitted zero set does not respect the continuity of the original data set as
illustrated in Fig. 2(a)-(d) and Fig. 6(a) and (d). This problem undermines the use of classical fitting
for obtaining good representations of the data. Moreover, results are highly sensitive to small errors
in the data. Even seemingly negligible perturbations in the data can lead to zero sets that have no
resemblance to the zerosets prior to the perturbations in the data, Fig. 2(a)-(d). Even with low order

degrees, depending on the structure of the given data set, S may not provide a stable unique eigenvector



under small perturbations. For example, several eigenvalues can have similar values to the smallest
one, and thus the solution will span a subspace in the coefficient space when small perturbations are
added to the data set. Consequently, classical fitting is also practically useless for recognition purposes

based on the coefficients of the fitted polynomials.

4 Pathological Polynomials

Although we are interested in 2D polynomials, i.e., functions of x and y, it is instructive to first study
stability in the 1D case. It is well known that some 1D polynomials, in particular polynomials of
high degree, are ill-conditioned. Consider the pathological example due to Wilkinson [1]: (z + 1)(z +
2)...(z+20) =220 +2102'" + ... 4+ 20!. This polynomial has very large coefficients and its roots are
—1, -2, -3,..., —20. An accurate calculation of the perturbed roots as given in [1] to five decimals after
a tiny change of 2723 is applied to the coefficient of z'?, are shown in Table 1. Though this example
demonstrates how ill conditioned some polynomials are, it does not mean that all polynomials are so,
and as a consequence that all algorithms using high degree polynomials have to be rejected as a priori
unstable. In fact, we will demonstrate that it is possible to work in a subspace of non-pathological
polynomials. First, let’s try to understand the pathology of this polynomial. A plot of this polynomial
would show varying oscillation amplitude between its roots. This type of ill-conditioned behavior of
polynomials is well-known in the context of interpolation theory. Indeed, the Wilkinson polynomial
is an example of Lagrange interpolation at 20 points, and it is known that Lagrange interpolation
suffers from oscillation problems between data points. This is the so-called Runge problem [3]. One
known solution is to change the way the interpolation is carried out. Hermite interpolation, where the
first derivative of the polynomial is controlled in addition to the value of the polynomial at each given

point, can be proven to converge properly for all continuous functions when the number of sampling



points and thus the degree of the polynomial increases.

We are referring to interpolation theory and Hermite polynomials because they provide us with very
useful insight in trying to improve the classical least-squares fitting algorithm. In essence, the problem
with polynomials is that the functional relationship between its coefficients and its roots is highly non-
linear. Let p,(x) be a 1D polynomial defined as: p,(z) = ZOSJ‘SH ajacj =ao+a1z+az®+...+a,z™.
Roots zj of this polynomial are defined by p,(zx) = 0. This last equation can be seen as an implicit
equation for root x, where this root is a function of coefficients a;. To determine the sensitivity of
this root to small changes of the coefficients, we differentiate p,(z;) = 0 with respect to a;. We obtain

J dpn Oz __ : : i
i, + W(mk)é_af = 0 which is equivalent to

Oz mfc
da %(mk)

(4)

(4) has important consequences. It is desired that small or large changes in the coefficients produce
small or large changes, respectively, in the roots, and vice versa. Thus we should require that ?%? = 1.
Due to the numerator wi, we see that x; should be close to values 1.0 or —1.0; otherwise, the effect of
a small coefficient perturbation has a larger effect on roots with large absolute values. This explains
why roots with large absolute values are less stable than others for the Wilkinson polynomial, Table 1.

Due to the denominator of (4), we deduce that the sensitivity to a small coefficient perturbation is

also directly dependent on the value of the first derivative of the polynomial at the root location.

The Wilkinson’s polynomial has derivatives 19!0!, —18!1!, 172!, ..., —0!19! at —1, —2, -3, ..., —20
respectively. These huge variations in the first derivative % contributes to the instability of the roots

with respect to coefficient perturbations. Using (4), we predict, with a first order Taylor expansion,
the perturbations of the roots of the Wilkinson polynomial when 2723 is added to aj9 = 210: These

values are in good accordance with the differences between the original roots, —20,...,—1 and the



real perturbed roots, Table 1. Tables 1 and 2 provide an experimental validation of (4).

