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Chapter 1

INTRODUCTION

This thesis makes contributions towards the solutions of three computer vision problems

using a linear algebra framework. The two major contributions are: A robust implicit

polynomial curve estimation method from point data is developed. A new concept of implicit

polynomial curve estimation from intensity image data (boundary curvelet detection) is

introduced. We also make minor contributions in finding a set of “parts” for a shape that

can be used for recognition purposes under occlusion and in methods of measuring the

degree of similarity between pairs of shapes through implicit polynomial curves fitted to

these shapes.

Algebraic 2D curves and 3D surfaces, also called implicit polynomial (IP) curves and

surfaces, are powerful for shape recognition and single-computation pose estimation because

of their fast fitting and functions of their coefficients which are invariant under Euclidean or

Affine transformations. These properties and invariant functions of algebraic curves have

been studied extensively in [59, 44, 22, 79, 20, 37, 40, 73, 72, 45, 46, 58, 74, 75, 76, 7].

Algebraic curves are usually compared with Fourier Shape Descriptors in terms of their

usefulness for computer vision. Significant advantages over Fourier Shape Descriptors are
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their applicability to non-star shapes, to open curves, to curves that contain gaps, and to

unordered curve data. Under circumstances where these issues are not relevant, polynomials

based on Fourier analysis may be very effective, and an interesting formulation relating

Fourier series and polynomials is given in [68]. In [84], conversions between parametric

and implicit forms are studied. B-splines [19], are also compared to implicit polynomial

curves. They have been used for affine invariant curve matching [33, 12] and for modeling

objects from image curves [13]. Here we briefly summarize some of the differences between

these approaches. B-splines are a very efficient way of curve representation due to their

boundedness, continuity, local controllability and affine invariance. B-splines have been

used extensively in computer graphics and computer-aided design due to these properties;

however, their use for shape recognition purposes has been limited because of the non-

uniqueness of their parameters. In [33] affine invariant moments for B-splines are introduced

for curve matching. The two main types of Fourier Shape Descriptors are: (i) that which

represents a shape as a radius as a function of angle, and (ii) that which uses a complex

valued function to represent the coordinates of the points along the curve as a function of arc-

length. There are certain disadvantages to both approaches. (i) is limited to the set of star-

shapes which can be represented by a single-valued radius as a function of angle; however,

many interesting shapes do not fall into this category. (ii) requires the input data sets to

be an ordered set of points. (i) can not be directly used for open shapes, a preprocessing

step to artificially close the data curve is required. (ii) can be used for open curves, but

serious difficulties with arc-length normalization arise. Arc-length parameterization is the

main drawback of (ii) because arc-length can increase significantly if noise is added to the

curve. Both have problems with varying data point density and gaps in the data. Implicit

polynomials do not suffer from any of the problems listed above: they are directly applicable
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to non-star shapes, open curves, unordered data sets and are robust to noisy data sets and

inhomogoneously spaced data points. The main advantage of Fourier Shape Descriptors

over algebraic curves has been their better stability when fit to data because they are an

explicit representation. The significance of this is that, in cases where algebraic curves can

not be fit to data with high repeatability, good recognition based on algebraic invariants is

not possible.

A principal focus of this thesis is the stability issue with Implicit Polynomial Curves. We

study the problem and provide a solution in two parts. After an analysis of the instability

of the roots of polynomials, gradient-one fitting is introduced which regularizes the zero

set curve of the fitted polynomials and stabilizes the coefficients of the implicit polynomial

to some extent. By regularization of the zero set curve we are referring to: (i) continuity

along the data tangent directions which generally amounts to a single piece of the zero

set curve representing the data, and (ii) robustness to noise in the data. gradient-one

fitting was derived from the ideas previously introduced with 3L fitting, [45, 7], and is

practically equivalent to 3L fitting in terms of the results produced. However, it provides a

different point of view on the stability issues of polynomials and also generalizes trivially to

fitting implicit polynomials directly to intensity images. This generalization is non-trivial,

if not impossible, for 3L fitting. The second part of the solution to stability problems with

polynomials is the introduction of Ridge Regression regularization for implicit polynomial

curve fitting. We use ridge regression methods from statistical estimation theory [30, 85] to

regularize implicit polynomial fitting and thus further improve fitting repeatability. Ridge

regression can be applied to any least squares fitting method; however, we study the case

where it is applied to gradient-one fitting. All of the concepts and algorithms associated with

gradient-one fitting and ridge regression easily generalize to data sets in 3D and implicit
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polynomial surfaces.

Shape based object recognition and indexing into large image databases are two appli-

cations of interest to us for implicit polynomial curves. Shape-based indexing into image

databases is still a very new field of research. Symmetry-based indexing of shape databases

[63, 64, 43] is an interesting example of the application of model based shape representation

to this field. In this thesis we introduce Polynomial Interpolated Measures as a fast and

accurate way to compare pairs of shapes through algebraic curves. Polynomial Interpolated

Measures are meant to complement a new set of invariant functions of the IP coefficients

[75] for object recognition and shape-based indexing. These measures are not affected by

possible unstabilities in implicit polynomial coefficients and they provide good interpolation

properties through intervals of missing data. Partial occlusion is an important hurdle for

shape-based computer vision applications. Partial occlusion occurs when an object is be-

hind another object with respect to the camera and is partially obscured in the image. Can

such objects be recognized from the information present in the image? We introduce max-

imum length implicit polynomial patches as invariant descriptors of a shape. These patches

provide a redundant set of features that describe the parts of a shape. The usefulness of in-

variant patches stems from the simple idea that even if parts of a shape are missing possibly

due to local failure of an edge detection step, or if there is occlusion, there will be parts of

the shape that are not affected by these complications. Consequently, any shape descriptor

computed only from such unaffected parts will still be a useful feature. Finding maximum

length invariant patches is easier than finding physically meaningful parts of shapes, a more

ambitious approach to dealing with occlusion.

The theory we develop in Chapters 2-4 is built on the assumption that silhouettes of

objects are available as sets of (x, y) pairs. This amounts to at least assuming the presence
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of a segmentation step. However, segmentation is not a trivial issue and assuming that pre-

segmented images will be available in a general application is not realistic. Thus, a way of

finding partial or complete boundary curves from images without relying on a segmentation

step is desired. The last contribution of this thesis is in using implicit polynomial curves for

edge detection and grouping purposes. We introduce a new way of fitting polynomials to an

intensity images such that their level sets represent curves of edges that might be present

in the images. This fitting is a generalization of gradient-one fitting, also a contribution

of this thesis. This development should provide the missing link between the implicit

polynomial curve framework of object recognition/pose estimation/shape based indexing

and real world data. We propose to substitute this new fitting for edge detectors and edge

grouping methods for finding robust shape features in images that can be used for object

recognition. Thus, we propose this new type of fitting as an edge curve finder. It performs

successfully on a wide range of images because it is “almost” parameter independent. It is

also not plagued by the combinatorics of saliency optimization involved in edge grouping.

1.1 Implicit Polynomial Curves

Formally, a planar algebraic curve is specified by the zero set of a 2D polynomial of degree

d given by

fd(x, y) =
∑

0≤u,v;u+v≤d

auvx
uyv =a00 + a10x + a01y + a20x

2 + a11xy + a02y
2 +

a30x
3 + a21x

2y + a12xy2 + a03y
3 + . . . +

ad0x
d + a(d−1)1x

d−1y + . . . + a0dy
d = 0

(1.1)
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The homogeneous binary polynomial of degree r in x and y is a form, e.g., a20x
2 + a11xy +

a02y
2 is the 2nd degree form. The homogeneous polynomial of degree d is the so-called

leading form. An algebraic curve of degree 2 is a conic, degree 3 a cubic, degree 4 a quartic,

and so on. Polynomial fd(x, y) can also be represented in vector form. Define the coefficient

vector a and the monomial vector y for point (x, y) as

a =
































a00

a10

a01

. . .

ad0

a(d−1)1

. . .

a0d
































y =
































1

x

y

. . .

xd

xd−1y

. . .

yd
































(1.2)

which have dimension
(d + 1)(d + 2)

2
︸ ︷︷ ︸

p

×1. Then

fd(x, y) = yT a (1.3)

where superscript T denotes vector and matrix transpose. In general, the vector notation

is convenient for implicit polynomial fitting since fitting can be set within a linear least

squares framework as detailed in Section 2.1. Other representations, such as the complex

representation, is convenient for pose estimation and obtaining a complete set of Euclidean

invariants in 2D [75], the covariant conics decomposition is useful for 2D affine alignment

6



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

X
Y

N

Figure 1.1: A circle can be represented as the zero set of a second degree polynomial in x

and y.

and invariants [76], and the tensor representation [74] provides a useful framework for pose

estimation in 3D.

A shape is represented by the zero set of fd(x), i.e., the set of points (x, y) satisfying

the IP equation fd(x, y) = 0 which is the intersection of the surface defined by an explicit

polynomial z = fd(x, y) with the plane z = 0; see Figure 1.1.

1.2 Summary of Contributions

The two major contributions of this thesis are:

• The developments of the concepts and algorithms for gradient-one fitting regularized by

ridge regression for robustly fitting implicit polynomial curves to point data.

• The developments of the concepts and algorithms for boundary curvelet detection by

automatically fitting implicit polynomial curves to windows of intensity images without the

need for prior edge detection or segmentation. The grouping of these curvelets to obtain
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longer and more informative curves.

A minor contribution is :

• The further developments of Polynomial Interpolated Measures for comparing shapes using

implicit polynomial curves fitted to them and maximum length invariant patches as tools

for object recognition in the presence of missing data and occlusion.

1.3 Overview of the Thesis

Chapter 2 starts with a discussion of the stability issue of implicit polynomial curves and

develops the gradient-one fitting algorithm for robustly fitting implicit polynomial curves

to point data. Unstable subspaces of implicit polynomial coefficients and the global regu-

larization of implicit polynomial fitting techniques using ridge regression, a regularization

technique in statistics similar to principal component analysis, is discussed in Chapter 3.

Chapter 4 discusses two tools for object recognition with implicit polynomial curves: polyno-

mial interpolated measures which is a way of locally comparing two shapes through implicit

polynomial curves fitted to them, and maximum length invariant patches which are implicit

polynomial curve patches which can be used for object recognition under occlusion. Chap-

ter 5 introduces a new type of implicit polynomial curve fitting: fitting to windows of image

intensity data without prior segmentation or edge detection. Edge curve detection with

the fitted implicit polynomial curves is also discussed in Chapter 5. Chapter 6 discusses

how to easily piece together curvelets obtained with the fitting described in Chapter 5 to

obtain longer curves. Finally, in Chapter 7, we summarize the contributions of this thesis

and discuss a few directions for future research.
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Chapter 2

IMPLICIT POLYNOMIAL

CURVE FITTING

The classical least-squares fitting of algebraic curves, Section 2.1, especially the more in-

teresting cases of fitting higher degree polynomials, suffers three major problems: local

inconsistency with the continuity of the dataset; local over-sensitivity of the polynomial

zero set around the data to small data perturbations; instability of the coefficients due

to excessive degrees of freedom in the polynomial. Researchers have investigated various

approaches to fitting in order to improve upon the classical least-squares method. Substi-

tuting an approximate Euclidean distance for algebraic distance [79] is much more stable

than the classical least squares algorithm, in many cases gives useful fits, but in other cases

the improvement is not sufficient to solve these major problems. Similarly, the use of the ex-

act Euclidean distance provides better results than the algebraic distance [73]; nevertheless

the fitting is sometimes not stable enough and the minimization is solved iteratively, a time

consuming process. Another attempt to improve the stability of the fit was the development

of fitting algorithms which ensure that the obtained zero set is bounded [38, 80, 58], but
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the last one is for 2nd degree curves only, and increased stability for all and fitting speed

for the former two are still desired. Non-linear parameterizations of polynomials that are

guaranteed to satisfy certain topological properties [39] – boundedness and having a zero

set that is contained within another shape such as an ellipse – are interesting, and their

relative merits need to be studied further. The problem of an excessive number of parame-

ters in implicit polynomial curve and surface representations was first studied in [72] in the

framework of Bayesian estimation.

2.1 Classical Least-Squares Fitting

The classical and simplest way to fit an algebraic curve to a set of data points
{

(xk, yk)
}m

k=1

is to minimize the algebraic distance

Ealgebraic =
m∑

k=1

fd(xk, yk)
2. (2.1)

Let yk be the monomial vector for point (xk, yk) which can be obtained by the substitutions

x = xk and y = yk in equation (1.2). Then using the vector representation of fd which was

introduced in equation (1.3) we obtain

Ealgebraic =
m∑

k=1

(yk
Ta)(yk

Ta)

=

m∑

k=1

aTykyk
Ta

= aT

(
m∑

k=1

ykyk
T

)

a

(2.2)
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Define the monomial matrix for the given set of data points as the p×m matrix which has

as its columns the monomial vectors yk for 1 ≤ k ≤ m

M =

[

y1 y2 . . . ym

]

=
































1 1 . . . 1

x1 x2 . . . xm

y1 y2 . . . ym

. . .

xd
1 xd

2 . . . xd
m

xd−1
1 y1 xd−1

2 y2 . . . xd−1
m ym

. . .

yd
1 yd

2 . . . yd
m
































(2.3)

M is also called the design matrix, and

S = MMT =

[

y1 y2 . . . ym

]















y1
T

y2
T

. . .

ym
T















=

m∑

k=1

ykyk
T

(2.4)

is the p × p scatter matrix of the monomials. S is symmetric non-negative definite by

definition provided m ≥ p. Substituting equation (2.4) in equation (2.2) we obtain

Ealgebraic = aTMMTa = aTSa (2.5)
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To avoid the trivial zero solution in the minimization of Ealgebraic in equation (2.5), a

constraint such as ‖a‖2 = 1 is imposed which modifies the problem to

min
a

(

aTSa + λ(aTa − 1)
)

