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Abstract

A new conceptand algorithm are presentedfor non-
iterative robust estimationof piecavise smoothcurvesof
maximaledge strengthin smallimage windows— typically
8x81t032x32. Thisboundary-estimatioalgorithmhasthe
nice propertiesthat it usesall the datain the windowand
thuscanfindlocally weakboundariesembeddeéh noiseor
texture and boundarieswhenthere are more than two re-
gionsto be sggmentedn a window;it doesnotrequire step
edges— but handlesrampedgswell. Thecurve-estimates
foundare amongthe level setsof a d'th degree polynomial
fit to "suitable” weightingsof the image gradientvectorat
ead pixelin the image window Sincethe polynomialfit-
ting is linear leastsquaes,the computatiorto this pointis
veryfast. Level setghenchoseno beappropriateboundary
curvesare thosehavingthe highestdifferencesin average
graylevelin regionsto eitherside Thiscomputatioris also
fast. Theboundarycurvesandsegmentedegionsfoundare
suitablefor all purposesbut especiallyfor indexing using
algebraic curveinvariantsin this form.
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1. Introduction

We presenta new conceptandalgorithmfor estimating
boundarycurvesin images. Thesehave two uses: 1) for
generabpplications?) for directextractionfrom imagesof
algebraiccurvesto representmageboundaries. Algebraic
curve fitting to binaryimageshasbeenstudiedextensiely
[2,3,6,7,4,1,5]. Boundarycontoursof objectsof interest
canbe easily extractedfrom binary images. However, ob-
taining binaryimagesautomaticallyfrom real sensorydata
suchasanintensityimageinvolvestheunsohed problemof
sgymentation.Consequentijtheseapproacheto algebraic
curve fitting which rely on a prior segmentationstepwill
notwork in ageneraketting.Our objectie in thisregardis
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to estimatealgebraiccurvesthatrepresenboundarycurves
in imageswithout assumingary prior segmentation. Our
algorithm can be seenas a combinedalgebraiccurwe fit-
ting/contourdetectionwhich usesthe representatiopower
of algebraiccurvesto robustly detectcontoursromimages.

Sec.2.1 givesa brief overview of algebraiccurves. A
methodfor extracting“appropriate”polynomialsfrom im-
agesis givenin Sec.2.2. Sec.3 dealswith estimatingde-
siredcontoursrom imagespasecdn the polynomialsfrom
Sec.2.2.

2. Fitting Algebraic Curvesto Images
2.1 Shape Representation by Algebraic Curves

A dth degree algebraiccurve, also called an implicit
polynomial curve (IP curwe) is the set of points {(z,y)}
satisfyingf(z,y) = 0 wheref(z,y) is the2D polynomial
ZOSH,@ ajrz?y*. More generally the 2D polynomial
yields a setof IP cunes {(z,y) : f(z,y) = L} where
L € R, the setof real numbers. Thesearethe level sets
of f. If we chooseL = 0, we obtainthe zeio setof f. If
welet L assumevaluesotherthan0, multiple shapesanbe
representetdy a singlepolynomial f. We make useof this
in Sec.2.2and3. A subsebf level setsfor asinglepolyno-
mial is themodelwe extractfor the salientboundarycurves
in awindow of animage.

2.2 Direct Fitting to Intensity/Color | mages

The polynomial estimationalgorithm proposednext is
basedonly on image gradientinformation. Let I(z,y)
be an intensity image and G(z,y) = VI(z,y) =

T
[%(w,y) g—;(x,y)] its gradientvectormap. Let w; =||
G(z;, i) ||, thelengthof the gradientvectorat (z;, y;). If
theinputis a colorimage,G(z, y) is computedasin [8] to
make full useof the colorinformation. A few examplegra-
dientvectorsin awindow from anintensityimagearedravn



in Fig. 1(al). Notice thatsomegradientvectorsaredueto
theboundaryin theimageandothersaredueto noise. Let
N; = G(z;,y:)/w;, theunit vectorin the directionof the
intensitygradientpointing from darker to brighterregions.
ComputeT;, the orthogonalunit vectorto N; by rotating
N; 90° clockwise.Thenthe polynomialmodelcoeficients
a;i canbeestimatedby minimizing

