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Abstract

An algebraic curve is defined as the zero set of a
polynomial in two variables. Algebraic curves are prac-
tical for modeling shapes much more complicated than
conics or superquadrics. The main drawback in repre-
senting shapes by algebraic curves has been the lack of
repeatability in fitting algebraic curves to data. A regu-
larized fast linear fitting method based on ridge regres-
sion and restricting the representation to well behaved
subsets of polynomials is proposed, and its properties
are investigated. The fitting algorithm is of sufficient
stability for very fast position-invariant shape recogni-
tion, position estimation, and shape tracking, based on
new invariants and representations, and is appropriate
to open as well as closed curves of unorganized data.
Among appropriate applications are shape-based index-
ing into image databases.

1 Introduction

Algebraic 2D curves (and 3D surfaces) are ex-
tremely powerful for shape recognition and single-
computation pose estimation because of their fast fit-
ting, invariants, and interpretable coefficients, [1, 2, 5,
7]. Significant advantages over Fourier Descriptors are
their simple applicability to non-star shapes, to open
and/or non-ordered curve data that may contain gaps.
A weakness has been the stability of estimated coeffi-
cients. This paper, studies the problem and provides a
solution. The classical least squares fitting of algebraic
curves, Sec. 3, especially the more interesting cases of
higher degree polynomials, suffers three major prob-
lems:

e local inconsistency with the continuity of the
dataset,

e local over-sensitivity of the polynomial zero set
around the data to small data perturbations,
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e global instability of coefficients due to excessive
degrees of freedom in the polynomial.

Substituting an approximate Euclidean distance for
algebraic distance [7], is much more stable than the
classical least squares algorithm, in many cases gives
useful fits, but in other cases the improvement is not
sufficient to solve these major problems. Similarly, the
use of the exact Euclidean distance provides better re-
sults than the algebraic distance [4], nevertheless the
fitting is sometimes not stable enough and the mini-
mization is solved iteratively, a time consuming pro-
cess. Another attempt to improve the stability of the
fit was the development of fitting algorithms which en-
sure that the obtained zero set is bounded [8, 2], but
the latter is for 2nd degree curves only and increased
stability for both and fitting speed for the former are
still desired. The problem of an excessive number of
parameters in implicit polynomial (IP) representations
was first studied in [3] in the framework of Bayesian
estimation. The linear 3L fitting algorithm [1] exhibits
significantly improved curve representation accuracy
and stability but there is significant value to further im-
provement in coefficient stability in order that algebraic
curves be generally applicable for object-recognition
purposes.

Following a short summary on algebraic curves in
Sec. 2 and the classical least squares fitting in Sec. 3,
the solution of the first and second problems by the
3L method [1] is analyzed from a new point of view
in Sec. 4. In Sec. 5, we present a new linear algo-
rithm which produces accurate and stable curve-data
representations and stable coefficients. Results of ob-
ject recognition experiments based on this algorithm
and a new set of invariants [5] are presented in Sec. 6.

2 Representations of Algebraic Curves

Formally, an algebraic curve is specified by a 2D Im-
plicit Polynomial (IP) of degree n given by f,(z,y) =
Zogj+k§n a;Lx’ y* = 0. The homogeneous binary poly-



nomial of degree r in z and y is called a form, i.e.,
azox? + a112y + agay?® is the 27¢ degree form. The
homogeneous polynomial of degree n is the so-called
leading form. An algebraic curve of degree 2 is a conic,
degree 3 a cubic, degree 4 a quartic, and so on.
Polynomial f,,(z,y) is represented by the coefficient
vector (ajk)o<jk; 0<j+k<n Which has dimension p =

1(n+1)(n+2):
falz,y) =Y'A (1)

where ' A = [ago @10---0no Gn_11 --- a()n]t and Y =
[1 x ... x® 2"y ... y”]t. In general, the vec-
tor notation is convenient for IP fitting since fitting
can be set within a linear framework as detailed in
Sec. 3. A shape is represented by the zero set of f,(z),
i.e., the set of points {z, y} satisfying the IP equation

fn (l‘, y) =0.
3 Classical Least Squares Fitting

The classical and simplest way to fit an algebraic
curve to data is to minimize the algebraic distance over
the set of given data points (z;, y;)1<;<m With the least
squares criterion, that is

DYy A (2

1<j<m

ca= Y (falj,y)* = 4

1<j<m

by using vector representation of f, as in (1). S =
ZISjSm YJYf is the scatter matriz of the monomials.