(2.6)

with the introduction of Lagrange multiplier λ. The solution to equation (2.6) is given by

the unit eigenvector associated with λmin, the smallest eigenvalue of S [79]. Consequently,

the classical least-squares fitting algorithm consists of computing the monomial scatter

matrix S from a set of data points, and then finding the unit eigenvector of S associated

with its smallest eigenvalue. Although this algorithm is affine covariant [20, 79], most of

the time it is not of any practical use due to the following problems: The fitted zero set

does not respect the continuity of the original data set as illustrated in Figure 2.1(a)-(d)

and also Figure 3.3(a) and (d). This problem undermines the use of classical fitting for

obtaining good representations of the data. Moreover, results are highly sensitive to small

errors in the data. Even small perturbations in the data can lead to zero sets that have no

resemblance to the zero sets prior to the perturbations in the data, Figure 2.1(a)-(d). Even

with low order degrees, depending on the structure of the given data set, S may not provide

a stable unique eigenvector under small perturbations. For example, several eigenvalues can

have similar values to the smallest one, and thus the solution will span a subspace in the

coefficient space when small perturbations are added to the data set. Consequently, classical

fitting is also practically useless for shape recognition purposes based on the coefficients of

the fitted polynomial curves.
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(a) (b)

(c) (d)

Figure 2.1: Classical least-squares algorithm gives unstable 4th degree IP fits when the data
is perturbed with white noise which has standard deviation equal to %5 of the shape size.
(a) is the original data set and fit, (b)-(d) are perturbed versions of the same data set and
fits.
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−1.00000 −5.00000 −8.91725 −13.99236 ± 2.518831 i
−2.00000 −6.00001 −20.84691 −16.73074 ± 2.812621 i
−3.00000 −6.99970 −10.09527 ± 0.643501 i −19.50244 ± 1.940331 i
−4.00000 −8.00727 −11.79363 ± 1.652331 i

Table 2.1: Roots of the perturbed Wilkinson Polynomial

2.2 Pathological Polynomials

Although we are interested in 2D polynomials, i.e., functions of x and y, it is instructive to

first study stability in the 1D case. It is well known that some 1D polynomials, in particular

polynomials of high degree, are ill-conditioned. Consider the pathological example due to

Wilkinson [1]: (x + 1)(x + 2) . . . (x + 20) = x20 + 210x19 + . . . + 20!. This polynomial has

very large coefficients and its roots are −1, −2, −3,..., −20. An accurate calculation of the

perturbed roots as given in [1] to five decimals after a tiny change of 2−23 is applied to

the coefficient of x19, are shown in Table 2.1. Observe that the perturbations of the bigger

roots are disproportionately large compared to the tiny change applied to the coefficient of

x19. Though this example demonstrates how ill conditioned some polynomials are, it does

not mean that all polynomials are so, and as a consequence that all algorithms using high

degree polynomials have to be rejected as apriori unstable. In fact, we will demonstrate

that it is possible to work in a subspace of non-pathological polynomials. First, let’s try to

understand the pathology of the Wilkinson polynomial. A plot of this polynomial would

show varying oscillation amplitude between its roots. This type of ill-conditioned behavior

of polynomials is well-known in the context of interpolation theory. Indeed, the Wilkinson

polynomial is an example of Lagrange interpolation at 20 points, and it is known that

Lagrange interpolation suffers from oscillation problems between data points. This is the

so-called Runge problem [18]. One known solution is to change the way the interpolation is
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carried out. Hermite interpolation, where the first derivative of the polynomial is controlled

in addition to the value of the polynomial at each given point, can be proven to converge

properly for all continuous functions when the number of sampling points and thus the

degree of the polynomial increases.

We are referring to interpolation theory and Hermite polynomials because they provide

us with very useful insight in trying to improve the classical least-squares fitting algorithm.

In essence, the problem with polynomials is that the functional relationship between its

coefficients and its roots is highly non-linear. Let pn(x) be a polynomial defined as: pn(x) =

∑

0≤j≤n ajx
j = a0 + a1x + a2x

2 + . . . + anxn. Roots xk of this polynomial are defined by

pn(xk) = 0. This last equation can be seen as an implicit equation for root xk where this

root is a function of coefficients aj . To determine the sensitivity of this root to small changes

of the coefficients, let us apply a small change ∆aj to a. We are interested in determining

∆x, the change root xk undergoes. We want to find ∆x for which pn(xk +∆x, aj +∆a) = 0.

Expand pn around x = xk by a first order Taylor series approximation:

pn(xk + ∆x, aj + ∆a) =p(xk, aj) +
∂pn

∂x
(x = xk)∆x +

∂pn

∂aj
∆a

pn(xk + ∆x, aj + ∆a) =
∂pn

∂x
(x = xk)∆x +

∂pn

∂aj
∆a

Using ∂pn

∂aj
= xj we then obtain

∆x

∆a
= −

x
j
k

∂pn

∂x (x = xk)
(2.7)

Equation (2.7) has important consequences. It is desired that small or large changes in the

coefficients produce small or large changes, respectively, in the roots, and vice versa. Thus

we should require that ‖ ∆xk

∆aj
‖ be as close to 1 as possible. Due to the numerator x

j
k, we
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Root Estimated Perturbation Root Estimated Perturbation

-1 −9.7998 × 10−25 -11 −5.5366 × 100

-2 9.7620 × 10−18 -12 2.3663 × 101

-3 −1.9477 × 10−13 -13 −7.2188 × 101

-4 2.6102 × 10−10 -14 1.5890 × 102

-5 −7.2448 × 10−08 -15 2.5261 × 102

-6 6.9438 × 10−6 -16 2.8699 × 102

-7 3.0308 × 10−4 -17 −2.2702 × 102

-8 7.1163 × 10−3 -18 1.1868 × 102

-9 −1.0006 × 10−1 -19 −3.6837 × 101

-10 9.0528 × 10−1 -20 5.1379 × 100

Table 2.2: Estimates for root perturbations.

see that xk should be close to values 1.0 or −1.0; otherwise, the effect of a small coefficient

perturbation has a larger effect on roots with large absolute values. This explains why

roots with large absolute values are less stable than others for the Wilkinson polynomial,

Table 2.1. Due to the denominator of equation (2.7), we deduce that the sensitivity to a

small coefficient perturbation is also directly dependent on the value of the first derivative

of the polynomial at the root location. The Wilkinson’s polynomial has derivatives 19!0!,

−18!1!, 17!2!, . . . , −0!19! at −1, −2, −3, . . . , −20 respectively. These huge variations in

the first derivative dpn

dx contributes to the instability of the roots with respect to coefficient

perturbations. Using equation (2.7), we predict, with a first order Taylor expansion, the per-

turbations of the roots of the Wilkinson polynomial when 2−23 is added to a19 = 210. The

root perturbation predictions are tabulated in Table 2.2. These values are in good accor-

dance with the differences between the original roots, −20, . . . ,−1 and the real perturbed

roots, Table 2.1. Tables 2.1 and 2.2 provide an experimental validation of equation (2.7).
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2.3 Gradient-one Fitting

The insight developed in Section 2.2 into how polynomials can be ill-conditioned, enables

us to determine a fuzzy subset of the polynomial space that is the set of well-conditioned

polynomials. How can we define a well-conditioned polynomial? For the problem at hand,

it is a polynomial for which the relationship between its roots and its coefficients is such

that small changes in one induces small changes in the other and larger changes induce

larger changes. In Section 2.2, it was argued that a 1D polynomial should have root values

and first derivative values at the root locations, all close to 1.0 or −1.0. Intuitively, we

can extend this result to 2D polynomials: a set of polynomials satisfying these constraints

exactly in 2D are the powers of the unit circle: 1
2n

(
(x2 + y2)n − 1

)
. Members of the set of

polynomials “close” to these polynomials in the coefficient space can be considered to be

well-conditioned.

An implicit polynomial fitting algorithm is stable if its outputs are well-conditioned im-

plicit polynomials. Consequently, such an algorithm will have to bias its output towards

such polynomials. The first requirement for stable fitting is to apply a data set standard-

ization to force the data points to be close to the unit circle, and thus indirectly to force

the zero set of the polynomial to be as close as possible to the unit circle. The data set

standardization consists of centering the data-set center of mass at the origin of the coor-

dinate system and then scaling it by dividing the coordinates of each point by the square

root of the average of the eigenvalues of the 2 × 2 matrix of second order moments. Given

a set of data points
{

(xk, yk)
}m

k=1
, the center of mass is (cx, cy) where cx = 1

m

∑m
k=1 xk and

cy = 1
m

∑m
k=1 yk. Then the matrix of second order moment averages of the centered data
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set is

1

m







∑m
k=1 (xk − cx)2

∑m
k=1 (xk − cx)(yk − cy)

∑m
k=1 (xk − cx)(yk − cy)

∑m
k=1 (yk − cy)

2







(2.8)

and we choose to define the object size s as the square root of the average of the eigenvalues

of the matrix in equation (2.8). This is a Euclidean invariant measure of the object size.

Thus by data set standardization we are setting this measure of object size to 1. Then, the

set of standardized data points are
{

(xk−cx

s ,
yk−cy

s )
}m

k=1
. In the rest of this chapter and in

Chapters 3 and 4 we will assume that data sets have been standardized.

The second requirement is to control the value of the first derivatives along the zero set,

i.e, the gradient of the 2D polynomial:

∇fd =







∂fd

∂x

∂fd

∂y







(2.9)

By definition, the gradient vector along the zero set curve of the polynomial is always

perpendicular to this curve. Thus, if we can compute the local tangent to the data curve

at each point of the data set, we propose to force the implicit polynomial gradient to be

perpendicular to the local tangent and with unit norm. This will force the zero set of the

polynomial to respect the local continuity of the data set. The calculation of the tangent

to the data set at a point does not pose a serious problem. If the data set is ordered as

a curve, we calculate local tangents to the data using the lines going through consecutive

data points. If the data is not ordered, a fast distance transform [81, 74] can be used to

generate level sets as in the 3L fitting algorithm [45, 7] or to indirectly calculate tangent

directions. Another possibility that was implemented in our lab is to compute local tangent
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directions at a point by using all data points that are within a certain distance from it.

Local normal directions are then perpendicular to this direction and a final step checks

the consistency of the normal vectors; in other words, it modifies the normal vectors such

that they all point towards one side of the curve. This approach was successfully tested

on data sets with moderate amounts of noise. When working with real images, level sets

may also be generated as described in [48]; or if the input to the fitting algorithm comes

from an edge detector, edge orientations can be used as the tangent directions. We develop

our own methods for direct fitting of implicit polynomials to intensity images in Chapter 5.

In the case of open curves where no notion of inside/outside is available, both cases can

be considered resulting in two fitted IP curves which have coefficient vectors related by

multiplication with −1. We do not apply any smoothing in computing the tangents even

in the presence of noise; indeed, it is the fitting process which takes care of smoothing the

fluctuations in the tangent direction along the curve given that there are enough points on

the dataset; at least a few times the dimensionality of the IP coefficient vector.

The proposed fitting technique is set as a least-squares problem with the following

additional constraints: Local tangential and normal directional derivatives of the IP must

be as close as possible to 0 and 1, respectively. These constraints add two terms to Ealgebraic

in equation (2.1) to yield

Egrad =

m∑

k=1

(

fd(xk, yk)
2 + µ2

((
nk

T∇fd(xk, yk) − 1
)2

+
(
tk

T∇fd(xk, yk)
)2
))

(2.10)

where tk and nk are the local tangent and normal vectors to the data set at (xk, yk)

computed as described above. Thus, tk
T∇fd(xk, yk) and nk

T∇fd(xk, yk) are the derivatives

of fd in the tk and nk directions at (xk, yk), respectively. µ2 is the relative weight on
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the gradient cost terms with respect to the f2
d cost term. By using the vector notation

introduced in equation (1.3) in the polynomial gradient equation (2.9), we deduce the vector

form of the gradient:

∇fd(x, y) =







∂
∂xyTa

∂
∂yy

T a







=







∂yT

∂x

∂yT

∂y







︸ ︷︷ ︸

2×p

a
︸︷︷︸

p×1

= (∇yT )a

We can obtain ∂y
∂x and ∂y

∂y , the x and y partial derivative monomial vectors, from equation

(1.3)

∂y

∂x
=

∂

∂x




































1

x

y

. . .

xd

xd−1y

. . .

xyd−1

yd




































=




































0

1

0

. . .

dxd−1

(d − 1)xd−2y

. . .

yd−1

0




































,
∂y

∂y
=

∂

∂y




































1

x

y

. . .

xd

xd−1y

. . .

xyd−1

yd




































=




































0

0

1

. . .

0

xd−1

. . .

(d − 1)xyd−2

dyd−1




































(2.11)

Let ∇yk be the p× 2 gradient monomial matrix at point (xk, yk). Then ∇yknk is the p× 1

normal derivative monomial vector and ∇yktk is the p × 1 tangent derivative monomial

vector. Finally, aT∇yknk and aT∇yktk are the derivatives of f in the normal and tangent
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directions. After substitution in equation (2.10), we expand Egrad in vector notation as

Egrad =aT
( m∑

k=1

ykyk
T

︸ ︷︷ ︸

MMT =S

)

a

+ µ2aT
( m∑

k=1

∇yknknk
T∇yk

T

︸ ︷︷ ︸

MnMn
T =Sn

)

a − 2µ2aT
( m∑

k=1

∇yknk

︸ ︷︷ ︸

Gn

)

+ µ2m

+ µ2aT
( m∑

k=1

∇yktktk
T∇yk

T

︸ ︷︷ ︸

MtMt
T =St

)

a

(2.12)

The first, second and third lines of the above equation correspond to the expansions of the

first, second and third terms terms in equation (2.10), respectively. In this equation, M and

S are the monomial design matrix and the monomial scatter matrix as introduced before

in equations (2.3) and (2.4). We will use similar constructions for the matrices Mn, Mt,

Sn, and St which are introduced in equation (2.12). The normal monomial matrix and the

normal scatter matrix are given as

Mn =

[

∇y1n1 ∇y2n2 . . . ∇ymnm

]

, Sn = MnMn
T (2.13)

and the tangent monomial matrix and the tangent scatter matrix as

Mt =

[

∇y1t1 ∇y2t2 . . . ∇ymtm

]

, St = MtMt
T . (2.14)

Mn and Mt are of dimension p × m, Sn and St are of dimension p × p. Gn is the sum of

the gradients of the monomials in the normal direction and has size p × 1. Define a new
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overall monomial matrix

M =

[

M µMn µMt

]

︸ ︷︷ ︸

p×3m

, (2.15)

and a new overall scatter matrix

S = MMT = MMT + µ2MnMn
T + µ2MtMt

T

︸ ︷︷ ︸

p×p

, (2.16)

and a target vector composed of m 0’s for the f2 terms, m µ’s for the normal derivative

terms and m 0’s for the tangent derivative terms

b =

(

0 . . . 0 µ . . . µ 0 . . . 0

)T

. (2.17)

Then Egrad can be rewritten as

Egrad =|| MT a − b ||2

=
(

MTa − b
)T(

MTa − b
)

= aTMMTa − 2aTMb + bTb

(2.18)

The second term is equivalent to −2atGn because the only non-zero elements in b are at the

positions corresponding to Mn. The coefficient vector that minimizes Egrad is the estimator

a = µ2(MMT )−1Mb = µ2S−1Gn (2.19)

This minimization is a linear least squares problem. We named this algorithm gradient-

one fitting. Like Hermite interpolation [18], gradient-one fitting is Euclidean invariant, see
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Section 3.3, respectively, but not affine invariant. Gradient-one fitting is also scale invariant

since the data standardization step sets our Euclidean invariant measure of the size of

the data to 1 before fitting. Data set standardization introduces a numerical advantage

by improving the condition number1 of the scatter matrix S = S + µ2(SN + ST) of the

problem (2.19). The condition number gives an idea of the numerical stability of linear

algorithms such as the computation of the inverse of a matrix [25]. Data standardization

improves the stability of the fits; however, if the estimator for the non-standardized data

is needed, the estimator for the standardized data should be computed and then back-

transformed into the original coordinate system [78].