5 Gradient-one Fitting

The insight developed in Sec. 4 into how polynomials can be ill-conditioned, enables us to determine
a subset of well-conditioned polynomials. What is a well-conditioned polynomial? For the problem at
hand, it is a polynomial for which the relationship between its roots and its coeflicients is such that
small changes in one induces small changes in the other and larger changes induce larger changes. In
Sec.4, it was argued that a 1D polynomial should have root values and first derivative values at the root
locations, all close to 1.0 or —1.0. We can extend this result to 2D polynomials: a set of polynomials
satisfying these constraints exactly in 2D are the powers of the unit circle: %((:E2 +32)" —1). Members
of the set of polynomials “close” to these polynomials in the coefficient space are well-conditioned.
The topology of this set remains to be studied in our future work.

The first requirement for stable fitting is to apply a data set standardization to force the data
points to be close to the unit circle, and thus indirectly to force the zero set of the polynomial to be
as close as possible to the unit circle. The data set standardization consists of centering the data-set
center of mass at the origin of the coordinate system and then scaling it by dividing the coordinates
of each point by the average of the square roots of the eigenvalues of the 2 x 2 matrix of second order
moments (normalized by the number of points in the data set). This is a Euclidean invariant measure
of the object size and can be thought of as the average radius of the data points from the object
center. Thus by data set standardization we are setting this measure of object size to 1.

The second requirement is to control the value of the first derivatives along the zero set, i.e, the

gradient of the 2D polynomial:

fn
oz

Ofn
Jy

Vfn(zj,v5) = [ } (5, 95) (5)



The gradient vector along the zero set of the polynomial is always perpendicular to the curve defined
by the zero set. Thus, if we can compute the local tangent to the curve at each point of the data set,
we propose to constrain the gradient to be perpendicular to the local tangent and with unit norm.
This will force the zero set of the polynomial to respect the local continuity of the data set. The
calculation of the tangent to the data set at a point does not pose a serious problem. If the data set is
ordered as a curve, we calculate local tangents to the data using the lines going through consecutive
data points. If the data is not ordered, a fast distance transform [23, 17] can be used to generate level
sets as in 3L [10] or to indirectly calculate tangent directions. When working with real images, level
sets may also be generated as described in [12]. Or if the input to the fitting algorithm comes from
an edge detector, edge orientations can be used as the tangent directions. The normal direction is the
direction perpendicular to the tangent direction and pointing towards the outside of the object. In
the case of open curves where no notion of inside/outside is available, both cases can be considered
resulting in two fitted IPs which have coefficient vectors related by multiplication with —1. We do
not apply any smoothing in computing the tangents even in the presence of noise; indeed, it is the
fitting process which takes care of smoothing the fluctuations in the tangent direction along the curve
given that there are enough points on the dataset (at least a few times the dimensionality of the IP
coefficient vector). The proposed fitting technique is set as a least-squares problem with the following
additional constraints: Local tangential and normal directional derivatives of the IP must be as close

as possible to 0 and 1, respectively. These constraints add two terms to (2) to yield

m

egraa = D (Fules. ) + 1 (NI fu = 1% + (119 1,)?)) (6)

=1

where T; and N; are the local tangent and normal at (z;,y;) and p is the relative weight on the

gradient with respect to the f? term. By using the vector notation (1) in (5), we deduce the vector



form of the gradient:

oy 1
oz
V. = A =VYlA
oY ¥
By px1
—

dimension:2Xp
where p = £(n + 1)(n + 2) is the number of coefficients of a binary polynomial of degree n. And then

after substitution in (6), we expand egpqq as:

egrad = A' Y Y;Y} A4 pA' Y VY;N;NIVY] A+ pAtY VY TTIVY) A - 2uAY " VY;Nj +pm
N —— N —
S SN ST GN

In this equation, S is the scatter matrix of the monomials as introduced before, Sy and St are the
scatter matrices of the directional derivatives of monomials in directions perpendicular and tangent to
the data set, respectively, and G is the sum of the gradients of the monomials in the normal direction.

This minimization is a linear least squares problem and the solution is then formally derived as:

A= p(S+p(Sn + S1)) 'GN (7)
S

Let S =S+ pu(Sy + St), a p X p matrix. A and Gy are vectors with p components.

We named this algorithm gradient-one fitting. Like Hermite interpolation [3], gradient-one fitting
is Buclidean invariant, see [4] and Sec. 6.3, respectively, but not affine invariant. Gradient-one fitting
is also scale invariant since the data standardization step sets some Euclidean invariant measure of
the size of the shape to 1 before fitting. We use the scattering radius of the data points as the shape
size measure; this measure is Euclidean invariant. Data set standardization introduces a numerical
advantage by improving the condition number of the scatter matrix S = S + u(Sy + Sr) of the
problem (7). The condition number gives an idea of the numerical stability of linear algorithms such

as the computation of the inverse of a matrix [5]. Data standardization improves the stability of the

10



fits; however, if the standardization step has to be omitted, in order to have scale invariance it is
necessary to modify (7) to A = u(S + s>u(Sy + St))~'Gy, where s is the shape size measure.