To avoid the trivial zero solution in the minimization
of (2), a constraint such as ||A||*> = 1 is imposed. The
solution is given by the unit eigenvector A associated
with the smallest eigenvalue of S, [7]. Although this al-
gorithm is affine invariant [7], most of the time it is not
of any practical use due to the following major prob-
lems: The fitted zero set does not respect the continuity
of the original data set as illustrated in Fig. 4(a) and
Fig. 1; thus classical LS fitting is not useful for shape
representation. Results are highly sensitive to small
errors in the data. Even seemingly negligible errors
in the data can lead to zero sets that have no resem-
blance to the results that would be obtained if there
were no errors in the data, Fig. 1. Even with low de-
grees, depending on the structure of the given data set,
S may not provide a stable unique eigenvector 4 under
small perturbations. For example, several eigenvalues
can have similar values to the smallest one, so the solu-
tion will span a subspace in the coefficient space when
small perturbations are added to the data set. Con-
sequently, classical LS fitting is also practically useless
for recognition purposes.

L Superscript ¢ denotes vector and matrix transpose.
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Figure 1: Classical least squares algorithm gives
unstable 4'” degree IP fits under even the small-
est perturbations to the data.

4 Gradient-one Fitting

It is well known that some polynomials, in particu-
lar polynomials of high degree, are ill-conditioned in
the sense that a tiny change applied to certain co-
efficients result in extreme variations in the roots of
the polynomial, [6]. Loosely define the set of well-
conditioned polynomials to be polynomials for which
small or large changes in the coefficients produce small
or large changes, respectively, in the roots, and vice
versa. It is shown in [6] that a polynomial in one vari-
able is stable in the above sense if its root locations
and first derivative values at the root locations are all
“close” to £1.0. In 2D, a set of polynomials satisfy-
ing these constraints exactly are the powers of the unit
circle: ﬁ((rz + %)™ — 1). Members of the set of poly-
nomials “close” to these polynomials in the coefficient
space are well-conditioned.

The first requirement for stable fitting is to apply a
data set standardization to force the data points to be
close to the unit circle, and thus indirectly to force the
zero set of the polynomial to be as close as possible to
the unit circle. The data set standardization consists
of centering the data-set centroid at the origin of the
coordinate system and then scaling the set by dividing
each point by the average of the eigenvalues of the 2 x 2
matrix of second order moments.

The second requirement is to control the value of
the first derivatives along the zero set, i.e, the gradient
of the 2D polynomial:

Ofn

Y fales, ) = [L J o) (3)

The necessity to introduce information about the first
derivatives was first pointed out in [1] and handled in
a linear way with the so-called 3-levels (3L) fitting al-
gorithm. Here we present another approach based di-
rectly on the gradients. The gradient vector along the
zero set of the polynomial is always perpendicular to
the curve defined by the zero set. Since the local tan-
gents to the data curve can easily be computed by a fast
distance transform, we propose to constrain the poly-
nomial gradient at each data point to be perpendicular
to these local tangents and to have unit norm. This
will force the zero set of the polynomial to respect the
local continuity of the data set. The proposed fitting



technique is set as a linear least squares problem with
the additional constraints that the directional deriva-
tives of the IP in the direction of the local tangents
and normals must be as close as possible to 0 and 1,
respectively. These constraints add two terms to (2) to
yield

eg= > (a2, 4)) +p(N}V fr = 1)*+ u(T} V £)?
1<j<m
(4)

where T; and N; are the local tangent and normal at
(zj,y;) and p is the relative weight on the gradient
with respect to the f2? term and is fixed at % for all ex-
periments. With the use of the vector representation
of f,, this minimization is a linear least squares prob-
lem. Indeed, by using the vector notation (1) in (3), we
deduce the vector form of the gradient: Vf, = VY'A.
After substitution in (4), we expand e, as:

eg =AY VY A+ pAt Y VY;N;NIVY] A+

———
S SN
pAY VYT TIVY] A— 244" VY;N; +pum
———
ST GN

S is the scatter matrix of the monomials as introduced
before, Sy and St are the scatter matrices of the direc-
tional derivatives of monomials in directions perpendic-
ular and tangent to the data set, respectively, and G
is the average gradient of the monomials in the nor-
mal direction. The solution that minimizes e, is then
formally derived as:

A=pu(S+u(Sy +5r) "Gy (6)

We named this algorithm gradient-one fitting.
Gradient-one fitting is Euclidean invariant, but not
affine invariant,[6]. Gradient-one fitting is also scale
invariant due to the data standardization step. If the
data standardization step has to be omitted, (5) and
(6) can easily be modified to preserve scale invariance,
[6]. However, data standardization should be used
whenever possible because it improves the condition
number of S and hence the numerical stability of S~'.

In comparison to the classical least squares fits,
Fig. 4(a), results obtained with the gradient-one al-
gorithm provide better shape representations that are
locally consistent with the continuity of the data set,
Fig. 4(b). It can be seen in Fig. 2 that the zero sets of
the resulting fits are stable under data perturbations.
Even though, the perturbations in Fig. 2(a) are much
larger than those in Fig. 1, the changes in the fitted
zero sets are much smaller in Fig. 2(b).

Figure 2: (a) An example perturbation super-
imposed on the original shape, (b) 10 super-
imposed 4! degree polynomial fits with the
gradient-one algorithm to such perturbed data
sets.

5 Ridge Regression Fitting
5.1 TUnstable Subspaces

Although, local stability of the zero set around the
data is excellent with gradient-one fitting, there is still
significant room for improvement in the stability of
the coefficients of the polynomial and the global be-
haviour of the polynomial. Due to the problem of mul-
ticollinearity, coefficient vectors in certain subspaces of
the coefficient space may produce very similar zero sets
around the data set. As an example, assume that the
data is a set of aligned points along z —y = 0, and that
we are trying to fit a full conic. If we do the fit many
times under small random noise, we can observe that
the resulting coefficient vectors span a 3 dimensional
subspace containing the solutions z(z —y) and y(x —y)
as well as # — y. This is a consequence of the fact
that each of these three solutions and all of their lin-
ear combinations fit the original data set equally well.
The global instability of polynomials is also evident in
the extra pieces of the zero set that lie away from the
data. Indeed, these pieces are extremely sensitive to
small perturbations in the data even though the zero
set around the data is stable.

We now examine the multicollinearity and global in-
stability problems. S, defined in (6), is symmetric pos-
itive definite since it is a sum of scatter matrices, and
thus can be written as S = U*AU where U is a rota-
tion in the coefficient space. The elements of A and
the columns of U are the eigenvalues and eigenvectors
of &, respectively. If there is exact multicollinearity
in the data, § will be singular and one or more eigen-
values will be 0. However, this rarely is the case; a
much more common occurrence is near multicollinear-
ity where some eigenvalues are very small compared
to others and & is nearly singular with a very large
condition number. Least Squares Estimation (LSE) is
dedicated to finding the coeflicient vector A that glob-
ally minimizes the error function in (4). Eigenvectors
of § associated with the very small eigenvalues do not
contribute to the polynomial significantly around the
dataset; thus such vectors multiplied with large scalars



will be added into the solution in pursuit of slightly bet-
ter solutions. This will result in very large variances for
coeflicients in the subspaces spanned by these eigenvec-
tors. In Fig. 3 the graph of a goodness of fit function in
two variables is shown. Notice that the function drops
off steeply with the stable variable V', but changes only
slightly with unstable W. Thus, the solution of LSE
which seeks the highest point on the graph, marked LS
in the figure, will move along the unstable ridge (shown
in the figure with a heavier line) with the addition of
small amounts of noise to the data. Consequently, the
variance of the variable W under noise will be much
larger than that of V. What we desire is that scalars
multiplying such eigenvectors be pushed to zero rather
than up to unstabily-cancelling infinities. This requires
modifying LSE as we explain next.
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Figure 3: Graph of an error function of two vari-
ables; here V is the stable variable while W
is relatively unstable. The unstable ridge is
marked by a heavier line.