The necessity to introduce information about the first derivatives was first pointed out

in [45, 7] and handled in a linear way with the so-called 3-levels (3L) fitting algorithm. The

idea of the 3L fitting is to constrain the polynomial to fit not only the data set but also

two level sets of the distance transform of this data set, thus preventing the presence of

singularities of the polynomial f in the vicinity of the data to be fitted. Therefore, indirectly,

3L fitting places soft constraints on the gradient of the fitted implicit polynomial curve. In

fact, it can be proved that the gradient-one fitting algorithm is similar to the 3L fitting

algorithm expanded to the first order with respect to the inter-level distance parameter.

Although, gradient-one and 3L fitting algorithms are almost equivalent in view of fitting IP

curves to point data sets, gradient-one fitting has a significant advantage over 3L fitting in

the case of fitting polynomial models directly to intensity images. Gradient-one fitting can

easily be generalized to this case whereas the same generalization for 3L does not hold. We

will elaborate further on this point in Section 5.3.

To gain insight into how local consistency is achieved by controlling the gradient across

1The condition number of a matrix is the ratio of its largest eigenvalue to its smallest eigenvalue.

23



−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
−10

−5

0

5

(a) (b)

−2

−1

0

1

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
−25

−20

−15

−10

−5

0

5

(c) (d)

Figure 2.2: Comparison of implicit polynomial zero sets and polynomial graphs obtained
by classical fitting (a)-(b) to gradient-one fitting (c)-(d).
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(a) (b)

Figure 2.3: (a) An example of a data set perturbed with white noise having standard
deviation % 5 of the shape size, (b) 10 superimposed 4th degree polynomial fits with the
gradient-one fitting algorithm to perturbed data sets like the one in (a).

the data set, we examine Figure 2.2. It can be deduced from Figure 2.2(d) that the gradient

direction along the zero set obtained by gradient-one fitting consistently points into the

shape whereas in Figure2.2(b) it can be seen that this direction switches between inwards

and outwards. The zero set from the solution of equation (2.6) is broken into pieces as can

be seen in Figure 2.2(a) whereas in Figure. 2.2(c) the zero set is a smooth representation

of the data curve. Also notice that in the vicinity of the data, the surface in Figure 2.2(b)

is flatter than is the surface in Figure 2.2(d) which means that with small perturbations of

the data, classical fitting is prone to much larger changes in the zero set. In addition to

better stability of the zero set and better shape representation power, gradient-one fitting

also provides better interpolation properties which allow implicit polynomial curves to be

robust to a certain amount of missing data along the curve. The stability of the zero set

achieved by the gradient-one fitting algorithm is an important improvement over classical

fitting techniques. It can be seen in Figure 2.3(b) that the zero sets of the resulting fits

are stable under local data perturbations. The changes in the fitted implicit polynomial

curves are much smaller in Figure 2.3(b) compared to those in Figure 2.1(a)-(d). Further

comparisons of the results obtained by classical least-squares fits and gradient-one fits can
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be found in Figure 3.3.

Parameter µ has important effects on the properties of the fits. It controls the relative

weight of the gradient constraint with respect to the algebraic distance constraint. The effect

of the gradient constraint on the zero set of the fit is a smoothing of the high curvature

areas. Figure 2.4 is an example of smoothing of the zero set when µ is increasing. In all our

examples, µ is fixed to 1
7 which gives satisfying results as shown in Figure 3.3(b) and (e).

This value is a good trade-off between the accuracy of the representation and the stability

of the fitted parameters. However, better stability of the estimated polynomial coefficients

can be achieved with equal weights on the gradient and data fit constraints as shown in

Figure 2.4 because the resulting fits will be “closer” to the set of well behaved polynomials,

the powers of the unit circle. Thus, the optimal choice of µ depends on the application,

with values closer to 1 preferred for object recognition and smaller values preferred for shape

representation. In a more general framework, µ can be made a user-specified function along

the length of the curve providing more control for interactive curve representation purposes.

Information about the higher order derivatives such as curvature can be incorporated

into gradient-one fitting to provide additional constraints. The polynomial f(x, y) defines a

parameterized surface
(
x, y, f(x, y)

)
as in Figure 1.1. We want to match the curvature of the

zero set curve of the implicit polynomial curve to the curvature measured from the data set

curve. In measuring curvature from the input data set the decisive factor is the accuracy

of the data; if the set of data points smoothly determine a curve then using curvature

information in the fitting will in general improve the results. However, with increasing

noise in the input data, curvature terms will become susceptible to noise before the tangent

and normal derivative terms because they are higher order derivatives and differentiation

amplifies noise. If curvature information is going to be used in the fitting, we have to derive
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an expression for the curvature of the zero set curve of the implicit polynomial. Classical

differential geometry of parameterized surfaces [71] provides the answer. For a planar curve

(
x(t), y(t)

)
such as the zero set of the polynomial, curvature is given by

κ =
x′y′′ − x′′y′

(

(x′)2 + (y′)2
)3/2

(2.20)

where x′ and x′′ denote first and second order derivatives with respect to the parameter

t. Let
(
x(t), y(t)

)
be the parametric form of the implicit polynomial curve. This form of

the implicit polynomial curve is not directly available; however, to make use of equation

(2.20) we only need to derive expressions for the derivatives. The tangent vector to the

IP curve, T(t) =
(
x′(t), y′(t)

)
, can be found up to a scale factor as follows: Differentiate

f
(
x(t), y(t)

)
= 0 with respect to t and use the chain rule to get

∂f

∂x
x′ +

∂f

∂y
y′ = 0

The above equation will hold for all t if

x′ = −
∂f

∂y

y′ =
∂f

∂x

(2.21)

The other piece of information necessary for the computation of equation (2.20) is T′(t) =

(
x′′(t), y′′(t)

)
. Using the chain rule once more, we obtain

T′ =
dT

dt
=

∂T

∂x
x′ +

∂T

∂y
y′ (2.22)
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Using x′ = −∂f
∂y and y′ = ∂f

∂x , we find

∂T

∂x
=
(

−
∂2f

∂y∂x
,
∂2f

∂x2

)

∂T

∂y
=
(

−
∂2f

∂y2
,

∂2f

∂x∂y

)

Substitute these results in equation (2.22) to obtain

T′ =
( ∂2f

∂y∂x

∂f

∂y
−

∂2f

∂y2

∂f

∂x
, −

∂2f

∂x2

∂f

∂y
+

∂2f

∂x∂y

∂f

∂x

)

Since T′(t) =
(
x′′(t), y′′(t)

)
, we observe that

x′′ =
∂2f

∂y∂x

∂f

∂y
−

∂2f

∂y2

∂f

∂x

y′′ = −
∂2f

∂x2

∂f

∂y
+

∂2f

∂x∂y

∂f

∂x

(2.23)

Substituting the results in equations (2.21) and (2.23) in equation (2.20), we get

κ =

∂2f
∂x2

(∂f
∂y

)2
− 2 ∂2f

∂x∂y
∂f
∂x

∂f
∂y + ∂2f

∂y2

(∂f
∂x

)2

((∂f
∂x

)2
+
(∂f

∂y

)2
)3/2

(2.24)

κ is measured from the input data at every point and we want to force the right-hand

side of equation (2.24) to equal these values at the data points. The right-hand side of

equation (2.24) is nonlinear and can not be incorporated in our linear framework as it is,

but an approximation to it can be. Recall that in gradient-one fitting we compute the unit

local normals n = (nx, ny) to the data set and ask that the gradient of the polynomial be

in these directions with magnitude one. Thus we are forcing f to have ∂f
∂x = nx,

∂f
∂y = ny

and
√
(∂f

∂x

)2
+
(∂f

∂y

)2
= 1 as closely as possible. If f is of sufficient degree to provide a

good approximation, then these conditions will roughly hold and we can substitute these
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measurements from the data in to equation (2.24) as approximations to the real derivatives

of f which yields

κ ≈
∂2f

∂x2
n2

y − 2
∂2f

∂x∂y
nxny +

∂2f

∂y2
n2

x. (2.25)

Equation (2.25) provides constraints on the second derivatives of f based on curvature

information in a linear manner which can be easily incorporated into the gradient-one

fitting framework. This can be accomplished by defining monomial and scatter matrices for

the higher degree fitting terms as in equations (2.13) and (2.14) and incorporating these in

the overall design and scatter matrices in equations (2.15) and (2.16).

2.4 Invariance Properties of Gradient-one Fitting

The question of the invariance of the fitting algorithm to Euclidean transformations of the

data is important to insure repeatability of the results under such transformations. In this

section, we show that the gradient-one fitting is rotation and translation invariant. When a

Euclidean transformation is applied to the data set, vector y of monomials is transformed

as y′ = V(θ, tx, ty)y, where the p×p transformation matrix V is a function of θ, the applied

rotation angle, and (tx, ty), the applied translation. The zero set of the implicit polynomial

is defined as

aTy = 0 , (2.26)
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Figure 2.4: (a) 6th degree IP fits with the gradient-one fitting algorithm for three different
values of µ. (b) The average percentage standard deviation of the coefficients with respect
to their average norm under colored noise (see Section 3.6.1) for increasing values of µ.
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and the zero set after the coordinate transformation is given by

a′Ty′ = 0. (2.27)

After the substitution y = V−1y′ in equation (2.26), we have

aTV−1y′ = 0.

Comparing this result with equation (2.27), we observe that

a′T = aTV−1.

Taking the transpose of this equation we obtain

a′ = (aT V−1)T

= (V−1)Ta

= (VT )−1a

From this equation, we see that the transformed coefficients are a′ = (VT )−1a. Substituting

for a from equation (2.19) gives

a′ = (VT )−1a

= (VT )−1
(

S + µ(Sn + St)
)−1

Gn

= (VT )−1
(

S + µ(Sn + St)
)−1

V−1V
︸ ︷︷ ︸

I

Gn.

31



Now use the matrix identity (ABC)−1 = C−1B−1A−1 to obtain

a′ =
(

VSVT + µ
(
VSnV

T + VStV
T
))−1

VGn (2.28)

From Section 2.1 equation (2.4), the monomial scatter matrix S is a summation of matrices

of the form yyT , so it transforms as

S′ =
∑

y′y′T =
∑

VyyTVT = V
(∑

yyT
)

VT

= VSVT

Similarly, the matrices containing the information on the normals and tangents transform

as S′
t = VStV

T and S′
n = VSnV

T using the fact that the computations of the normal

and tangent directions are Euclidean covariant. Thus, the overall scatter matrix S in

equation (2.19) transforms as

S ′ = VSVT (2.29)

Gn transforms like y since it is a weighted sum of monomials, thus G′
n = VGn. Using

these observations equation (2.28) simplifies to

a′ =
(

S′ + µ(S′
n + S′

t)
)−1

G′
n

which is exactly the result that would be obtained from fitting to the transformed data

using equation (2.19). Consequently, gradient-one fitting is Euclidean invariant. Notice

that the Euclidean properties of V(θ, tx, ty) is used only for the computation of the normal

components. This leads to a possible extension to affine invariant fitting if a method to
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robustly compute affine invariant normals is developed.
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Chapter 3

RIDGE REGRESSION

REGULARIZATION OF

IMPLICIT POLYNOMIAL

CURVE FITTING

3.1 Unstable Subspaces

Although, local stability of the zero set around the data is excellent with gradient-one

fitting, there is still significant room for improvement in the stability of the coefficients of

the implicit polynomial and the global behavior of the polynomial. Coefficient vectors in

certain subspaces of the coefficient space may produce very similar zero sets around the

data set while differing elsewhere. As an example, assume that the data is a set of aligned

points along x−y = 0, and that we are trying to fit a full conic. If we do the fit many times

subject to small perturbations of the data, we can observe that the resulting coefficient
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vectors span a 3 dimensional subspace containing the solutions x(x − y) and y(x − y) as

well as x − y. This is a consequence of the fact that each of these three solutions and all

of their linear combinations fit the original data set equally well. The global instability of

polynomials is also evident in the extra pieces of the zero set that lie away from the data,

see Figure 3.1. Indeed, these pieces are extremely sensitive to small perturbations in the

data even though the zero set around the data is stable. Of course, it should be kept in

mind that the examples obtained with gradient-one fitting shown in Figure 3.1 are still much

more stable under data perturbations compared to classical least squares fitting examples

in Figure 2.1 in the sense that the pieces of the zero set curve that actually represent the

input data are robust to noise.