The necessity to introduce information about the first derivatives was first pointed out in [10] and
handled in a linear way with the so-called 3-levels (3L) fitting algorithm. The idea of the 3L fitting is
to constrain the polynomial to fit not only the data set but also two level sets of the distance transform
of this data set, thus preventing the presence of singularities of f(x,y) in the vicinity of the data to
be fitted. Therefore, indirectly, 3L fitting puts constraints on the gradient of the fitted IP. In fact, it
can be proved that the gradient-one algorithm is similar to the 3L fitting algorithm expanded to the
first order with respect to the inter-level distance parameter.

In comparison to the classical least-squares fits (see Fig. 6(a) and (d)), results obtained on the
same data sets are much better as shown in Fig. 6(b) and (e). Especially, obtained fits are locally
consistent with the continuity of the data set. To gain further insight into how local consistency is
achieved by controlling the gradient across the data set, we examine Fig. 3. Fig. 3(d) shows that the
gradient direction along the zero set obtained by gradient-one fitting consistently points into the shape
whereas in Fig.3(b) it can be seen that this direction switches between inwards and outwards. The
zero set from solution of (3) is broken into pieces as can be seen in Fig. 3(a) whereas in Fig. 3(c) the
zeroset is a smooth representation of the data curve. Also notice that in the vicinity of the data, the
surface in Fig. 3(b) is flatter than is the surface in Fig. 3(d) which means that with small perturbations
of the data, classical fitting is prone to much larger changes in the zero set. In addition to better
stability of the zero set and better shape representation power, gradient-one fitting also provides better
interpolation properties which allow IPs to be robust to a certain amount of missing data along the
curve. The stability of the zero set achieved by the gradient-one fitting algorithm is an important
improvement over classical fitting techniques. It can be seen in Fig. 2(f) that the zero sets of the

resulting fits are stable under local data perturbations. Even though, the perturbations in Fig. 2 (e)
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are much larger than those in Fig. 2(a)-(d), the changes in the fitted IPs are much smaller in Fig. 2(f).

Parameter p has important effects on the properties of the fits. It controls the relative weight of
the gradient constraint with respect to the algebraic distance constraint. The effect of the gradient
constraint on the zero set of the fit is a smoothing of the high curvature areas. Fig. 4 is an example
of smoothing of the zero set when p is increasing. In all our experiments, u is fixed to % which gives
satisfying results as shown in Fig. 6(b) and (e). This value is a good trade-off between the accuracy of
the representation and the stability of the fitted parameters. However, better stability of the estimated
polynomial coefficients can be achieved with equal weights on the gradient and data fit constraints as
shown in Fig. 4 because the resulting fits will be “closer” to the set of well behaved polynomials, the
powers of the unit circle. In a more general framework, u can be made a user-specified function along
the length of the curve providing more control for interactive curve representation purposes. It should
also be pointed out that information about the higher order derivatives such as curvature can be

incorporated into gradient-one fitting to provide additional constraints.

6 Ridge Regression Fitting

6.1 Unstable Subspaces

Although, local stability of the zero set around the data is excellent with gradient-one fitting, there
is still significant room for improvement in the stability of the coefficients of the polynomial and the
global behaviour of the polynomial. Coeflicient vectors in certain subspaces of the coefficient space
may produce very similar zero sets around the data set. As an example, assume that the data is a
set of aligned points along z — y = 0, and that we are trying to fit a full conic. If we do the fit many
times subject to small perturbations of the data, we can observe that the resulting coeflicient vectors

span a 3 dimensional subspace containing the solutions z(z — y) and y(z —y) as well as z —y. This is
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a consequence of the fact that each of these three solutions and all of their linear combinations fit the
original data set equally well. The global instability of polynomials is also evident in the extra pieces
of the zero set that lie away from the data, see Fig. 6 (d) and (e). Indeed, these pieces are extremely
sensitive to small perturbations in the data even though the zero set around the data is stable.