E= Y w}((N;-Vfi-1?+(T:-V£)?) (D)

1<i<n

wherei enumeratesvery pixel (z;, y;) in aimagewindow

andV f; is the gradientvectorof f at (z;,y;). Minimiza-

tion of (1) is alinearleastsquaregproblem.Linearmethods
offer a definite speedadvantageover othersandspeeds a

primary concernin dealingwith imagessincethe amount
of datain animageis normally ordersof magnitudemore
thana datasetof contourpoints. If apixel (z;,y;) isonan

edgecontour T; andN; by definition will approximately
bein the directionstangentto the contourandperpendicu-
lar to the contour respectiely, andw; will bethe strength
of the intensity gradientacrossthe edge. The first term of

(1) approximatelyconstraintghe directionalderivatives of

f to have value 1 acrossthe contourandthe secondterm

approximatelyconstrainsthem to have value 0 along the

contour This forcesf to have level setsthatareedgecon-

toursin theimage. of f. This factis the mainideabehind
thefitting/detectioralgorithmandis usedin Sec.3 to detect
actualcontoursin theimage.

Someinsight into this choiceof E is asfollows. We
do not want to modelimageintensity by f(z,y) because
the exactbehaior of I(x,y) is irrelevantto boundaryesti-
mationandestimationof f by approximatiornto I imposes
unnecessargonstraintson f — especiallyif I variescon-
siderably Thisleavesfew degreesof freedomfor f(z,y) to
modelboundarycurves. Hence,insteadof forcing f(z, y)
to have gradientstrength|| G(z,y) ||, we simply force
Vf(z,y) to have thedirectionof G(z,y) but to have unit
magnitudelt is thisdirectionalinformationthatdetermines
f. In addition, the unit-gradientmagnituderestrictionde-
creasesheeffectsof noiseandtexture,sincethesecanpro-
ducelarge gradients.Beyondtheseconsiderationsthis re-
strictionstabilizeghefitted f for otherreasonssee[5]. Fi-
nally the weightingw? in (1) doesgive moreinfluenceto
pixels (z;, y;) that have large image gradients. This will
further improve fits in the presenceof noiseor texture if
the gradientstrength=of pixels thatare on the contourare
ontheaveragdargerthangradientsdueto noise/teture,an
assumptiorik ely to be metin the majority of images.

3. Boundary Contour Detection

After apolynomial f hasbeerfittedto animagewindow
suchasFig. 1(al)-(a6)theobjectiveis to detectwhichlevel

setsif any correspondo actualboundarycontoursin the
image.Thisis accomplishedby thefollowing steps:

1. Level setsof f arecomputedo sub-piel accurag ona
discretegrid in a single steplinear computation. f(z;, y;)

is computedfor every pixel. Thenlevel setsfor desired
level valuesare locatedby using linear interpolationbe-
tween f(z;,y;). Thelevel valuesthatareusedin the pre-
viouscomputatiorarechosersuchthatevery pixel (z;, y;)

will beincludedin alevel set This resultsin a smallnum-
ber(typically around20 for a16 x 16 window) of level sets
thatcover all of the pixelsin thewindow, Fig. 1(b1)-(b6).

2. Level setsaregroupedinto brancheslf thereis a single
imageboundaryor non-intersectingnultiple boundariesn
the imagewindow asin Fig. 1(al)-(a3),all level setswill
most likely (but not necessarilype groupedin the same
branch,Fig. 1(b1)-(b3). Whena junctionis presentin the
imagewindow asin Fig. 1(a5)-(a6)jt will manifestitself as
ahyperbolicpoint of f andlevel setsaroundthe hyperbolic
pointwill be groupedinto differentbrancheghatcometo-
getherat this point, Fig. 1(b5)-(b6). Thusthe existenceof
a hyperbolicpoint of f indicatesa possiblejunctionin the
image. It is importantto obsenre that f can have hyper
bolic pointsevenwhentheimagedoesnot have ajunction,
anexampleis Fig. 1(a4),(b4).Consequentlyevery possible
junction hasto be verified to be considereda salientjunc-
tion; thisis explainedin the next step.