We now examine global instability problems. The overall scatter matrix S, defined in

equation (2.16), is symmetric non-negative definite since it is a sum of scatter matrices, and

thus can be written as

S = UTΛU

where U is a rotation in the coefficient space. The elements of Λ and the columns of U

are the eigenvalues and eigenvectors of S, respectively. If there is exact collinearity in the

data, S will be singular and one or more eigenvalues will be 0. A much more common

problem is near singularity where some eigenvalues of are very small compared to others

and S has a very large condition number. Eigenvectors of S associated with the very small

eigenvalues do not contribute to the polynomial significantly around the dataset. Such

vectors multiplied with large scalars get added into the solution in pursuit of slightly better

solutions because Least Squares Estimation produces the coefficient vector a that globally

35



(a) (b)

(c) (d)

Figure 3.1: With gradient-one fitting pieces of the implicit polynomial zero set that repre-
sent the data are stable with respect to perturbations to the input data. However, global
instability of the fitted polynomials is apparent in the other pieces of the zero set. (a) is the
original shape and the implicit polynomial curve fitted to it, (b)-(d) are data sets perturbed
with white noise that has standard deviation equal to % 5 of the input shape size. Zero set
curves of the fitted polynomials have been superimposed on the data shapes. Notice that
the piece of the zero set between the handles of the pliers is present in only two of the fits.
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Figure 3.2: Graph of an error function of two variables; here V is the stable variable while
W is relatively unstable. The unstable ridge is marked by a heavier line.

minimizes the error function in equation (2.10). This results in very large variances for

coefficients in the subspaces spanned by these eigenvectors. In Figure 3.2, the graph of

a goodness of fit function in two variables is shown. Notice that the function drops off

relatively steeply with the stable variable V , but changes only very slowly with unstable

W . Thus, the solution of LSE which seeks the highest point on the graph, marked LS in

the Figure 3.2, moves along the unstable ridge (heavy line in Figure 3.2) with the addition

of small amounts of noise to the data. Consequently, the variance of the variable W due

to noise is much larger than that of V . What we desire is that scalars multiplying such

eigenvectors be pushed to zero rather than up to unstably-canceling infinities. This requires

modifying LSE as we explain next.

3.2 Ridge Regression

As stated in Section 3.1, we would like variables that do not contribute significantly to

the fit to be forced to attain values as close to zero as possible while other variables are
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effectively unchanged. Since the solution has to move along the ridge shown in Figure 3.2,

the stabilization of the least square is known as Ridge Regression (RR) [30, 29, 85]. The

method of ridge regression improves the condition number of S. The modified coefficient

vector aκ is obtained by

aκ = µ(S + κD)−1Gn (3.1)

where D is a positive definite and symmetric matrix and κ is the ridge regression parameter.

Although D could in principle be chosen as any positive definite matrix, we restrict ourselves

to the simple case where D is a diagonal matrix. The addition of a diagonal matrix D to

the scatter matrix S has the effect of adding a bias which produces coefficient vectors with

smaller norms, i.e., smaller ‖ aκ ‖. In this sense, ridge regression is analogous to weight

decay regularization used in training Neural Networks [6]. We choose the elements of D to

be functions of the sum of squared values of the monomials. In other words, D is a function

of the main diagonal of S. A specific choice for the elements of D that meets the rotational

invariance requirements and which has a desired limiting behavior is proposed and explained

in further detail in Section 3.3. Notice that as κ is increased, S + κD approaches D, and

aκ approaches the limit

a∞ = lim
κ→∞

µ

κ
D−1Gn.

We examine the limiting behavior of Gn in Section 3.4. Equation (3.1) biases the solution

closer to Gn with increasing κ values. Lets return to the example given in Section 3.1. If
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the data set consists of m points aligned around the line x − y = 0 with noise, we have

Gn =

[

0 m −m 2x̄ ȳ − x̄ −2ȳ

]

For simplicity, we can assume for now that D is the identity matrix. Thus, if the data set

is centered at the origin, the solution obtained by ridge regression is biased towards

[

0 1 −1 0 0 0

]

which is the equation of the line x− y = 0 we are searching for. It can easily be shown [85]

that

aκ = U∆UT a (3.2)

where ∆ is a diagonal matrix of shrinkage factors, U is as defined in Section 3.1 and a is

the original least squares estimator. Notice that ridge regression is independent of the exact

manner in which a is obtained. We base our ridge regression results on the gradient-one

estimator; however any other least squares estimator such as the 3L estimator could be

substituted in equation (3.2). For example, this universal nature of the ridge regression

method has allowed its successful application to fitting implicit polynomial surfaces to sets

of points in 3D. Ridge regression modifies the estimator by first rotating it to obtain

uncorrelated components, shrinking each component by some amount and finally restoring

the original coordinate system by another rotation. The crucial point is the amount of

shrinkage applied to each component. If D in equation (3.1) were chosen to be the identity
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matrix, then it is shown in [85] that

∆ =















δ1 0 . . . 0

0 δ2 . . . 0

. . .

0 0 . . . δp















, δi =
λi

λi + κ
(3.3)

where κ is the ridge regression parameter and λi are the eigenvalues of S, i.e., the diagonal

components of Λ. The shrinkage factor δi multiplies the i’th eigenvalue of S−1 which is λ−1
i ,

thus the i’th eigenvector is shrunk by a factor of δi in the solution. Since the eigenvectors

related to the very small eigenvalues of S are unstable, we would like to shrink them while

leaving other eigenvectors largely unaffected. With equation (3.1), this is accomplished as

shown by equation (3.3). Consider a simple case similar to the one depicted in Figure 3.2

where there are two variables one of which is significantly less stable than the other. This

would result in an ill-conditioned matrix S with eigenvalues,e.g., λ1 = 1 and λ2 = 10−4,

and S−1 having eigenvalues 1 and 104 which are the reciprocals of λ1 and λ2, respectively.

If we select κ = 10−3 we obtain the shrinkage factors δ1 = 0.999 and δ2 = 0.0909. Thus,

the eigenvalues of (S + κI)−1 will be 1× 0.999 = 0.999 and 104 × 0.0909 = 909. Notice that

the stable eigenvector corresponding to the larger eigenvalue of S (equivalently the smaller

eigenvalue of S−1) remains relatively unchanged whereas the condition number is improved

from 104

1 = 104 to 909
0.999 ≈ 909, an approximately 11 fold improvement. We address the

question of choosing the value of κ in Section 3.5.

Figure 3.3(c) and (f) shows fits of degrees 6 and 8 obtained by gradient-one fitting

regularized by ridge regression. Comparing these results with the results from standard

gradient-one fitting shown in Figure 3.3(b) and (e), we observe two important properties
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: (a) and (d): Classical Least Squares Fitting Algorithm. (b) and (e): Gradient-
one fitting Algorithm. (c) and (f): Gradient-one fitting regularized by ridge regression.
Degree 6 and 8 are used for the airplane and pliers shapes, respectively. Notice that there
are no extra components in (c) and (f). The values of κ were chosen interactively by the
user.
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(a) (b)

(c) (d)

Figure 3.4: Modifying gradient-one fitting with ridge regression improves its stability with
respect to perturbations of the input data. As in Figure 3.1 (a) is the original shape and
white noise with standard deviation % 5 of the shape size has been added to (b)-(d). The
fitted implicit polynomial curves are superimposed on the data sets in the figure. The value
of κ is fixed for all 4 examples, but was chosen manually by the user.

of ridge regression regularization: (i) the extra pieces of the zero set in the fit to the pliers

shape is gone and both fits are bounded, and (ii) the smoothing introduced around the

data set is negligible. These properties follow from the fact that stable eigenvectors in the

solution are left largely unaffected by ridge regression while unstable ones are shrunk to

insignificant values. Comparing Figure 3.4 with Figure 3.1 it can be observed that the

artifacts of global instability evident with standard gradient-one fitting do not exist in the

results obtained by modifying the gradient-one estimator with ridge regression. In the
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examples shown in Figure 3.3 and Figure 3.4 the value of κ was chosen manually. The

effect of increasing the parameter κ from 0 to higher values is shown in Figure 3.5. Notice

that the unbounded pieces that are close to the data in fitting with no ridge regression,

κ = 0, start to move away with increasing κ. Actually, these pieces totally disappear and

the polynomial zero set becomes bounded. Recall that in Section 3.1 it was pointed out that

unboundedness and extra pieces of the zero set were symptoms of the instability in fitting.

Thus, ridge regression achieves the goal of getting rid of these effects. In Section 3.6, we

present results of experiments that show the quantitative improvement in stability obtained

by ridge regression which we believe is strongly linked to the qualitative improvements

summarized above. We also show in Section 3.4 that a fit to data for a closed shape will

converge to a bounded IP curve as κ goes to infinity.

3.3 Rotational Invariance of Ridge Regression

In Section 2.4 gradient-one fitting was shown to be invariant under Euclidean transforma-

tions. Now we will show that ridge regression when used to modify gradient-one fitting

or any other Euclidean invariant fitting method, can be designed so that these invariance

properties are preserved. The matrix D must be of a special form to preserve the rotational

invariance property in ridge regression. If we apply the same substitutions to equation (3.1)

as those applied to equation (2.19) in Section 2.4, we obtain

a′
κ = (VT )−1aκ

= (VT )−1
(

S + κD
)−1

V−1VGn

=
(

VSVT + VDVT
)−1

VGn
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Figure 3.5: 6th degree IP fits with the gradient-one fitting algorithm and ridge regression
for increasing values of parameter κ.
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Ridge regression fitting will be Euclidean invariant if

a′
κ =

(

S ′ + D′
)−1

Gn
′

which is exactly (3.1) in the transformed reference system. According to equation (2.29)

the scatter matrix S transforms as VSVT under an Euclidean transformation V(θ, tx, ty).

Thus it is necessary to have

VDVT = D′

for ridge regression to preserve the Euclidean invariance properties of fitting. This means

that the invariance of the algorithm to Euclidean transformations dictates the structure

of the matrix D. It is known that if the Euclidean transformation is reduced to a pure

rotation, V can be decomposed as V = B−
1

2 RB
1

2 [79]. Dealing with rotation invariance

alone is justified because the centering of the data in the standardization step before fitting

takes care of arbitrary translations. B is the diagonal matrix of binomial coefficients whose

v’th element along the diagonal is

Bvv =
(i + j)

!i!j!
, v = j +

(i + j + 1)(i + j)

2
. (3.4)

R is a block diagonal rotation matrix. Upon substitution of V in VDVT = D′, we have

B−1/2RB1/2DB1/2RTB−1/2 = D′.
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Multiplying both sides of this equation by B1/2 from the left and the right, we obtain

RB1/2DB1/2RT = B1/2D′B1/2

This simplifies to

RBDRT = BD′

since D is diagonal as well as B. It is sufficient for satisfying the previous equation that D

is block by block, the inverse of B. Therefore, a D sufficient for rotation invariance is:

Dvv = αi+j
i!j!

(i + j)!
, v = j +

(i + j + 1)(i + j)

2
(3.5)

where αi+j is a parameter for the i + j’th block. There are d + 1 parameters when dealing

with d’th degree polynomials, corresponding to the d + 1 blocks and forms. We are free to

set these parameters in a Euclidean invariant way as we will discuss next.

In its simplest form ridge regression uses the identity matrix for D. Solving aκ =

µ(S + κI)−1Gn is equivalent to minimizing

E(a)rr = E(a) + κ ‖ a ‖2

where E(a) is the original error function being minimized such as the gradient-1 fitting

error function, equation (2.10). To prove this recall the vector form of the gradient-1 fitting

error function given by equation (2.18):

Egrad = aTMMTa − 2aTMb + bTb
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where MMT = S and Mb = Gn. Then

E(a)rr = Egrad(a) + κ ‖ a ‖2

= aTMMTa − 2aTMb + bTb + κ ‖ a ‖2

= aTMMTa + κaTIa − 2aTMb + bTb

= aT
(

MMT + κI
)

a − 2aTMb + bTb

which only modifies S to S + κI. Consequently, the solution is modified from S−1Gn to

(S+κI)−1Gn. In other words, ridge regression regularization adds a term to the error that is

proportional to the squared length of the parameter vector; thus, favoring shorter coefficient

vectors. This is very closely related to weight decay regularization used to overcome problems

of over fitting in iterative optimization schemes [6]. Note that this is not Euclidean invariant.

If we set all α to 1 then D = B−1 and we are minimizing

E(a)rr = E(a) + κaTB−1a

which can be shown with the same arguments as above using the fact B is diagonal. In this

case, the weighted length of the coefficient vector, which is Euclidean invariant, is added on

to the error function. This choice of D is Euclidean invariant; however, the results obtained

from ridge regression are improved with the following choice of D. Using the binomial

coefficients once more, we set each of these parameters to the invariantly weighted sum of

the diagonal elements of S associated with the i+j’th form. For the data set
{

(xk, yk)
}m

k=1
,

αi+j is the weighted total scattering of the terms in the i+j’th degree form:

αi+j =
∑

r,l≥0;r+l=i+j

(r + l)!

r!l!

m∑

k=1

x2r
k y2l

k (3.6)
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This choice of αi+j is again Euclidean invariant and is equivalent to solving

E(a)rr = E(a) + κaTDa

We have found that this choice brings significant improvements in power of shape repre-

sentation over simply setting αi+j = 1 for all i, j. In other words, this choice of D yields a

better tradeoff between the desired effect of removing extra pieces of the zero set of the poly-

nomial and the undesirable effect of smoothing the zero set. The elements of the diagonal

matrix D can be obtained by combining equation (3.5) and equation (3.6).

In problems where invariance is not of concern, Principal Component Methods [35]

which do not provide any freedom in the choice of D, can be used alternatively. Since

invariance is a major concern for us, we choose to work in the more general framework of

ridge regression.

3.4 Boundedness Properties and Limiting Behavior of Ridge

Regression

The limit of the solution of (3.1) as κ goes to infinity is

a∞ = D−1Gn (3.7)

up to a scale factor. It turns out that the polynomial specified by a∞ has important

properties. Indeed when the data shape is closed and the degree of the fitted implicit

polynomial curve is even, the IP curve converges to the curve given by a∞ which is always

bounded, as the example in Figure 3.6. The proof that follows is based on the divergence
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Figure 3.6: Left, 6th degree polynomial fits with the gradient-one fitting algorithm and ridge
regression for increasing values of parameter κ (κ = 0, κ = 0.0001, 0.001, 0.01, 0.05, 0.5,
2.0 and 32, respectively). We can observe that the fitted zero set is becoming smoother and
converging to an approximately circular shape.

theorem for closed 2D curves. We can substitute for D and Gn in equation (3.7) from

equation (3.5) and equation (2.12), respectively. The components aij of vector a∞ which are

given by the summation in the matrix multiplication in equation (3.7) can be approximated

as an integral along a contour C when the data shape is closed and the sampling of the

curve is not too coarse:

aij =
(i + j)!