5.2 Ridge Regression (RR)

Since the solution has to move along the ridge, the
stabilization of the LSE is known as Ridge Regres-
sion [9], referred to as RR in the rest of the paper.
RR modifies § so that it is closer to what it would be
for data in which there is no collinearity, that is, data
in which all the explanatory variables are uncorrelated
with one another. The modified coefficient vector, A,
is obtained by

Apr = p(S+ kD) Gy (7)

where D is a diagonal matrix and k is the RR
parameter.  The specific form of D will be ex-
plained at the end of this section. @~ When there
is collinearity, (7) biases the solution closer to
Gpn. For the example given in Sec. 5.1, Gy =
[0 n —n 2& w;—&; —2¢;]° . Thus, if the data
set is centered at the origin, the solution obtained by
RR is biased toward [0 1 —1 0 0 0], ie., the

equation of the line z — y = 0 we are searching for. If

D in (7) were chosen to be the identity matrix, it can

be shown [9] that
A, =UAU'A (8)

A is a diagonal matrix of shrinkage factors and U is as
defined in Sec. 5.1. In other words, RR modifies the
LSE by first rotating it to obtain uncorrelated com-
ponents, shrinking each component by some amount
and finally restoring the original coordinate system by
another rotation. The crucial point is the amount of
shrinkage applied to each component. It is shown in [9]
that

= )

A= dzag((il) s (52

where k is the RR parameter and A; are the eigenvalues
of 8, i.e., the diagonal components of A. The shrinkage
factor §; multiplies the i’th eigenvalue of S~! which
is )\Z»_l, thus the coeflicient of the i’th eigenvector is
shrunk by a factor of d; in the solution. Since the
eigenvectors related to the very small eigenvalues of
S are unstable, we would like to shrink them while
leaving other eigenvectors largely unaffected. With (7),
we accomplish this as shown by (9).

(

b)

Figure 4: (a) Classical Fitting Algorithm. (b)
Gradient-one Fitting Algorithm. (¢) RR Fitting
Algorithm. Degree 6 and 8 are used for the
airplane and pliers shapes, respectively.

Fig. 4(c) shows fits of degrees 6 and 8 obtained
by RR. Comparing these results with the results from
standard gradient-one fitting shown in Fig. 4(b), we
observe two important properties of RR: (i) the extra
pieces of the zero set in the fit to the pliers shape is
gone and both fits are bounded, and (ii) the smooth-
ing introduced around the data set is negligible. These
properties follow from the fact that stable dimensions
are left largely unaffected by RR while unstable ones
are shrunk to insignificant values. The effect of in-
creasing k from 0 to higher values is shown in Fig. 5.
Notice that the unbounded pieces that are close to the
data in fitting with no RR (k = 0), start to move away
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Figure 5: 6'* degree polynomial fits with the
gradient-one algorithm and RR with increas-
ing values of parameter k from left to right.

Observe that the extra components are moving
away from the data set.
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Flgure 6: Fits with 4%, 6", and 8" degrees. No
extra components are close to data sets. The
RR parameter was chosen manually for each
shape in this example.
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with increasing k. Actually, these pieces totally dis-
appear and the polynomial zero set becomes bounded.
As k is increased, & + kD approaches D, and A,, in
(7) approaches the limit A, = %D_IGN. Indeed for
closed data curves and even degree polynomials, it can
be shown using the divergence theorem for closed 2D
curves that the limiting IP curve given by A, is al-
ways bounded, [6]. Hence, for closed data shapes and
even degree IPs it is always possible to choose a k that
will give a bounded IP curve. Fig. 6 shows more ex-
amples of 4t", 6", and 8t degrees fits to illustrate this
fact.