We now examine global instability problems. S, defined in (7), is symmetric positive since it is a
sum of scatter matrices, and thus can be written as S = U'AU where U is a rotation in the coefficient
space. The elements of A and the columns of U are the eigenvalues and eigenvectors of S, respectively.
If there is exact collinearity in the data, S will be singular and one or more eigenvalues will be 0.
A much more common problem is near collinearity where some eigenvalues are very small compared
to others and § is nearly singular with a very large condition number. Least Squares Estimation
produces the coefficient vector A that globally minimizes the error function in (6). Eigenvectors of S
associated with the very small eigenvalues do not contribute to the polynomial significantly around
the dataset; thus such vectors multiplied with large scalars get added into the solution in pursuit of
slightly better solutions. This results in very large variances for coefficients in the subspaces spanned
by these eigenvectors. In Fig. 5 the graph of a goodness of fit function in two variables is shown.
Notice that the function drops off steeply with the stable variable V', but changes only very slowly
with unstable W. Thus, the solution of LSE which seeks the highest point on the graph, marked LS
in the Fig. 5, moves along the unstable ridge (heavy line in Fig. 5) with the addition of small amounts
of noise to the data. Consequently, the variance of the variable W due to noise is much larger than
that of V. What we desire is that scalars multiplying such eigenvectors be pushed to zero rather than

up to unstabily-cancelling infinities. This requires modifying LSE as we explain next.
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6.2 Ridge Regression (RR)

As stated in Section 6.1, we would like variables that do not contribute significantly to the fit to be
forced to attain values as close to zero as possible while other variables are effectively unchanged.
Since the solution has to move along the ridge, the stabilization of the least square is known as Ridge
Regression (RR) [6, 24]. The method of RR modifies S so that it is closer to what it would be for data
in which there is no collinearity, that is, data in which all the explanatory variables are uncorrelated

with one another. The modified coefficient vector, A,, is obtained by

Apr = u(S+ kD) 'Gy (8)

where D is a positive definite and symmetric matrix and k is the RR parameter. Although D could
in principle be chosen as any positive definite matrix, in this paper we restrict ourselves to the simple
case where D is a diagonal matrix. The addition of a diagonal matrix D to the scatter matrix § has
the effect of adding a bias which produces coefficient vectors with smaller norms (smaller || 4, ||). In
this sense, RR is analogous to weight decay regularization used in training Neural Networks. Elements
of D are functions of the sum of squared values of the monomials (in other words, D is a function of
the main diagonal of §). A specific choice for the elements of D that meets the rotational invariance
requirements and which has a desired limiting behavior is proposed and explained in further detail
in Section 6.3. Notice that as k is increased, S + kD approaches D, and A approaches the limit
Alimit = %D’IGN. We examine the limiting behavior of G in Section 6.4.

When there is collinearity, (8) biases the solution closer to Gy. For the example given in the
beginning of this section, Gy =[0 n —n 2%, y; —%; —2y; ]t . Thus, if the data set is centered

at the origin, the solution obtained by RR is biased toward [0 1 -1 0 0 O]t, i.e. the equation
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of the line  — y = 0 we are searching for. It can easily be shown [24] that

A =UAU'A (9)

A is a diagonal matrix of shrinkage factors and U is as defined in Sec. 6.1. In other words, RR
modifies the Least Squares Estimate by first rotating it to obtain uncorrelated components, shrinking
each component by some amount and finally restoring the original coordinate system by another
rotation. The crucial point is the amount of shrinkage applied to each component. If D in (8) were

chosen to be the identity matrix, then it is shown in [24] that

A = diag(é;) , 6 = + (10)

where k is the RR parameter and )\; are the eigenvalues of S, i.e., the diagonal components of A.
The shrinkage factor §; multiplies the i’th eigenvalue of S~! which is )\Z-_l, thus the i’th eigenvector is
shrunk by a factor of §; in the solution. Since the eigenvectors related to the very small eigenvalues
of § are unstable, we would like to shrink them while leaving other eigenvectors largely unaffected.
With (8), this is accomplished as shown by (10). Consider a simple case similar to the one depicted in
Fig. 5 where there are two variables one of which is significantly less stable than the other. This would
result in an ill-conditioned matrix S with eigenvalues,e.g., Ay = 1 and Ay = 1074, and S~! having
eigenvalues 1 and 10* which are the reciprocals of A; and Mg, respectively. If we select k = 1073 we
obtain the shrinkage factors §; = 0.999 and J2 = 0.0909. Thus, the eigenvalues of (S + kI)~! will
be 1 x 0.999 = 0.999 and 10% x 0.0909 = 909. Notice that the stable eigenvector corresponding to
the larger eigenvalue of S (equivalently the smaller of S~ !) remains relatively unchanged whereas the
909

condition number is improved from ¥ =10% to 0995 ~ 909, an approximately 11 fold improvement.

We address the question of choosing the value of k in Section 6.5.
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Fig. 6(c) and (f) shows fits of degrees 6 and 8 obtained by RR. Comparing these results with
the results from standard gradient-one fitting shown in Fig. 6(b) and (e), we observe two important
properties of RR: (i) the extra pieces of the zero set in the fit to the pliers shape is gone and both fits
are bounded, and (ii) the smoothing introduced around the data set is negligible. These properties
follow from the fact that stable dimensions are left largely unaffected by RR while unstable ones are
shrunk to insignificant values.