αi+ji!j!

∮

C

nT∇(xiyj)

where n is the normal vector to the curve. Since C is a closed contour, by applying the

divergence theorem and using the vector identity ∇ · ∇g = ∇2g we obtain

aij =
(i + j)!

αi+ji!j!

∫ ∫

R
∇2(xiyj)dxdy

=
(i + j)!

αi+ji!j!

∫ ∫

R
i(i − 1)xi−2yj + j(j − 1)xiyj−2dxdy
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where ∇2 is the Laplacian operator and the R is the region bounded by C. Using (1.3),

and introducing the monomial vector ỹ, the zero set of a∞ is

aT
∞ỹ =

∑

0≤i+j≤d

aijx̃
iỹj = 0

To prove that the zero set of this polynomial is always bounded, it is enough to show that

the leading form of this polynomial is always strictly positive [38]. Lets denote the leading

form, the form of degree d, by hd. By using the two previous equations we find

hd =
1

αd

(
∑

i,j≥0,i+j=d

(i + j)!

i!j!
x̃iỹj

∫ ∫

R
i(i − 1)xi−2yj + j(j − 1)xiyj−2dxdy

)

.

Using i + j = d and after some rearranging we obtain

hd =
d(d − 1)

αd

( ∫ ∫

R

d∑

i=0

(d − 2)!i(i − 1)(xx̃)i−2(yỹ)d−i(x̃)2

i!(d − i)!
dxdy +

∫ ∫

R

d∑

i=0

(d − 2)!(d − i)(d − i − 1)(xx̃)i(yỹ)d−i−2(ỹ)2

i!(d − i)!
dxdy

)

.

Notice that the in the first summation the terms corresponding to i = 0, 1 are 0 and in the

second summation the terms corresponding to i = d, d − 1 are 0. Using this observation

and making the substitution e = d − 2 in both summations and the substitution u = i − 2

only in the first summation we get

hd =
d(d − 1)

αd

(

x̃2

∫ ∫

R

e∑

u=0

e!

u!(e − u)!
(xx̃)u(yỹ)e−u dxdy +

ỹ2

∫ ∫

R

e∑

i=0

e!

i!(e − i)!
(xx̃)i(yỹ)e−i dxdy

)

.

(3.8)
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Figure 3.7: The limiting implicit polynomial zero set for an odd degree (5’th) polynomial
fitted to a closed data shape as κ → ∞.

Making use of the binomial expansion

(a + b)n =
n∑

i=0

n!

i!(n − i)!
aibn−i

we simplify equation (3.8) to

hd =
d(d − 1)

αd
(x̃2 + ỹ2)

∫ ∫

R
(xx̃ + yỹ)d−2dxdy. (3.9)

The leading form given by equation (3.9) is always positive for d even. As an important

consequence of this proof, it is always possible to find some κ > 0 such that the implicit

polynomial of even degree fitted to a closed shape (which is not sampled too coarsely) has

a bounded zero set.

The limiting coefficient vector for odd degree implicit polynomial curves is an interesting

case since odd degree implicit polynomial curves can never be bounded. Figure 3.7 shows

the evolution of a 5’th degree implicit polynomial curve fitted to the same data set as in
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Figure 3.8: A global look at the 5’th degree implicit polynomial curve of Figure 3.7 for very
large values of the ridge regression parameter κ.

Figure 3.6. The behavior of the zero set around the data is very similar in both cases;

however, a more global look at 5’th degree implicit polynomial curve for very large values

of the ridge regression parameter κ, Figure 3.8, reveals a fundamental difference: the zero

set has asymptotes as expected whereas the 6’th degree implicit polynomial curve has to be

bounded which follows from the proof of the preceding paragraph.

3.5 Choosing the Ridge Regression Parameter

The bias of an estimator is the distance between the true value of the parameter being

estimated and the expected value of the estimator, ‖ atrue − aκ ‖. The variance of an

estimator is its expected square deviation from its expected value, ‖ aκ − aκ ‖2. κ controls

the bias-variance tradeoff [31, 85]. Usually, the variance is significantly reduced by deliber-

ately introducing a small amount of bias so that the net effect is a reduction in total mean

squared error which is defined as bias2 + variance. Selection of the parameter κ in practice

can be done in one of two ways depending on what the resulting fit will be used for:

Choosing κ for Shape Modeling. Here the main goal of fitting is to obtain a good repre-
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sentation of the shape without too much smoothing, with bounded zero sets and without

extraneous pieces in the zero set. In Figure 3.6, it can be seen that increasing κ results

in first smoothing high curvature parts of the shape and then convergence to a bounded

shape that does not visually represent the data. So the aim here is to choose the smallest

possible value of κ that gets rid of unstable artifacts like unboundedness, see Figure 3.3,

Figure 3.4 and Figure 3.9 for examples where κ was chosen in this manner. This can be

done iteratively since fitting for modeling can usually be done off-line. Parameter κ can be

increased from 0 to larger values until significant amounts of error start to be introduced

into the fit. Polynomial Interpolated Measure (PIM) which is discussed in Chapter 4 can

be used to track this error as a difference in the polynomial at κ = 0 and at the value of

κ under consideration. Figure 3.9 demonstrates that ridge regression works successfully for

data shapes of different complexities.

Choosing κ for Recognition. Here the main goal is to minimize the total mean squared error

of estimator aκ. Such an optimal value of κ is empirically shown to exist and is found in

Section 3.6.

3.6 Object Recognition and Stability Experiments

In this section, we will demonstrate the improvements obtained in the stability of the

estimated implicit polynomial coefficients under perturbations of the input data with ridge

regression. We will also present results of object recognition tests performed for different

values of the ridge regression parameter κ and show that there is an empirical optimal value

for this parameter in view of object recognition.
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Figure 3.9: Fits for 4th, 6th, and 8th degrees with shapes of different complexities. No extra
components are close to data sets. The ridge regression parameter was chosen manually for
each shape in this example.
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3.6.1 Perturbation Models

Before we present experimental results, it is important to clarify how the perturbed data

sets in these experiments were generated. Most researchers in the field of computer vision

use white noise in their experiments on shape recognition, and thus most algorithms are

optimized to handle this type of noise. In this model, the noise added to each point in the

data is independent of the noise added to the other points. It is relatively easier to obtain

analytical results when dealing with this noise model, but is not always an appropriate

analysis of reality. White noise when used with very small standard deviations is good for

simulating quantization errors; however, it is not a good model for generating deformed

copies of a shape as might be sketched by a human or as might appear after segmentation

from an image of an object taken under slightly different viewing conditions. We would like

to be able to model these variations of shape more accurately since our motivation is to

use IP fitting for indexing into image databases by query by sketch and query by example.

Figure 3.10(a) and (b) show the silhouette of a fish perturbed with white noise with standard

deviations 0.05 and 0.1, respectively. It is clear that these shapes, especially the latter,

cannot represent the shape variations we desire. The solution we propose is simply to use

colored noise instead of white noise. First generate a white noise sequence equal in length to

the number of data points. Then convolve this sequence with an averaging window of length

0.15 times the number of data points. Finally add this sequence of scalars multipled by unit

vectors in the direction perpendicular to the data at each point. The shapes in figure 3.10(c)

and (d) were obtained with this method. Comparing these with Figure 3.10(a) and (b),

it appears that colored noise models represent meaningful shape distortions whereas white

noise can only represent quantization errors. The arbitrary choice of setting the length of

the averaging window to be 0.15 times the length of the data sequence can be changed to
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(a) (b)

(c) (d)

Figure 3.10: Comparison of noisy data simulation using white noise (a)-(b) with standard
deviations 0.05 and 0.1, respectively, and colored noise (c)-(d) with standard deviations
0.05 and 0.1, respectively.

obtain different effects in the distortion produced. Another type of perturbation used in

our experiments is missing data where a random point on the given shape is picked and a

number of consecutive points are removed. Removing intervals introduces much stronger

perturbations then removing an equal number of randomly spaced points.

3.6.2 Scattering in Coefficient Space Under Data Perturbations

In Figure 3.11(a), a 2-dimensional subspace of the coefficients obtained by gradient-one

fitting are shown. The scatter for this pair of coefficients for the mig29 and butterfly overlap

significantly. By using ridge regression, we have smaller scattering radiuses for all shapes

and thus an improvement in distinguishing these two shapes, see Figure 3.11(b). Note that

the scatter plots for other coefficients for these two objects are already well separated.

56



−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Coefficient 5

C
oe

ffi
ci

en
t 6

butterfly
boot     
mig29    

(a)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Coefficient 5

C
oe

ffi
ci

en
t 6

butterfly
boot     
mig29    

(b)

Figure 3.11: Scattering of two of the polynomial coefficients under colored noise with 0.1
standard deviation for 3 shapes. (a) Gradient-one fitting, (b) Gradient-one fitting regular-
ized by ridge regression, κ = 0.001. Notice that two of the shapes overlap significantly in
(a), whereas in (b) they are more distinct. The scales of the axis in both plots are the same.
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Figure 3.12: Objects used in the recognition experiments.
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3.6.3 Object Recognition Experiments

Various object recognition experiments were performed to verify that ridge regression im-

proves object recognition performance. 27 objects shown in figure 3.12, including real world

objects and artificial free-form shapes ranging from simple to complex, were used for all of

the experiments outlined in this section. It is important to note that some objects have very

similar shapes such as the fighter aircrafts, eels, and fishes. This makes object recognition

for this set of objects a non-trivial task.

Recognition performance was tested under various perturbation models which are com-

binations of colored noise, missing data and rotation as explained in Section 3.6.1. Given a

perturbation model, 1000 samples (perturbed shapes) are generated from each base shape.

Each sample is fit with an implicit polynomial curve using the methods outlined in the

previous sections, thus producing a sample in coefficient-vector space for each perturbed

shape. Then, a recently developed complete set of invariants [75] is computed for each

coefficient-vector sample. One of the most important advantages for recognition of this

specific set of invariants is that each invariant is either a linear or quadratic function of

the coefficients or an angle determined by a pair of components of the coefficient-vector.

This leads us to believe that they should out-perform highly non-linear algebraic invariants

in robustness. Finally, a mean and full covariance matrix in the invariant space is learned

for each object. Test sets (100 samples of each object) are generated in the same manner

independently of the training set.

Average recognition rates for the 27 objects are plotted against the logarithm of the ridge

regression parameter κ in Figure 3.13. Recognition rates obtained without using ridge re-

gression are shown with the horizontal lines. In Figure 3.13(a) 4th degree implit polynomial
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curves were used with a perturbation model of 10% colored noise 1 and random rotations

combined. Optimal choice of the ridge regression parameter provides approximately 3%

increase over the already high rate of 96.5%. Note that there is an optimal value of κ, this

is expected since κ controls the bias-variance tradeoff in invariant space and some value of

κ has to minimize bias2 + variance. The following experiments verify this fact with the

further important implication that for this set of objects, best recognition performance is

obtained using approximately κ = 10−3 regardless of the degree of the implicit polynomial

curve or the perturbation model being used. One question that has to be investigated in

future research is if this optimal value of κ will generalize to larger sets of objects.

The experiments presented in Figure 3.13(b) use a stronger perturbation model com-

bining 10% colored noise, 10% missing data and random rotations. Both 4th and 6th

degree polynomials were tested. For degree 4, optimal choice of κ provides 7% improve-

ment in recognition achieving approximately 97%. For degree 6, a much more substantial

16% improvement is obtained raising the best recognition performance to approximately

99%. These top rates are impressive when one looks at some typical perturbed samples

generated in this experiment, Fig 3.14. Note that random rotations are omitted in Fig 3.14

for easy comparison with the original shape. Using 6th degree implicit polynomial curves

provides only a 2% advantage in recognition over using using 4th degree; moreover for some

non-optimal values of κ and with no ridge regression it actually does worse. There are two

important deductions here:

1. Since 6th degree implicit polynomial curves have more coefficients (degrees of free-

dom) they are more prone to problems of unstable subspaces then 4th degree implicit

polynomial curves, especially for simpler shapes that might not require a 6th degree

1% noise refers to noise which has standard deviation specified as a percantage of the shape size.
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polynomial. Since this is exactly the problem ridge regression sets out to solve, the

observation made above is totally expected.

2. It might seem tempting to restrict object recognition to the use of 4th degree implicit

polynomial curves; however, as will be made clear in the next example there are much

more substantial gains to be made with the use of higher degrees in some cases.

We now use even a stronger model of perturbation, by keeping the 10% colored noise

and rotation and doubling the amount of missing data to 20%. Robustness to missing

data crucially depends on a good representation. Figure 3.13(c) confirms this statement;

4th degree implicit polynomial curves yield a top recognition rate of approximately 88%,

6th degree implicit polynomial curves are able to improve this rate to approximately 94%.

Having established that using high degree implicit polynomial curves are necessary in certain

problems, it is also very important to once more realize the crucial role played by ridge

regression in the success of high degree implicit polynomial curves; using the optimal value

of κ provided a gain of over 35% compared to no ridge regression, with 6th degree implicit

polynomial curves in this example.