3. Definethe contour strengthmeasue for a curve asthe
averagegray valuein I(z,y) in a 1-pixel wide region to

one side of the curve minusthat for the other side of the
cune. Fig. 1(c1)shaws this measurdor all the curves. As

expectedt peaksverystronglyfor thelevel setmatchingthe
contourin theimage. The horizontaldashedine indicates
an adaptve threshold- the averagegradientstrengthover

the entire window. We detectboundarycontoursas level

setsthat arelocal maximumsin termsof contour strength
measue thatareabove this threshold.

As opposedo average gradientstrengthmeasue along
the contour this measurecanbe seenasa hypothesisest:
a level setis hypothesizedasbeingan actualcontour gray
level averagingis donealongthe contouron eithersidebut
not acrossthe contourand the absolutedifferencein av-
eragesis computed. Hypothesisaveragingis much more
effective than averagingby a Gaussiarsmoothingin two
ways: (i) when the hypothesisis true, contour strength
measue is not wealened by averaging acrossthe con-
tour whereasa gaussianaverageand thus average gradi-
entstrengthmeasueis and(ii) whenthe hypothesids false
andis in anoisyregion, contourstrengthmeasue is much
smallerthanavelage gradientstrengthmeasue becausef
the larger extent of the smoothingalongthe falsecontour
Contourstrengthmeasue makesit possibleto detectcon-
toursin imageswith largeamountsof noise,Fig. 1(a2),and
texturedimagesFig. 1(a3).Fig. 1(a2)hasthe samebound-



ary as Fig. 1(al), but the averageregion intensitieshave
beenmovedcloserto eachotherat 100 and150, andwhite
noisewith standardleviation25 hasbeenadded Recallthat
no prior smoothingis performedon theimage. Thus, it is
remarkablghatthe curwveis still detected it is barelyabore
theadaptvethresholdputit is still astronglocal maximum.
Edgedetectiormethodswhich arebasedon muchmorelo-
cal operationsarevery likely to fail on suchimagesasthis.
Fig.2(a)and(b) show theresultsof theCannyedge detector
runon Fig. 1(a2)and(a3), respectiely. A commonsetof
parametergvaschosemmanuallyto approximatelyoptimize
performanceof the Cannyedge detectorfor thesetwo im-
agewindows. As expectedCannyedge detectiorresultsare
notgoodhere.TheCannyedge detectorworksfine with the
otherimagesin Fig. 1; however, it is importantto point out
thatits outputis individual edgeelementghat needto be
groupedtogether usually a very hardtaskin the presence
of noiseor gaps. The outputof our approachs curves of
moderatdengththat canbe put togetherto form complete
curves,aneasiettaskthangroupingedgeelements.

A junction in the imageis detectedif f hasa hyper
bolic point indicating the existenceof a possiblejunction
in the imagewindow andif salientcontoursare detected,
asexplainedabove, on the brancheghat form the hypoth-
esizedjunction. One junction was detectedin Fig. 1(a5)
andtwo were detectedn Fig. 1(a6). Whena junction is
presentin the imagewindow, the contourrepresentations
obtainedfrom the level setsof f arenot of ashigh quality
aswhenthereis no junction. This is becausepolynomi-
alsaresmoothfunctionsandcannot modeljunctioncurves
exactly. A future researchdirectionis using iterative re-
finementmethodssuchasactive contourmodelsusingthe
polynomiallevel setsasgoodinitial estimatesf ajunction
is detectedn animagewindow.