Rotational Invariance and the ridge matrix D
Invariance of the fitting algorithm to Euclidean
transformations of the data is important to insure
the repeatability of the results. A,, in (8) is not
rotationally invariant. Choosing D to be a diagonal
matrix with elements

14! k+ 0!
S T =
J): k>0 +l=i+] o

§ :xzk 21

E/—/
diag. elements of S

(10)
for 7,5 > 0;¢4+j < n where v :j—i—(iﬂzw (order-
ing of the monomial matrices) preserves the rotational
invariance of gradient-one fitting while achieving the
desired regularization, [6]. Elements of D are invari-

antly weighted sums of the diagonal of the monomial
scattering matrix S. With this choice of D, RR is very
closely related to weight decay regularization used to
overcome problems of overfitting in iterative optimiza-
tion.

5.3 Choosing the RR Parameter

The bias of an estimator is the distance between the
true value of the parameter being estimated, A;,¢, and
the expected value of the estimator, A,,. The variance
of an estimator is its expected square deviation from

its expected value, || A, — A,, ||%. k controls the bias-
variance tradeoff. Usually, the variance is significantly
reduced by deliberately introducing a small amount of
bias so that the net effect is a reduction in total mean
squared error which is defined as bias® + variance. In-
troducing bias is equivalent to restricting the range of
functions for which a model can account. Typically
this is achieved by removing degrees of freedom. Con-
trary to other approaches such as Principal Compo-
nent Methods, RR does not explicitly remove degrees
of freedom but instead smoothly reduces the variabil-
ity of parameters. This makes the model less sensitive
to small perturbations. Selection of the parameter k in
practice can be done in one of two ways depending on
what the resulting fit will be used for:

Choosing k for Shape Modeling. Here the main goal of
fitting is to obtain a good representation of the shape
without too much smoothing or extraneous pieces of
the zero set. The smallest value of k that achieves this
goal can be chosen by the user as in Fig. 6. Or k can
be chosen automatically in an iterative trial-and-error
approach since fitting for modeling can usually be done
off-line. k can be increased from 0 to larger values until
significant amounts of error start to be introduced into
the fit.

Choosing k for Recognition. Here the main goal is to
minimize the total mean squared error of estimator
Ayr. Such an optimal value of k is empirically shown
to exist and is found in Sec. 6. Choosing the optimal
value of k£ analytically remains to be done in our future
work. Optimal values of k could differ for different data
sets. In [6], it is shown that k can be computed from a
data independent threshold 7, on the condition num-
ber of § + kD. The optimal value of 7 will be data set
independent.

6 Experiments

We comment on how the perturbed data sets used in
the experiments were generated. The most commonly
used shape perturbation model in Computer Vision is
white noise, which adds independent amounts of noise
to each data point. White noise when used with very
small standard deviations is good for simulating quan-



tization errors; however, it is not a good model for gen-
erating deformations of a shape as might be sketched by
a human or as might appear after segmentation from
an image of an object taken under slightly different
viewing conditions. The perturbation model we pro-
pose is colored noise (averaged white noise). A white
noise sequence is generated and convolved with an av-
eraging window. The standard deviation of the white
noise sequence is chosen so that the resulting colored
noise sequence will have the desired standard deviation
as a percentage of the shape size. The obtained colored
noise sequence is then added in the direction perpen-
dicular to the data curve at each point, Fig. 7. Another
type of perturbation used in our experiments is miss-
ing data where a random point on the given shape is
picked and a number (a percentage of the total number
of points) of consecutive points are removed, Fig. 7.

~ N h

Figure 7: A few shapes perturbed with 10% col-
ored noise and 10% missing data.

A set of 27 objects, Fig. 8, including real world ob-
jects and artificial free-form shapes ranging from sim-
ple to complex, were used for the experiments. Note
that some objects have very similar shapes such as the
fighter aircrafts, eels, and fishes. This makes object
recognition for this set of objects a non-trivial task.
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Figure 8: Objects used in the experiments.