In the continuing quest for achieving maximum stability in the representation of curve

data by algebraic curves (i.e., the zero sets of polynomials in x and y) and in the sta-

bility of the polynomial coefficients, Chapters 2 and 3 of this thesis make two important

contributions. The first is an understanding of the role of data standardization and the

gradient-constraint in improving representation and coefficient stability. This also sheds

light on why the 3L fitting algorithm [45] is so much more stable than previous fitting

algorithms. The second contribution is the use of rotation-invariant ridge regression, in

the fitting, for improving the stability of both the representation and the coefficients even

further. Ridge regression drives those portions of the polynomial zero set, that are not
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Figure 3.13: 1000 perturbations of each object are used as the training set. Another 100
independent perturbations of each object are used as the test set. Perturbation models are
(a) 10% colored noise + rotation, (b) 10% colored noise + 10% missing data + rotation
and (c) 10% colored noise + 20% missing data + rotation.
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Figure 3.14: A few shapes perturbed with 10% colored noise and 10% missing data.

related to the curve data, far from the data. It also shrinks to near-zero those polynomial

coefficients not important for representing the curve data. The remaining coefficients are

stable and result in increased stability when used for pose-invariant object recognition or

object pose estimation.
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Chapter 4

POLYNOMIAL INTERPOLATED

MEASURES (PIM) AND

INVARIANT PATCHES

In Section 3.6.3 we have demonstrated one approach to object recognition based on vectors of

invariants computed using the coefficients of implicit polynomials fitted to data sets. While

this works robustly using 3L or gradient-one fitting regularized by ridge regression, the fact

remains that implicit polynomial coefficients are global curve descriptors. Hence, no matter

how robust the curve fitting algorithms are, polynomial coefficients are still susceptible to

significant changes under certain data perturbations such as significant amounts of missing

data. The invariants, which are functions of the coefficients, are global descriptors and thus

will be affected by such changes. In this chapter, we will first introduce a local approach to

computing an approximate Euclidean distance between data sets in terms of the distance

between their fitted implkicit polynomial coefficients weighted in a certain way. Unlike

invariant functions, this family of measures, which we shall call Polynomial Interpolated
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Measures (PIM), depends on both the global coefficients and the local data set. They are

insensitive to global changes in the coefficients that do not produce any local changes in the

polynomial around the data set. Another important distinction between these two methods

is that we are limited to comparing invariant vectors of implicit polynomial curves of the

same degree whereas the extension of PIMs for comparing models with different degrees is

trivial as will be shown in Section 4.3. In Section 4.5, we use maximum length invariant

patches to deal with problems of missing data and occlusion in the framework of implicit

polynomial curves.

4.1 Polynomial Approximation to the Distance Transform

Assume that a set Ω =
{

(xk, yk)
}m

k=1
of measurement points can be ”well” represented by

an IP curve of degree d. Let gΩ denote the D-Euclidean Distance Transform [16, 8] of Ω; in

other words, gΩ(x, y) is a function taking a value at (x, y) which is the Euclidean distance

from (x, y) to closest point in the data set Ω. Figure 4.1(b) is the distance transform function

for the shape shown in Figure 4.1(a). For each point in Ω, generate two other points each

at a distance c from Ω, i.e., on the ±c level sets of gΩ(x, y). These level sets are shown in

Figure 4.1(a). We denote these artificially generated curves by Ωc and Ω−c depending on

whether they are inside or outside the curve Ω, respectively. Hence, gΩ(x, y) takes value 0

on Ω and −c and +c on Ω−c and Ωc, respectively. Denote the union Ω−c ∪ Ω ∪ Ωc by Ω3L.

We now determine a polynomial f(x, y) of degree d such that its zero set approximates

Ω. We do this by choosing f(x, y) to be a least squares approximation to gΩ(x, y) on Ω3L.
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Specifically, f̂(x, y) is the d’th degree polynomial for which

∑

(x,y)∈Ω3L

(
f(x, y) − gΩ(x, y)

)2
(4.1)

is minimum. This polynomial approximation f̂(x, y) to the Distance Transform in the

vicinity of Ω is called the 3L fit [45, 7], Figure 4.1(c), where 3L refers to a fit to three level

sets. Notice that in Figure 4.1(c), f̂(x, y) approximates the Distance Transform only in the

vicinity of Ω and differs from it globally.

4.2 Comparing Pairs of Data Sets

We propose a local shape difference measure based on both the polynomial coefficients and

the data sets. Lets describe a simple image database querying scenario: given a measured

object boundary data Ωq as a query shape, check to see which stored data set Ω1,Ω2, . . . it

is closest to. Assume that Ωq is a new noisy measurement along one of the stored curves,

Ωs. The data in Ωq may be along different subintervals of the shape than is the data in Ωs

stored for that shape in the database. Hence, the two data sets represent the same shape

but do not have any points in common. If this is the case or if the measured and stored data

sets are sparse or the data sets contain intervals of missing data possibly due to occlusion,

it may not be physically meaningful to do data set comparison by computing the average

squared distance between the two sets, i.e., for each point in one set computing the square

of its distance to the nearest point in the second set and averaging these squared distances.

Moreover, computing the exact average squared Euclidean distance involves storing the

Distance Transform gΩl(x, y) over a set of grid points for each object in the database, and

66



computing

1

m

∑

(x,y)∈Ωq

g2
Ωl(x, y)

where m is the number of data points in the query data set. Storing gΩl(x, y) requires

considerable storage space since for good resolution, the grid points at which its value is

stored have to be dense. Storing the coefficient vector al for the polynomial f̂l(x, y) fitted

to the data set Ωl and computing

1

m

∑

(x,y)∈Ωq

f̂2
l (x, y) (4.2)

requires storing only a few parameters (see Section 1.1 for the exact number of parameters

as a function of polynomial degree) for each shape and the computation which requires

pm multiplications and pm additions is still very fast. This method has the additional

advantage that if the degree of f̂s(x, y) is chosen appropriately, it interpolates the data Ωs

well, and if Ωs is sparse, then the distance from a point in Ωq to the zero set of f̂s(x, y) may

be more meaningful for recognition than the distance to Ωs as mentioned above.

Within the region bounded by the curves Ω−c and Ω+c, f̂(x, y) is generally close to the

exact value gΩ(x, y) provided that the degree of f̂ is large enough to adequately minimize

equation (4.1). As one moves away from Ω outside the object, the approximation quickly

becomes larger than the exact distance; this can be observed by comparing the contour

plots in Figure 4.1(b) and (c). Inside Ω, the approximation becomes smaller than the

exact distance. Since the goal is computationally fast and robust comparison, a globally

accurate approximation to the distance transform is not essential; certain desired properties

of f̂(x, y) suffice for our purposes. This means that if two data sets are ”close”, we want
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Figure 4.1: (a) Level-sets Ω−c,Ω and Ω+c for a butterfly shape, (b) the Distance Transform
function gΩ and (c) the polynomial approximation to the Distance Transform around Ω.

a dissimilarity measure that is small, and if the two data sets are very much different, we

want a dissimilarity measure that is large. Furthermore, if we wish to permit a significant

amount of variability in an object shape, we need to be able to determine relative amounts

of significant dissimilarity. Note that gradient-one fitting could still be used for obtaining

a f̂(x, y) with the desired properties. The reason we choose to make use of the 3L fitting

method in this chapter is because it makes more intuitive sense in the current context. The

3L and gradient-one fitting algorithms regularized by ridge regression provide f̂(x, y) that

are very likely to meet the requirements stated above. It was shown in Section 3.4 that

when the data shape is closed and the degree of the fitted polynomial is even, the implicit

polynomial curve converges to the curve given by a∞ which is always bounded. This implies

that a choice of the ridge regression parameter κ for which the implicit polynomial curve

is bounded exists. When the zero set curve is bounded and has no extra artifact pieces

that do no represent the data, the polynomial surface should be approximately monotonous

around the zero set curve.
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4.3 IP Shape Dissimilarity Measures

In this section, we will introduce three versions of the dissimilarity measure of equation (4.2)

formulated in vector notation. Let us begin by deriving a local norm for a coefficient vector

a for a implicit polynomial curve of degree d given a data set Ω. The coefficient vector a is

not necessarily the result of implicit polynomial curve fitting to the data set Ω; in fact they

can be totally unrelated. Let yk be the monomial vector associated with point (xk, yk) ∈ Ω

as in Section 2.1 and let M be the matrix of monomials as defined in equation (2.3). Recall

that M is of dimension p × m where p is the dimensionality of the coefficient vector a and

m is the number of points in Ω. Define the average square norm of a over Ω as

(a,a)Ω =
1

m

m∑

k=1

( ∑

0≤u,v;u+v≤d

auvx
u
kyv

k

)2
=

1

m

m∑

k=1

(yk
Ta)2

=
1

m

m∑

k=1

(
aTykyk

Ta
)

=
1

m
aT

(
m∑

k=1

ykyk
T

)

a

=
1

m
aTMMTa

=
1

m
aTSa

(4.3)

where S is the scatter matrix of monomials as defined in equation (2.4) and m is the number

of data points in Ω. S is symmetric and non-negative definite provided p ≤ m, that is the

dimension of the coefficient vector is less than the number of data points in Ω. We can

assume that this condition is met; for example, typical data sets have on the order of a

few hundred points and p is 15 for a 4th degree IP. Since S is symmetric and non-negative

definite, equation (4.3) is a squared norm. Moreover, given two coefficient vectors a and b
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and a data set Ω, we can define an inner product

(a,b)Ω =
1

m
aTSb. (4.4)

If the coefficient vectors a and b represent implicit polynomial curves of different degrees,

they will have different dimensionalities. If the shorter coefficient vector is padded with

zeros for the higher order terms and S is computed for the larger degree equation (4.4) still

applies. Being able to compare polynomials of different degrees is a significant advantage

of PIMs over invariants.

4.3.1 The Non-symmetric PIM

In the context of Section 4.2, assume for now that as, which defines the approximation

f̂s(x, y) to the distance transform of Ωs, has been stored in a database. Note that Ωs has

not been stored, it has been discarded after the computation of as. Recall that Ωq is the

query data set which we want to match against the models stored in the database one of

which is as. It is useful to think of the summation in equation (4.2) as the integration of

f̂2
s (x, y) with respect to a discrete measure taking value 1

m at each point (x, y) in Ωq. Using

the notation developed in Section 4.3, we can rewrite this measure as

PIMns(Ω
s,Ωq) = (as,as)Ωq (4.5)

This measure compares two data sets non-symmetrically by evaluating the polynomial in-

terpolation given by as of the data set Ωs over the other data set, Ωq. Hence, we call this the

non-symmetric PIM. This type of PIM is useful when only one of the data sets is available

as described in the database querying scenario described above. Figure 4.2 demonstrates
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(a) (b)

(c) (d)

(e)

Figure 4.2: A demonstration of the use of PIM. (a) and (c) are two datasets (Ω1 and Ω2)
for which 10th degree IP curves, (b) and (d) respectively, have been stored in a database.
A query object, Ωq, is shwon in (e). The PIM values of the query object and the database
shapes in (a) and (c) are 0.2273 and 0.0064, respectively.

the use of PIMns in the database indexing scenario. In Figure 4.2(a) and (c) data sets Ω1

and Ω2 are shown. Coefficient vectors for the 10th degree IP models for these two shapes,

a1 and a2, have been stored in a database. Figure 4.2(b) and (d) shows the zero sets of the

IP models a1 and a2, respectively. Notice that with the use of high degree polynomials, it

is possible to represent even complicated objects adequately with a single IP curve. Fig-

ure 4.2(e) is a query data set, Ωq, which matches the object shown in Figure 4.2(c) much

better than the object shown in Figure 4.2(a). Evaluating the PIM for the two database

models gives the following result: (a1,a1)Ωq = 0.2273 and (a2,a2)Ωq = 0.0064. Thus from
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the point of view of the PIMs, the query object is approximately 35 times closer to the

shape in Figure 4.2(c) than Figure 4.2(a). This provides a reality check that equation (4.5)

is working as it should.

We now digress for a moment to clarify an issue with PIMs. If a1 were to be multiplied

by a scalar k the measure in equation (4.5) would get multiplied by k2. This is undesirable

for a shape dissimilarity measure because multiplying the coefficient vector by a scalar

leaves the shape representation, namely the polynomial zero set, unaffected. Our approach

is to standardize the shape by centering its center of mass at the origin and scale it by an

Euclidean invariant measure of its size as described in Section 2.3. If the 3L fitting algorithm

is being used, the level sets for each shape are consistently generated at a distance c = 0.05

from the dataset. When all coefficient vectors to be used in (4.5) are obtained in this way,

arbitrary scalings of the measure are avoided. If the gradient-one fitting algorithm is used

than the unit magnitude soft constraint guarantees this property.

4.3.2 The Symmetric PIM

In a somewhat different scenario both data sets may be available for consideration. This

would be the case, for example, in stereo reconstruction where one is interested in computing

the pose transformation between a pair of views of the same object. Implicit polynomial

curves could be fitted to each shape and they can be aligned by minimizing a PIM between

the two datasets, see Section 4.4. Thus, unlike the database query scenario, both data

sets are immediately available and we would not be making use of half of the available

information if we were to use the non-symmetric measure defined in equation (4.5). Thus,
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we define another PIM:

PIMs(Ω
1,Ω2) =

(a1,a1)Ω2 + (a2,a2)Ω1

2
(4.6)

Care must be taken in choosing between equation (4.5) and equation (4.6) in practice

depending on the requirements of the task at hand. Figure 4.3 depicts a situation where

these two measures provide two different interpretations. Two data sets: one consisting of

the “o” symbols only and one that is the union of “o” and “x” symbols and the two IPs

of degrees 3 and 4 fitted to these sets respectively are shown. The two implicit polynomial

curves agree very well on the data set composed only of “o”s, whereas over the larger data

set the they are very different. Using equation (4.5), we compute the non-symmetric PIMs

of the 4th degree IP curve (fitted to the larger data set) on the smaller data set as 0.0004

and the 3rd degree IP curve (fitted to the smaller data set) on the larger data set as 0.2947.

Equation (4.6), which is the average of these two non-symmetric measures is 0.1476. If one

uses directly the symmetric measure, these two data sets will be perceived as very different.

However, a closer look at the two non-symmetric components actually can reveal that one

data set is actually a subset of the other. Thus, if one is interested in comparing patches

to entire objects the two non-symmetric measures should be examined, but if the aim is to

find fully matching shapes, then the symmetric measure should be preferred. This is also

an example of comparing data shapes when the degrees of their fitted implicit polynomial

curves are different.