The effect of increasing the parameter k£ from 0 to higher values is shown in Fig. 7. Notice that
the unbounded pieces that are close to the data in fitting with no RR, & = 0, start to move away
with increasing k. Actually, these pieces totally disappear and the polynomial zero set becomes
bounded. Recall that in Section 6.1 it was pointed out that unboundedness and extra pieces of the
zero set were symptoms of the instability in fitting. Thus RR achieves the goal of getting rid of these
effects, a qualitative improvement in fitting. In Section 7 we present results of experiments that show
the quantitative improvement in stability obtained by RR which we believe is strongly linked to the
qualitative improvements summarized above. We also prove in Section 6.4 that a fit to data for a

closed shape is guaranteed to converge to a bounded IP curve as k goes to infinity.

6.3 Rotational Invariance of RR

The question of the invariance of the fitting algorithm to Euclidean transformations of the data is
important to insure repeatability of the results. In this section, we show that the Gradient-one fitting
is rotation and translation invariant and that the matrix D must be of a special form to keep the
rotational invariance property in RR.

When a Euclidean transformation is applied to the data set, vector Y of monomials is transformed
as Y' = V(0,t,,t,)Y, where the p X p matrix V is a function of only 6, the applied rotation angle,

and (tz,t,), the applied translation. The zero set of the polynomial is defined by A'Y = 0. After
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substitution Y = V=1Y”, the transformed coefficients are A’ = (V*)~!A. A’ resulting from fitting to
Euclidean transformed data is A" = (S’ + u(S% + S%))~'G’y, from (7). We now show this is exactly

(Vt)*lA. Substituting for A from (7)
1
(VY A= (V) NS+ u (S +57) TV VGy = (VSV! 4 (VSn V! + VSIVY)) VG

But from Section 3, S is YY?, and thus transforms as S’ = V. SV?. Similarly, the matrices containing
the information on the normals and tangents transform as: S, = VSV, Sy = VSyV! using the
fact that normals are Euclidean covariant. G transforms like Y, thus G’y = VGy. This leads to
A" = (8" + u(Sy + S%))"1G'y as was to be shown. Consequently, Gradient-one fitting is Euclidean
Invariant. Notice that the Euclidean properties of V(6,t,,t,) is used only for the computation of
the normal components. This leads to a possible extension to affine invariant fitting if a method to
robustly compute affine invariant normals is developed.

If we apply the same substitutions to (8), we obtain [V (S’ + u(Sy + S7)) (V)L + kD]VIAL, =
VLG’ . RR fitting will be Euclidean invariant if A’ = (S’ + u(Sy + Si) +kD') LG’y which is exactly
(8) in the transformed reference system. From the equations in the preceding paragraph, we see
that this requirement is satisfied if V DV! = D. This means that the invariance of the algorithm
to Euclidean transformations dictates the structure of the matrix D. It is known [21] that, if the
Euclidean transformation is reduced to a pure rotation, V' can be decomposed as V = B iRB:
where B is the diagonal matrix of binomial coeflicients:

(i +4) i+ 1)(E+7)

By, = ,v=17+ 5 (11)

and R is a block diagonal rotation matrix. Rotation block R} is associated with the k** form, for each
k. See [21] for details. Upon substitution of V in VDV* = D, we have B-/2RB'Y/2DB'/2R!'B~1/2 = D
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which simplifies to RBDR! = BD under the asumption that D is diagonal. It is sufficient for satisfying
the previous equation that D is block by block, the inverse of B. Therefore, a D suflicient for rotation

invariance is:

ilj! _ o i+ D@ +)
e AR A "

Dy, = Qg

where o ; is a free parameter for the ¢ + j’th block. In problems where invariance is not of concern,
Principal Component Methods [7] which do not provide any freedom in the choice of D, can be used
alternatively. Since invariance is a major concern for us, we choose to work in the more general
framework of RR.

There are n + 1 parameters, corresponding to the n + 1 blocks and forms. We are free to set these
parameters in a Euclidean invariant way. The simplest approach would be to set all to 1. Using the
binomial coefficients once more, we set each of these parameters to the invariantly weighted sum of

the diagonal elements of S associated with the ¢ + j'th form. In other words,

(r+D'<~ or 2
Qitj = Z r ququ
rI>0;r+l=i+j T g=1

the weighted total scattering of the terms in i+j’th degree form. This choice of o, ; is Euclidean invari-
ant. The motivation for this choice comes from the fact that RR is equivalent to adding independent
random noise on the matrix of monomials. When we compute S = M M?, the expected change on the
off diagonal terms are 0 because of the independence of the noise added to each monomial. However,
the variances, of the noises added to the monomials, add onto the main diagonal of S exactly as in
RR. So our choice of a;4; is equivalent to adding independent noise to each monomial with variance
proportional to a Euclidean invariant function of the scattering of all the monomials in its form. This
is very closely related to weight decay regularization used to overcome problems of overfitting in it-

erative optimization schemes [2]. We have found that this choice brings significant improvements in
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power of shape representation over simply setting a;4; = 1 for all 4, j.