4. A sggmentatiortestis performedo verify thevalidity of
the regionsformedby the detectedcontours. The average
intensityin every regionis computed Absolutedifferences
in averagedor pairsof adjacentregionsis testedagainsta
threshold:the minimum valid averageintensity difference
for distinct regions. It is computedglobally by dividing
the intensity rangeof the entireimageby 16. Here16 is
the only absolutethresholdin the systemand corresponds
roughly to the maximumnumberof distinctgray levels al-
lowedin the perceptiorof ascene Thresholdatthis stages
justified becausdocal information hasbeencollectedinto
regional information which is more robust. Using this fi-
nal segmentatiorntestwe areableto discardfalsecontours
thatmanageto passthe contour strengthmeasue test,see
Fig. 1(c5). Becauseit is basedon the entire region sey-
mentationand it usesa global threshold,this testis more
powerful. Level setscorrespondindo detectedboundaries
aremarkedin Fig. 1(b1)-(b6).

Automatically choosing a degreefor f

Sofarwe have not specifiechow to choosehe degreeof
the polynomialnecessaryor ary givenimagewindow. For
example,degrees2 and4 wereusedfor thefirst 3 andthe
last3 rows in Fig. 1, respectrely. Given a desiredmaxi-
mumdegree,anappropriatelegreethatis lessthanor equal
to it is chosenautomatically Polynomialsof degreesl to
the maximumdegreearefit, andthe appropriatedegreeis
chosenbasedon the resulting contour strength measues
For a given degree,we requirea 5% increasean this mea-
surefor the curvesdetectedbver curvesfrom lower degree
polynomialsto justify thisdegree. Themaximumjustifiable
degreeis chosen.

Processing an Image

For stability andfastercomputationpurposesit is nec-
essaryto keepthe maximumdegreeof the polynomialsto
moderatedegrees. This is achiezed by processingmages
by dividing theminto windows and processingeachwin-
dow independently On the otherhand, moreregional in-
formationis availablein larger windows making accurate
curve detectioreasier Using16 x 16 windows andrestrict-
ing f to be of maximumdegree4 providesa goodtrade-
off betweenthe maximumdegree of the polynomial used
and curve detectionpower for mostof the imagesthe al-
gorithm was tried on. The windows are placedat inter-
vals of 8 pixels andthusoverlap. This to make surethat
curvesthatarecloseto the boundarybetweenwo adjacent
non-overlappingwindows are not missed. Fig. 3 shov an
intensityimageandthe boundarycurves estimatedoy our
algorithm. It hasrelatively few falsealarmsin thetextured
backgroundn the upperhalf of the image. It alsodoesa
goodjob onboundarycurve detectionvheresalientbound-
ariesexist in the image. It takes approximatelyl minute
to processa typical 256 x 256 imageon a SUNUItrasparc
workstation.

4. Conclusions

The advantageof this approacho boundaryestimation
versususing local edge detectorsand relaxing/grouping
salientsubsetof their outputsin two independenstepsis
that our approachreatsall the datain a window of image
simultaneoushandallocateslimited boundaryrepresenta-
tion resourceso the most“salient” boundarycurveswithin
thewindow. Thereareno parameter$o be twealed! Max-
imum compleity of boundaryrepresentatiors determined
by polynomial degree. Our procedureis not plaguedby
gaps,blobbynoiseandothersituationghatcreateproblems
for iterative algorithms. An importantadwantageof using
only derivativeconstaintsin thefitting is the capability of
representingnultiple curveswith asinglepolynomial. The
zeo setof f, thestandardalgebraiccurve representations
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Figure 1. (a)20x20 image windo ws. (b) Level
sets; detected contour s are marked with sym-
bols. Degree 2 and 4 polynomials were used
for the first 3 and the last 3 rows, respectivel vy.
(c) Contour strength measure (vertical axis)
in diff erent branc hes plotted against consec-
utive level sets (horizontal axis).

@ (b)

Figure 2. Canny edge detector outputs for
windo ws Fig.1(a2) and (a3)

Figure 3. (&) An intensity image, (b) Curves
detected with the proposed algorithm

capableof representingnly asinglecurve exceptunderun-
usualcircumstancedrinally, sinceboundariesreextracted
andestimatedasalgebraiccurves,invariantsof thesecurves
canimmediatelybeusedfor objectrecognitionorimagein-
dexing purposesHaving a single polynomialrepresenting
two or morecurvesis potentiallyvery powerful for invariant
shape-baseihdexing into imagedatabases.
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