It was stated in Section 4.2 that an important motivation in using PIMs to compare two

discrete data sets instead of using an average distance between closest pairs of points of the

data sets is the case when the data sets have intervals of missing data. If the dissimilarity
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Points in 3rd and 4th degree datasets

Points in 4th degree dataset         

3rd degree implicit polynomial       

4th degree implicit polynomial       

Figure 4.3: A situation where the symmetric measure defined in equation (4.6) differs from
the non-symmetric measure of equation (4.5)

measure is the average distance from each point of a data set to the closest point on the other

data set, meaningful results can not be obtained because for those points on the intervals

of missing data, the closest points are not actually “close”. Figure 4.4 demonstrates this

situation. Figure 4.4(a) and (b) show two data sets that represent the same shape though

with missing data along different intervals. Also shown in Figure 4.4(a) is the 4th degree

implicit polynomial curve fitted to the data set in Figure 4.4(b). Similarly, Figure 4.4(b)

shows the 4th degree implicit polynomial curve fitted to the data set in Figure 4.4(a). One

of the strongest aspect of polynomial models is their interpolation powers which results

in a certain robustness to missing data. The symmetric PIM of these two data sets is

0.0165, a value small enough for these two objects to be considered the same. Notice that

when the missing data is along a high curvature interval, like in Figure 4.4(a), the fitted

polynomial will be smoother than the original data along this interval, but will still be close,

see Figure 4.4(b).

74



(a) (b)

Figure 4.4: PIM is superior to computing the exact Euclidean distance between a pair of
datasets when there is missing data possibly due to occlusion. In this example, the data
points are shown with circles and the fitted implicit polynomial curves with the superim-
posed curves. The curve shown on the left is the implicit polynomial curve fit to the data
set on the right and the curve shown on the right is the implicit polynomial curve fit to the
data set on the left.

4.3.3 The PIM of the Difference of 2 Coefficient Vectors

There is one more version of PIM as a dissimilarity measure that is worth considering.

Assume that we have two data sets: a shape Ω1 and an Euclidean transformed version

of the same shape Ω2, and we are trying to do pose estimation, that is to compute the

transformation matrix between the two instances of the object. Obtain their respective

implicit polynomial coefficient vectors, a1 and a2. Now let ã2 = Ta1, where T represents

an Euclidean transformation. The transformation between the two objects is the Euclidean

transformation matrix T which minimizes (ã2, ã2)Ω1 . We will discuss pose estimation using

PIM in Section 4.4. Notice that (a1,a1)Ω1 is a lower bound for (ã2, ã2)Ω1 since a1 is the

implicit polynomial coefficient vector that best represents Ω1. (a1,a1)Ω1 is the fitting error

of a1. Let us define a PIM of the difference of these 2 coefficient vectors:

PIMdiff (Ω1,Ω2) = (a1 − a2,a1 − a2)Ω1 (4.7)
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Minimizing this measure has the advantage that its minimum will be approximately 0

instead of some arbitrary fitting error if the two data sets are identical up to an Euclidean

Transformation.

4.4 Pose Estimation and Object Recognition

In previous sections we assumed that the two IPs were aligned, but this is not always true

in practice. In this section, we will use the setup of Section 4.3.3 where a1, a2, ã2 and

T were introduced. The pose estimation can be done globally, i.e., using only the the two

IPs coefficients without using data sets. In [75], a technique for global pose estimation is

introduced. It is computationally efficient and optimal in the sense that all the information

about pose in a1 and a2 is used. The advantage of using PIM for pose estimation over

other techniques is that it allows us to align the two IP curves locally in the neighborhood

of point set Ω1 by the minimization

min
θ,tx,ty

(

a1 − T(θ, tx, ty)a2,a1 − T(θ, tx, ty)a2

)

Ω1

(4.8)

where θ is the rotation angle, and (tx, ty) is the translation between the two IPs.

Initially, we search for analytical solutions. When the Euclidean transformation is re-

duced to a rotation, all minima are the zeros of a complex polynomial. This complex

polynomial is obtained by using the complex coordinates for (x, y), the complex represen-

tation for the Polynomial [75], and the complex representation of the θ rotation, in the

derivative of PIMdiff with respect to θ. Therefore for rotation estimation, a root finder

can be used for solving the PIMdiff minimization. But for translations or full Euclidean

transformations, analytical derivations of PIMdiff require solving complicated systems of
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high degree algebraic equations even when the complex representation is used.

An alternative is to minimize numerically using the Gauss-Newton algorithm, which

is a gradient descent minimization specific for Least-Square minimization. Of course, an

initialization must be provided, and thus the PIMdiff minimization can be seen as a re-

finement process. The easiest way of obtaining an initialization is to use the center of mass

and second order scatter matrix (i.e geometric moments) of the two point sets for an ap-

proximative pose. This approach works fine for elongated objects, the rotation angle may

be difficult to obtain when the shape is compact (or circular shapes) because of stronger

rotational symmetry. For this kind of bloby objects, the advantage of using IP curve fitting

and then doing the pose estimation on the IP coefficients has been shown in [75].

After an initial estimate for the pose of the query object has been obtained in the

manner described above, we proceed to fine tune these estimates using the minimization

in equation (4.8). This involves a simple gradient descent search algorithm as the initial

estimates are already good. It is also important to note that isotropic size changes are

easily included in this fine tuning stage if it is necessary to deal with query objects that are

scaled versions of the objects in the database. Moreover, the initial estimates of rotation

and translation obtained from the coefficients are not affected by isotropic size changes.

We have repeated the experiment of Section 4.3 with the query object rotated and

translated in an arbitrary manner. The objects used are the same as those in Figure 4.2

with the exception that the query object shown in Figure 4.2(e) is rotated and translated.

This scenario was repeated for three different arbitrary transformations of the query object

to show that PIMs work as well with non-aligned objects as aligned objects. The results

are summarized in Table 4.1. PIM values for the matching database object, i.e. Database

Object #2, is always much lower than the values for Database Object #1. The small
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variations in the PIMs values for Database Object #2 are due to the quantization noise

introduced by rotation and due to the IP fitting algorithm. The values for the original query

are larger because no pose estimation was used for the original query. Even non-matching

objects can be aligned to a certain extent with pose estimation resulting in smaller PIM

values.

Database Obj. #1 Database Obj. #2

Original Query 0.2273 0.0064

Transformed Query #1 0.1307 0.0060

Transformed Query #2 0.1307 0.0061

Transformed Query #3 0.1308 0.0062

Table 4.1: Results of database queries with transformed objects.

We Polynomial Interpolated Measures to be useful as final stages for object recognition

or shape based indexing into shape databases. In such a scenario, the number of potential

matching candidates for the query object will be cut down several orders of magnitude

using indexing based on invariants. This is an extremely fast operation since it requires

obtaining the polynomial approximation to the query shape, computing its invariant vector

and indexing into a stored database of invariant vectors. The remaining set of candidates

will be examined using PIMs which allows finer recognition.

4.5 Invariant Patches and Parts

Let us examine a scenario where boundaries of objects present in a scene are found by some

segmentation or edge detection/grouping routine. In many computer vision applications,

data may not be available along the entire shape because of partial occlusion or missing

data. Missing data may be due to the failure to detect edges at locations where edge

strength is low. This problem is an important challenge for model based object recognition,
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shape based indexing, pose estimation and other model based computer vision applications.

Using a single shape descriptor for the entire data must be ruled out unless the missing

data is a minimal percentage of the data present. If a single descriptor, a′, is computed

from the data which has missing parts, it will differ from a descriptor, a, computed from

the whole data. The magnitude of this difference will in general be an increasing function

of the amount of missing data. In the case of implicit polynomial curves, up to a certain

percentage of missing data ‖ a−a′ ‖ is usually a linear function of the percentage of missing

data with a slope close to 0; however, as more data points are taken out, ‖ a − a′ ‖ makes

a dramatic break point and quickly becomes very large. For example, in [74] Tarel et-Al.

find this break point to be around %12 for pose estimation with algebraic surface models.

Occlusion is particularly troublesome because not only is a certain interval of data

missing there is also clutter data from the occluding object. If a single shape descriptor

were computed from the entire data in such a situation, it would differ greatly from a

descriptor for the actual shape. Can occluded objects be recognized from the information

present in the image? One approach to the solution of this problem is to find the physical

parts of an object and to match these parts to the set of object parts in memory. Then

from the parts found in the image, one can speculate what object is present in the image.

If a high enough number of parts are unoccluded, reliable recognition will be possible.

Although, this approach is compelling intuitively, finding physically meaningful parts of

objects automatically is a very hard task.

There are a number of different approaches to the concept of parts: (a) general shape

features [66]; (b) geometric primitives; (c) features pertinent to the restricted set of objects

under consideration in a particular application; (d) area or volume scale; (e) complexity.

Our view of patches and parts is that they are simply subsets of 2D curves or 3D surfaces
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that can be found reliably in any data in which they are visible. These parts are not

physically meaningful. Invariant patches are parts of objects that can be found invariantly

under certain transformations, e.g., Euclidean. Invariant patches of an object generate a

redundant set of overlapping parts because a physically meaningful decomposition of the

object is not sought. In this section, we formulate invariant patches in terms of algebraic

curves and show how they can be used for object recognition. We will call these patches

maximum length invariant IP patches.

Choose a degree d for the implicit polynomial models. Given a data curve C, choose

any point p on C. Now determine the conseccutive set of points that starts at p, transverses

C clockwise, and has maximum length such that the patch can be ”well fit” by a d′th

degree implicit polynomial curve. Now consider a Euclidean or Affine transformation of

the original curve. Take the point p′ on it corresponding to point p on the original curve

before the transformation. Choose a maximum length patch on this curve starting at point

p′ and transversing C clockwise. This patch will be the Euclidean or Affine transformation,

respectively, of the patch on the original curve as long as the fitting methods that are used

to obtain the implicit polynomial curves and the definition of “well fit” preserve the type of

invariance under consideration. Hence, this is a way of choosing patches that are invariant

to Euclidean or Affine transformations. If this is done starting at every point on a shape

curve, the resulting set of maximum length invariant patches is our set of ”parts” for use in

recognition or indexing or other purposes. Of course, these ”parts” do not have any physical

meaning. Note, the maximum length invariant IP patch can be found with a reasonable

amount of computation because our fitting is linear least squares, so that the fitting can

actually be done recursively with a small amount of computation.

To make the definition of the maximum length invariant IP patches more concrete, we
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have to elaborate on what is meant in the previous paragraph by a data set ”well fit” by

a d′th degree implicit polynomial curve. In [46], we had proposed to find maximum length

invariant IP patches in the following manner: Start at point p, use 3L fitting and compute

the average mean square fitting error, E(d, p, l), as a function of increasing patch length l.

Given an implicit polynomial curve and a data set, E(d, p, l) is found by evaluating the total

fitting error and dividing it by the number of points in the data set. This error measure

will be roughly constant as long as a d′th degree implicit polynomial curve fits the data

well. When a d′th degree implicit polynomial curve no longer can provide satisfactory fits,

the error starts to increase rapidly. Thus, we imposed a threshold on E to find maximum

length invariant IP patches.

This approach works fine for smooth curves, but with increasing amounts of noise and

perturbations added to the shape curve, E also becomes increasingly noisy, especially for

patches with relatively fewer points. Consequently, decisions based on thresholding E be-

come less reliable. To solve this problem, we can modify our approach in the following

manner. Implicit polynomial curves of moderate degrees have limited shape representation

power and thus can not model small details. For example, if the data set is a circle of radius

r with sinusoidal modulations of amplitude << r, then a second degree implicit polynomial

curve will fit the data “almost as well as” moderately higher degree implicit polynomial

curves. This is because the fraction of the fitting error E due to the small scale details,

perturbations and noise is approximately irreducible by implicit polynomial curvess of the

degrees that are of interest to us. 1 The same reasoning states that given a curve “well fit”

and “well constrained” by a d′th degree implicit polynomial curve, a noisy version of the

same curve should be fit by d′th and d + 1′th degree implicit polynomial curves with al-

1The same property will be useful again in fitting implicit polynomials to windows of image intensity in

Chapter 5.
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most the same accuracy. By “well constrained” we mean that there are enough data points

present to justify using a degree d polynomial; this usually translates to using more points

than the number of polynomial coefficients (d+1)(d+2)
2 . This condition is necessary for the

error due to perturbations and noise to be approximately irreducible in the fit. Define a

new error function

F (d, p, l) = E(d, p, l) − E(d + 1, p, l)

which is the difference in the average mean square errors in fitting a patch of length l starting

at point p with d′th and d + 1′th degree implicit polynomial curves. The coefficient space

of a d′th degree implicit polynomial curve is a subset of that of a d + 1′th degree implicit

polynomial curve. Thus, the global minimum of E that is achieved by fitting a degree d

implicit polynomial can also be achieved by fitting a degree d + 1′th implicit polynomial

curve. Since linear least squares fitting is an exact global minimization, E(d + 1, p, l) ≤

E(d, p, l) is always true and thus F (d, p, l) ≥ 0. F will be very small for small perturbations

of data sets “well fit” by a d′th degree IP curve; this follows from the above arguments. Once

the length of the patch reaches the point where d′th degree is no longer sufficient, F will

increase sharply. We find maximum length invariant IP patches by imposing a threshold

on F , see Figure 4.5. This threshold should be chosen as a function of shape size. For

shapes standardized as in Chapter 2, 0.5 is an appropriate threshold. Figure 4.5(a) and (b)

show maximum length invariant IP patches found in a data set and its perturbed version.

The patches shown start at matching points on the two shapes. Figure 4.5(c) and (d) are

the graphs of the error as a function of number of points in the patch. Observe that from

Figure 4.5 that thresholding F is more robust than thresholding E under data perturbations
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Degree MXLP % length variation

2 2.39

3 3.12

4 3.22

6 3.44

Table 4.2: Stability of maximum length invariant patches. Average maximum length invari-
ant patche length variation under %10 colored noise is given as a percentage of the number
of data points in the input shape.

since F is less sensitive to perturbations. For a given shape, the set of maximum length

invariant patches are found by choosing every point in the data set as a starting point for

growing a maximum length invariant IP patch as described above.

4.5.1 Stability of Maximum Length Invariant IP Patches

We have used the same set of 27 objects used in the object recognition experiments in

Section 3.6 (Figure 3.12) to test the stability of maximum length invariant IP patches.

We generated 100 perturbed versions of every data set under %10 colored noise. We then

computed the average absolute difference between the number of points in each patch and

its corresponding patch in the unperturbed data set (the patch that starts at the same point

in the original data set). Table 4.2 presents the results as percentages of the number of

points in the data set. The variations in the maximum length invariant IP patches under

perturbations are small enough to be useful in object recognition.