6.4 Boundedness Properties and Limiting Behavior of RR

The limit of the solution of (8) as k goes to infinity is Ajmi = D Gy, up to a scale factor. It
turns out that the polynomial specified by Ajm:: has important properties. Indeed when the data
shape is closed and the degree of the fitted polynomial is even, the IP curve converges to the curve
given by Aymi: which is always bounded, as shown in Fig. 8. The proof that follows is based on the
divergence theorem for closed 2D curves. To begin, using (12), components a;; of vector Ay can
be approximated as an integral along a contour, C, when the data shape is closed and the sampling

of the curve is not too coarse:

ajj = —— = Z+j %Nt :Ey
i jil!

Therefore, by applying the divergence theorem and using the vector identity V-Vg = V?g it becomes:

i+7) 9 . i i
aij:( T '//V2xy)dmdy— o '// 2y 4 (5 — 1)y’ 2dady
Qi+52.] Q1]

where V2g is the Laplacian of function g and the double integral applies in the data shape’s interior.

Using (1), and introducing the monomial vector Y’ = (z'%4"7), the zero set of Ay is

_ PN
Alzmzt - Z a;;T Y =0
0<i+j<n

To prove that the zero set of this polynomial is always bounded, it is enough to show that the leading

form of this polynomial is always strictly positive. By using the two previous equations we find:

> agay=ghl [fe? Y () Ay Ydedy +

i>1,7>1i+j=n i>1,7>1i+j=n

JIv? Y A ) ) Pdwdy ]

i>1,5>1,i+j=n
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Then, we derive that:

Za iyl = (n— (z" + ¢ //a:a: + yy )" 2dady
«

i+j=n n

is always positive for even degrees. As an important consequence of this proof, it is always possible to

find some k& > 0 such that the fitted polynomial (to a closed shape) has bounded level sets, as desired.

6.5 Choosing the RR Parameter

The bias of an estimator is the distance between the true value of the parameter being estimated, Aye,
and the expected value of the estimator, A,,. The variance of an estimator is its expected square
deviation from its expected value, m k controls the bias-variance tradeoff. Usually, the
variance is significantly reduced by deliberately introducing a small amount of bias so that the net
effect is a reduction in total mean squared error which is defined as bias? +variance. Introducing bias
is equivalent to restricting the range of functions for which a model can account. Typically this is
achieved by removing degrees of freedom. Contrary to other approaches such as Principal Component
Methods [15, 7], RR does not explicitly remove degrees of freedom but instead smoothly reduces the
variability of parameters. This makes the model less sensitive to small perturbations. Selection of the
parameter k in practice can be done in one of two ways depending on what the resulting fit will be
used for:

Choosing k for Shape Modeling. Here the main goal of fitting is to obtain a good representation of the

shape without too much smoothing, with bounded zero sets and without extraneous pieces in the zero
set. In Fig. 8, it can be seen that increasing k results in first smoothing high curvature parts of the
shape and then convergence to a bounded shape that does not visually represent the data. So the aim

here is to choose the smallest possible value of &k that gets rid of unstable artifacts like unboundedness,
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see Fig. 9 for examples where k was chosen in this manner. This can be done iteratively since fitting
for modeling can usually be done off-line. Parameter k can be increased from 0 to larger values until
significant amounts of error start to be introduced into the fit. Polynomial Interpolated Measure
(PIM) [11] can be used to track this error as a difference in the polynomial at £ = 0 and at the value
of k under consideration.

Choosing k for Recognition. Here the main goal is to minimize the total mean squared error of esti-

mator A,.. Such an optimal value of k is empirically shown to exist and is found in Sec. 7. Choosing
the optimal value of k analytically remains to be done in our future work. Optimal values of k could
differ for different data sets. In [20], it is shown that k£ can be computed from a data independent

3

threshold 7, on the condition number of § + kD. The optimal value of 7 will be data independent.