Recognition performance was tested under 3 per-
turbation models which are combinations of colored
noise, missing data and rotation. Given a perturba-
tion model, 1000 samples, i.e., perturbed shapes are
generated from each base shape and fit with an IP.
Then, a recently developed complete set of invariants
[5] are computed for each coefficient sample. One of the
important advantages of this set of invariants for recog-
nition is that each invariant function is either a linear
or quadratic function of the coefficients or an angle be-
tween 2 coefficients. This leads us to believe that they
should be more robust than highly non-linear algebraic
invariants. Finally, a mean vector and full covariance
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Figure 9: Pertubation models are (a) 10%
colored noise + rotation, (b) 10% colored
noise + 10% missing data 4+ rotation and (c)
10% colored noise + 20% missing data + rota-
tion.

matrix in the invariant space is learned for each object.
Test sets (100 samples of each object) are generated in
the same manner independently from the training set.

Average recognition rates are plotted against the
logarithm of the RR parameter k in Fig. 9. Recogni-
tion rates obtained without using RR are shown with
the horizontal lines. In Fig. 9(a) 4th degree polyno-
mials were used with a perturbation model of 10% col-
ored noise and random rotations. Optimal choice of the
ridge regression parameter provides approximately 3%
increase over the already high rate of 96.5%. Note that
there is an optimal value of k; this is expected since k
controls the bias-variance tradeoff in invariant space
and some value of k will minimize bias? 4+ variance.
The other experiments verify this fact with the fur-



ther important implication that for this set of objects,
best recognition performance is obtained using approx-
imately k = 1073 regardless of the degree of the poly-
nomial or the perturbation model being used. One
question to be investigated in future work is whether
this optimal value of k will generalize to larger sets of
objects.

The experiments presented in Fig. 9(b) use a
stronger perturbation model combining 10% colored
noise, 10% missing data and random rotations. Both
4th and 6th degree polynomials were tested. For de-
gree 4, optimal choice of k provides 7% improvement in
recognition achieving approximately 97%. For degree
6, a much more substantial 16% improvement is ob-
tained raising the best recognition performance to ap-
proximately 99%. Using 6th degree IPs provides only
a 2% advantage over using using 4th degree. For some
non-optimal values of k£ and with no RR it actually does
worse. There are two important deductions here: 1.
Since 6th degree IPs have more coefficients (degrees of
freedom) they are more prone to problems of unstable
subspaces then 4th degree IPs, especially for simpler
shapes that may not require a 6th degree polynomial.
Since this is exactly the problem RR sets out to solve,
the observation made above is expected. 2. It might
seem tempting to restrict object recognition to the use
of 4th degree IPs; however, as will be made clear in the
next example there are much more substantial gains to
be made with the use of higher degrees in some cases.
We now use even a stronger model of perturbation, by
keeping the 10% colored noise and rotation and dou-
bling the amount of missing data to 20%. Robustness
to missing data crucially depends on a good represen-
tation. Fig. 9(c) confirms this statement; 4¢h degree
IPs yield a top recognition rate of approxiamtely 88%,
6th degree IPs are able to improve this rate to approxi-
mately 94%. Having established that using high degree
IPs are necessary in certain problems, it is also very im-
portant to once more realize the crucial role played by
RR in the success of high degree IPs; using the optimal
value of k provided a gain of over 35% compared to no
RR for 6th degree IPs in this example.

7 Conclusions

In the continuing quest for achieving maximum sta-
bility in the representation of curve data by algebraic
curves and in the stability of the polynomial coeffi-
cients, this paper makes two important contributions.
The first is an understanding of the role of data nor-
malization and polynomial gradient-constraint in im-
proving representation and coefficient stability. This
also sheds light on why the 3L fitting algorithm [1] is
so much more stable than previous fitting algorithms.
The second contribution is the use of rotation-invariant

RR, in the fitting, for improving the stability of both
the representation and the coefficients even further.
The RR drives those portions of the polynomial zero-
set, that are not appropriate to the curve data, far from
the data. It also shrinks to near-zero projections of
polynomial coefficients in those subspaces that are not
important for representing the curve data. The remain-
ing coefficients are stable and result in increased sta-
bility when used for pose-invariant object recognition
or object pose estimation. The exact same methodol-
ogy of gradient-one fitting and RR can be used for 3D
surface fitting to data in x,y,z. Also, the gradient-one
least squares fitting can be extended to include higher
order directional derivatives, e.g., to impose curvature
constraints on the fitted shape representation.
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