4.5.2 Object Recognition with Maximum Length Invariant Patches

Invariant vectors were computed for the patches found above. [75] The distributions of

vectors of algebraic invariants for maximum length invariant IP patches have the following

important properties that differ from vectors of invariants computed from single descriptors

fitted to entire shapes:
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Figure 4.5: (a) A shape curve, (b) same shape with perturbations and the original shape
is shown with the dotted curve for comparison. 3’rd degree maximum length invariant
IP patches found for one starting point, p, are shown with the squares and the implicit
polynomial curve fitted to these data sets is shown with the heavier curve. (c) - (d):
E(3, p, l), E(4, p, l) and F (3, p, l) as a function of the number of points in the patch, l. The
dashed curves are F , the lower solid curve is E(4, p, l) and the higher solid curve is E(3, p, l)
. The threshold is shown with a horizontal line. The maximum length invariant IP patches
are located at the first intersection of this line with the F curve. Notice that F changes
much less than E between the two shapes.
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IP degree: 4 6

Experiment 1 %97 %99

Experiment 2 %94 %97

Experiment 3 %85 %90

Table 4.3: Average recognition rates. Experiment 1: Colored noise with standard deviation
%5 of shape size and %20 missing data, Experiment 2: Colored noise standard deviation
%5 and %40 missing data, and Experiment 3: Colored noise standard deviation %10 and
%40 missing data.

1. The invariants of the maximum length invariant IP patches extracted from an object

do not form a compact cloud in the invariant space. This is a consequence of the fact

that a complex object contains patches that are significantly different from each other

in shape and thus in the values of their invariants.

2. The values of a vector of invariants from different objects can be similar since it is

possible for these different objects to contain patches that are similar.

Consequently, one reasonable way to do indexing/recognition is to use a Nearest Neighbor

Classifier where an invariant vector obtained from a single patch of the object to be classified

is compared against all invariant vectors in the database. The object then can be assigned

to that class which has an invariant vector that is “closest” to the observed invariant vector.

The recognition test we performed was designed as follows:

1. Maximum length invariant patches were computed for the 27 shapes. Invariant vectors

were computed and stored for all the patches.

2. Variances for each dimension of the invariant space for the entire pool of invariant

vectors is computed.

3. Given a perturbation model, 100 perturbed versions of each original shape was gener-

ated. Maximum length invariant IP patches for each perturbed shape are found and
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invariant vectors computed. Each invariant vector is assigned to belong to the object

that has the closest stored invariant vector. The distance used is a Mahalonobis dis-

tance where the squared difference in each dimension is weighted by the reciprocal of

the variance found in step 2 for that dimension. The perturbed shape is then classified

as that shape that obtains the most number of patch assignments.

The recognition scheme described above is not ideal since it does not make use of the

joint geometry of the patches. Results 4’th and 6’th degree IP maximum length invariant

patches are shown in Table 4.3 for a few perturbation models. Notice that 6’th degree

implicit polynomial curves give better results. In comparison with the results obtained in

Section 3.6 using single implicit polynomials, patches perform better when the amount of

missing data is large. Another point to note is that ridge regression with κ = 10−3 is

used in all implicit polynomial fits. If ridge regression is omitted, results are significantly

worse: a recognition rate of %72 was obtained in experiment 1 with no ridge regression.

See Table 4.3 caption for the description of the experiments.

The above procedure works well for shape recognition; however, it requires that all

patches from all objects be stored in the database and that observed invariant vectors be

compared with all of the stored vectors. The storage requirements and very large compu-

tational burden makes it infeasible for indexing into large shape databases. One solution

for indexing could be to use a binary tree to narrow down the search space in a very fast

manner. The space of invariant vectors can be partitioned into subspaces and a binary

search can be used to find approximate closest vectors to each observed vector. A good

approach to doing nearest neighbor search in high dimensional spaces is given in [52]. Once

the search has been narrowed down to a more manageable number of possible matches,

more accurate methods that incorporate joint geometry together with implicit polynomial
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invariants can be used. An interesting approach to shape recognition with joint geometry

of binary features was introduced in [3]. Generalization of this approach to non-binary

features such as vectors of invariants is an interesting topic for future research. Polynomial

Interpolated Measures can be the final stage of an indexing algorithm applied on a much

smaller set of shapes to order the levels of similarity between the query shape and shapes

in the database that are found to be similar by the above methods.

87



Chapter 5

BOUNDARY CURVELET

DETECTION WITH IMPLICIT

POLYNOMIAL CURVES

In Chapters 2 and 3 implicit polynomial curve fitting and ridge regression regularization

techniques were developed for data sets that are collections of points which describe the

two-dimensional silhouettes of objects. 1 Such data sets can be obtained easily from pre-

segmented binary images by boundary tracing; however, segmentation is not a trivial prob-

lem and assuming that pre-segmented images will be available in a general application is

not realistic. Thus, a way of finding partial or complete boundary curves from images

without relying on a segmentation step is needed. In this chapter and Chapter 6, we ex-

plore finding pieces of boundaries that are salient shape features for object recognition and

shape based indexing. By employing implicit polynomial curves in this task we attempt to

circumvent some of the usual problems that plague the fields of edge detection and edge

1The generalization of these methods to 3D surfaces is trivial.
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grouping/salient contour detection in computer vision.

The contents of a digital image code a great deal of information about the physical world

from which it originates. Natural properties of images are the spatial patterns the intensity

values or the color vectors form at different scales. An arguably more interesting feature for

use in object recognition, 3D surface reconstruction and other high level computer vision

tasks is abrupt changes in these image properties between adjacent locations of an image.

At large enough scales, these are usually the manifestation of boundaries between different

objects or different parts of the same object or they are boundaries caused by illumination

effects such as shadows and will be called boundary curves in the rest of this thesis.

Definition 1 (Boundary Curve) A curve in the image plane that separates two distinct

regions in the image with respect to some image property.

There are other sources of abrupt changes in image properties such as line drawings. To-

gether with boundary curves we will call these edge curves.

Definition 2 (Edge Curve) A curve in the image plane that is an ordered collection of

edge elements constrained by tangential continuity.

According to the definitions above, the set of boundary curves is a subset of the set of

edge curves. Boundary curves are salient and robust shape features for object recognition

and shape based image indexing. Although boundary curves do not provide a complete

description of the contents of an image, they certainly provide very important clues about

the physical world from which the image originated.

Computer vision researchers have studied this object-boundary based view of images

extensively. This effort has produced numerous approaches to edge detection [49, 9, 34,

69], edge grouping and detection of salient contours based on perceptual organization [83,
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65, 55, 50, 28, 51, 2, 27, 88, 87], line and curve detection using the once-popular Hough

transform and its generalized variants [32, 61, 5], boundary finding with active contour

models [36, 11, 86], boundary finding with parametric models [70, 90], stochastic boundary

estimation [14, 92], superquadrics and implicit polynomial curve and surface representations

[47, 38, 79, 7, 77] and segmentation [67, 62, 53, 54, 24], to name a few examples.

Boundary curves separat two adjacent regions with different attributes with respect to

an image feature: color(chromacity and saturation), intensity, texture, etc. In one extreme,

a physical boundary can be undetectable if all image features attain identical values in two

adjacent regions. In the other extreme, all image properties may differ and observing any

single one could be enough to detect the physical boundary. Although, it is true that the

more image properties considered the better are the chances of detection of boundaries, the

relative merits of different image features is a topic of debate. Most approaches in computer

vision have focused on using a single feature; e.g., texture segmentation [54, 10], color based

segmentation [21], and intensity based edge detectors. In this thesis we concern ourselves

with intensity images, the most widely used image type. A boundary curve in intensity will

exist when there is a difference in the amount of light reaching the camera from two regions.

Differences in the reflectance properties of objects, differences in surface orientations and

differences in the amount of light reaching the two regions (such as shadow boundaries) can

all give rise to an intensity boundary curve.

Color can provide very useful information in some situations. Edge detection for color

images [15] and use of color clustering in segmentation [56, 21] are two examples. The

extension of the proposed approach to color images is on our list of future research. We

will comment on possible ways to extend the approach to make use of color information at

various steps in the algorithm.
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5.1 Motivation for Implicit Polynomial Boundary Curvelet

Detection

Existing approaches to edge detection/grouping and segmentation are successfully used in

many scenarios to find boundary curves; however, (i) these approaches are not specifically

designed to detect the boundary curves (see definition 1) that we are looking for; for exam-

ple, an edge detector will most likely pick out texture details as well as boundary curves ,

and (ii) most existing algorithms usually are highly dependent on the choice of parameters

such as the extent of smoothing applied to the image and intensity contrast thresholds. We

need a totally automatic procedure that will perform well in the majority of images since

we propose to use it for detecting boundary curves as features for object recognition in

very large image databases. These reasons have lead us to develop our own boundary curve

detection algorithm based on implicit polynomial curve models. Using implicit polynomial

curves for boundary curve detection result in curves that are in the group of salient and

robust shape features. The algorithm developed is totally automatic and performs very well

in a very broad range of images. In this chapter, we introduce an approach based on implicit

polynomial curve models that detects boundary curvelets in image windows. In Chapter 6,

we discuss how to merge the curvelets detected in windows to form longer curves and the

advantages of this merging over edge grouping based on saliency optimization.

Edge detection algorithms, as their name implies detect single edge elements rather than

edge curves which are ordered collections of edge elements. Detecting single edge elements

requires the use of local operators and decisions based on the outputs of these operators. In

a cartoon-like image where regions have homogeneous intensity and no noise or texture, this

approach could work perfectly based on the simplest local difference operators. However,
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existence of complex intensity patterns due to texture, illumination and noise in images

necessitates the use of operators with larger spatial extent in an attempt to filter out these

effects while detecting edges accurately. Marr and Hildreth [49] have used the Laplacian of

the Gaussian to detect edges. They argued that directional operators were not needed and

a symmetric operator like the Laplacian of a Gaussian could successfully be used for edge

detection. They showed this to be true under the assumption that intensity varies as a linear

function along the edge. Marr and Hildreth also pointed out the need for observing the

image at different scales which they did by varying the standard deviation of the smoothing

Gaussian; they suggested combining the outputs of these different channels into a unified

primal sketch. However, the assumption of linear variation along an edge does not hold

universally; it is actually violated very frequently in images. Canny [9] used three criteria:

detection, localization and single response to an edge to derive optimal edge detectors for

different classes of edge profiles. He showed that the optimal step edge detector is very well

approximated by the first derivative of a Gaussian. He also pointed out the tradeoff in the

choice of the spatial extents of the smoothing filters: larger kernels are better for detection

but they degrade localization accuracy. The direction of the derivative operator should

be aligned to be perpendicular to the direction of the edge element. Canny also argued

for the need for using directional operators. A large extent of smoothing along an edge

is useful whereas the differencing across an edge should be confined to a smaller interval.

This can’t be achieved by taking the directional derivative of a symmetric 2D Gaussian

operator. It is clear that omni-directional local smoothing with any averaging kernel that

spans across the boundary curve will weaken intensity discontinuity at edges and affect their

localization while filtering out noise. Filtering out texture will generally require a spatially

larger averaging kernel resulting in excessive blurring of boundaries. Directional operators
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alone cannot solve this problem either. Directional operators have a linear smoothing axis

and an orthogonal differencing axis. Consequently, valid tangential smoothing extents of

directional operators are limited by the curvature of the edge curves. If the edge curve is an

infinite line then directional operators will work fine at any scale; however, for a curve as

simple as a circle the amount of valid tangential smoothing is limited by its curvature. Other

problems arise at corners and junctions of edge curves. There is no single edge orientation

valid at such locations making linear operators almost useless. Iverson and Zucker [34] have

shown that significant improvements over Canny’s edge detector are possible by logical

checks on the validity of linear operations before performing them. This reduces false

alarms and remedies the problems with previous edge detectors around junctions. However,

local smoothing is still a fundamental part of their method. Convolution of an image by

a Gaussian operator is equivalent to solving the partial differential equation known as the

heat equation with the image as its initial condition. The heat equation formulates a linear

diffusion process using second order spatial derivatives and a first order time derivative.

An approach to smoothing images without blurring boundaries are the non-linear diffusion

methods [42, 41, 82, 57] derived from the heat equation.

The boundary curvelet detection method proposed in this chapter is particularly good

at detecting low contrast boundary curves and boundary curves embedded in noise/texture.

No local smoothing is done on the image prior to the implicit polynomial model fitting in

Section 5.3. The input image is processed in overlapping 8 × 8 windows. The choice of

window size is explained in Section 5.7. The amount of overlap is such that every pixel is

processed in four different windows. In each window the task is to find boundary curvelets.

This task is complicated by a few factors: multiple boundaries may exist in a single window,

some of these curves may intersect to form junctions and some boundaries may be of very
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low contrast or may be embedded in noise/texture. We fit an implicit polynomial model to

the gradient of the data in each window as explained in Section 5.3. The fitting is linear

least squares thus fast and non-iterative. Due to the nature of the fitting method, if a

boundary is present in the window, it will manifest itself as a level set curve of the fitted

polynomial model. Thus, after fitting a polynomial model to the data we test to see if the

average intensity difference between two sides of any level curve of the model is significant,

Section 5.5. The degree of the implicit polynomial model is also chosen automatically,

Section 5.6.

The boundary curvelet detection for every window, Figure 5.1, involves five stages: (A)

computation of gradient vectors, Section 5.2, (B) fitting an implicit polynomial of degree d to

the gradient vectors, Section 5.3, (C) computation of the level set curves of the polynomial,

Section 5.4, (D) testing of each level curve independently to see which level set curves might

correspond to edge curvelets, Section 5.5, and (E) automatic choice of appropriate degree

for the implicit polynomial curve for the given image window, Section 5.6. Section 5.7

explains the details of how an entire image is broken up into windows and the issues in the

selection of window size and seed area size.

5.2 Computation of Gradient Vectors

The implicit polynomial curve fitting algorithm proposed next is based only on intensity

image gradient information. This calls for the computation of an approximation to the

gradient from a discrete image. Let I(x, y) be a continuous intensity image and I(i, j) a

discrete sampling of it at pixel locations on a rectangular grid. The gradient of the continu-

ous intensity image is a continuous vector valued function ∇I(x, y) =
(

∂I
∂x(x, y) ∂I

∂y (x, y)
)T

.

Being unable to observe I(x, y) directly we have to compute an approximate discrete vec-

94