7 Experiments

7.1 Perturbation Models

Before we present experimental results, it is important to clarify how the perturbed data sets in these
experiments were generated. Most researchers in the field of computer vision use random white noise
(the noise added to each point in the data is independent of others) in their experiments on shape
recognition, and thus most algorithms are optimized to handle this type of noise. White noise when
used with very small standard deviations is good for simulating quantization errors; however, it is
not a good model for generating deformed copies of a shape as might be sketched by a human or as
might appear after segmentation from an image of an object taken under slightly different viewing
conditions. We would like to be able to model these variations of shape since our motivation is to use
IP fitting for indexing into image databases by query by sketch and query by example. Figs. 10(a) and

(b) show the silhouette of a fish and white noise with standard deviations 0.05 and 0.1, respectively.
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It is clear that these shapes cannot represent the shape variations we desire. The solution we propose
is simply to use colored noise instead of white noise. First generate a white noise sequence equal
in length to the number of data points. Then convolve this sequence with an averaging window of
length 0.15 times the number of data points. This sequence is added in the direction perpendicular
to the data at each point. Figs. 10(c) and (d) were obtained with this method. Comparing these
with Figs. 10(a) and (b), it appears that colored noise models represent meaningful shape distortions
whereas white noise can only represent quantization errors. The connection between distortions in
shapes sketched by humans and appropriate colored noise models will be investigated in future work.
Also, the arbitrary choice of setting the length of the averaging window to be 0.15 times the length of
the data sequence can be changed to obtain different effects in the distortion produced. Another type
of perturbation used in our experiments is missing data where a random point on the given shape is
picked and a number of consecutive points are removed. Removing intervals introduces much stronger

perturbations then removing an equal number of randomly spaced points.

7.2 Object Recognition Experiments

Various object recognition experiments were performed to verify that RR improves object recognition
performance. A set of 27 objects, Fig. 11, including real world objects and artificial free-form shapes
ranging from simple to complex, was used for all of the experiments outlined in this section. It is
important to note that some objects have very similar shapes such as the fighter aircrafts, eels, and
fishes. This makes object recognition for this set of objects a non-trivial task.

Recognition performance was tested under various perturbation models which are combinations of
colored noise, missing data and rotation as explained in Sec. 7.1. Given a perturbation model, 1000
samples (perturbed shapes) are generated from each base shape. Each sample is fit with an IP using

the methods outlined in the previous sections, thus producing a sample in coeflicient-vector space for
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each perturbed shape. Then, a recently developed complete set of invariants [18] is computed for each
coefficient-vector sample. One of the most important advantages for recognition of this specific set of
invariants is that each invariant is either a linear or quadratic function of the coefficients or an angle
determined by a pair of components of the coefficient-vector. This leads us to believe that they should
out-perform highly non-linear algebraic invariants in robustness. Finally, a mean and full covariance
matrix in the invariant space is learned for each object. Test sets (100 samples of each object) are
generated in the same manner independently of the training set.

Average recognition rates for the 27 objects are plotted against the logarithm of the RR parameter
k in Fig. 12. Recognition rates obtained without using RR are shown with the horizontal lines. In
Fig. 12(a) 4th degree polynomials were used with a perturbation model of 10% colored noise and
random rotations combined. Optimal choice of the RR parameter provides approximately 3% increase
over the already high rate of 96.5%. Note that there is an optimal value of k, this is expected
since k controls the bias-variance tradeoff in invariant space and some value of k has to minimize
bias? + variance. The following experiments verify this fact with the further important implication
that for this set of objects, best recognition performance is obtained using approximately k = 1073
regardless of the degree of the polynomial or the perturbation model being used. One question to be
investigated is if this optimal value of k£ will generalize to larger sets of objects.

The experiments presented in Fig. 12(b) use a stronger perturbation model combining 10% colored
noise, 10% missing data and random rotations. Both 4th and 6th degree polynomials were tested.
For degree 4, optimal choice of k provides 7% improvement in recognition achieving approximately
97%. For degree 6, a much more substantial 16% improvement is obtained raising the best recognition
performance to approximately 99%. These top rates are impressive when one looks at some typical
perturbed samples generated in this experiment, Fig 13. Note that random rotations are omitted in

Fig 13 for easy comparison with the original shape. Using 6th degree IPs provides only a 2% advantage
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in recognition over using using 4th degree; moreover for some non-optimal values of k£ and with no
RR it actually does worse. There are two important deductions here: 1. Since 6th degree IPs have
more coefficients (degrees of freedom) they are more prone to problems of unstable subspaces then
4th degree IPs, especially for simpler shapes that might not require a 6th degree polynomial. Since
this is exactly the problem RR sets out to solve, the observation made above is totally expected. 2.
It might seem tempting to restrict object recognition to the use of 4th degree IPs; however, as will
be made clear in the next example there are much more substantial gains to be made with the use of
higher degrees in some cases. We now use even a stronger model of perturbation, by keeping the 10%
colored noise and rotation and doubling the amount of missing data to 20%. Robustness to missing
data crucially depends on a good representation. Fig. 12(c) confirms this statement; 4th degree IPs
yield a top recognition rate of approxiamtely 88%, 6th degree IPs are able to improve this rate to
approximately 94%. Having established that using high degree IPs are necessary in certain problems,
it is also very important to once more realize the crucial role played by RR in the success of high
degree IPs; using the optimal value of k provided a gain of over 35% compared to no RR, with 6th

degree IPs in this example.

8 Conclusions

In the continuing quest for achieving maximum stability in the representation of curve data by algebraic
curves (i.e., the zero sets of polynomials in z and y) and in the stability of the polynomial coefficients,
this paper makes two important contributions. The first is an understanding of the role of data
normalization and polynomial gradient-constraint in improving representation and coeflicient stability.
This also sheds light on why the 3L fitting algorithm [10] is so much more stable than previous fitting

algorithms. The second contribution is the use of rotation-invariant RR, in the fitting, for improving
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the stability of both the representation and the coefficients even further. RR drives those portions

of the polynomial zero-set, that are not appropriate to the curve data, far from the data. It also

shrinks to near-zero those polynomial coefficients not important for representing the curve data. The

remaining coefficients are stable and result in increased stability when used for pose-invariant object

recognition or object pose estimation.
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—1.00000
—2.00000
—3.00000

-9.7998e-25
9.7620e-18
-1.9477e-13

—4.00000 —6.99970 —20.84691 —13.99236 £ 2.518831¢
—5.00000 —8.00727 —10.09527 £ 0.6435011 —16.73074 £ 2.8126213
—6.00001 —8.91725 —11.79363 £ 1.6523313 —19.50244 £ 1.940331+¢

Table 1: Roots of the perturbed Wilkinson Polynomial

2.6102e-10 -0.00030308 0.90528 -72.188 286.9980 -36.8373
-7.2448e-08 0.0071163 -5.5366 158.9022 -227.0224 5.1379
6.9438e-06 -0.10006 23.6634 -252.6122 118.6832

Table 2: Estimates for root perturbations.
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Figure 1: A circle is the zero set of a second degree polynomial.

Figure 2: (a)-(d) Classical least-squares algorithm gives unstable 4" degree IP fits under even the
smallest perturbations to the data. (e) A much more significant perturbation, (f) 10 superimposed 4"
degree polynomial fits with the gradient-one algorithm to perturbed data sets like the one in (e).
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Figure 3: Comparison of polynomial zero sets and polynomial graphs obtained by classical fitting (a)-(b)
to gradient-one fitting (c)-(d).
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Figure 4: (a) 6'" degree IP fits with the gradient-one algorithm for three different values p. (b) The
average percentage standard deviation of the coefficients with respect to their average morm under
colored noise (see Sec.7.1) for increasing values of p.
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Figure 5: Graph of an error function of two variables; here V' is the stable variable while W is relatively
unstable. The unstable Tidge is marked by a heavier line.
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Figure 6: (a) and (d): Classical Fitting Algorithm. (b) and (e): Gradient-one Fitting Algorithm. (c)
and (f): RR Fitting Algorithm. Degree 6 and 8 are used for the airplane and pliers shapes, respectively.
Notice that there are no extra components in (c) and (f).
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Figure 7: degree IP fits with the gradient-one algorithm and RR for increasing values of param. k.

Figure 8: Left, 6" degree polynomial fits with the gradient-one algorithm and RR for increasing values
of parameter k (k = 0, k = 0.0001, 0.001, 0.01, 0.05, 0.5, 2.0 and 32, respectively). We can observe
that the fitted zero set is becoming smoother and converging to a point.
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Figure 9: Fits for 4t 6" and 8" degrees with shapes of different complezities. No extra components
are close to data sets. The RR parameter was chosen manually for each shape in this example.

Figure 10: Comparison of noisy data simulation using white noise (a)-(b) with standard deviations
0.05 and 0.1, respectively, and colored noise (c)-(d) with standard deviations 0.05 and 0.1, respectively.

Figure 11: Objects used in the erperiments.
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Figure 12: 1000 perturbations of each object are used as the training set. Another 100 independent per-
turbations of each object are used as the test set. Perturbation models are (a) 10% colored noise + ro-
tation, (b) 10% colored noise + 10% missing data + rotation and (c) 10% colored noise + 20% missing
data + rotation.

o

Figure 13: A few shapes perturbed with 10% colored noise and 10% missing data.
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