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Abstract

The Cramer-Rao error bound provides a fundamental limit
on the expected performance of a statistical estimator. The
error bound depends on the general properties of the sys-
tem, but not on the specific properties of the estimator or the
solution. The Cramer-Rao error bound has been applied to
scalar- and vector-valued estimators and recently to para-
metric shape estimators. However, nonparametric, low-
level surface representations are an important tool in 3D
reconstruction, and are particularly useful for represent-
ing complex scenes with arbitrary shapes and topologies.
This paper presents a generalization of the Cramer-Rao er-
ror bound to nonparametric shape estimators. Specifically,
we derive the error bound for the full 3D reconstruction of
scenes from multiple range images.

1. Introduction

A confluence of several technologies has created new op-
portunities for reconstructing 3D models of complex objects
and scenes. More precise and less expensive range mea-
surement systems combined with better computing capabil-
ities enable us to build, visualize, and analyze 3D models
of the world. The difficulty of reconstructing surfaces from
range images stems from inadequacies in the data. Range
measurements present several significant problems, such as
measurement noise, variations in measurement density, oc-
clusions, and errors in the registration of multiple range im-
ages. Hence, the reconstructed surfaces are not perfect, they
are merely estimates of the true surfaces. As the use of
measured 3D models becomes more commonplace, there
will be a greater need for quantifying the errors associated
with these models. For instance, the use of 3D models in
forensics, to model crime scenes [1], will invariably raise
the question, “How much can we trust these models?”!

Signal processing, and estimation theory in particular,
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provides a tool, the Cramer-Rao error bound (CRB), for
quantifying the performance of statistical estimators. How-
ever, the CRB has traditionally been applied to parameter
estimation problems. That is, problems in which the num-
ber of parameters and their relationship to the physical mea-
surements is fixed and known. In order to apply these tools
to surface reconstruction, we must first define a notion of er-
ror for surfaces and then adapt these tools to a 3D geometric
setting.

The analysis of reconstruction errors depends on the sur-
face representation. For this discussion we divide the space
of surface models into two classes: parametric and nonpara-
metric. Parametric models are those that represent shapes
indirectly via a finite set of variables that control the local
or global position of the surface. Parametric models range
from simple primitives that have a few parameters to more
complicated algebraic polynomial surfaces and piecewise
smooth models, such as splines. Parametric approaches are
particularly well suited to higher-level tasks such as object
recognition. In the context of estimation, the number of
parameters and their relationship to the shape is not usu-
ally considered as a random variable. Therefore, parametric
models restrict the solution to the space of shapes that are
spanned by the associated parameters.

The alternative is a nonparametric model, which, for the
purposes of this paper, refers to those representations in
which the position of any point on the surface is controlled
directly and is independent (to within a finite resolution)
from the positions of other points on the surface. Accord-
ing to this definition, surface meshes, volumes, and level
sets are examples of nonparametric shape representations.
Nonparametric models typically have many more free pa-
rameters (e.g. each surface point, their number, and their
configuration) and they represent a much broader class of
shapes. However, nonparametric models impose other lim-
itations such as finite resolution and, in the case of implicit
models, closed boundaries. Nevertheless, the literature has
shown that nonparametric models are preferred when re-
constructing surfaces of complex objects or scenes with ar-



bitrarily topology and very little a-priori knowledge about
shape [2, 3, 4, 5]. This paper introduces a novel formulation
for computing expected errors of nonparametric surface es-
timates using point-wise Cramer-Rao bounds.

The rest of this paper is organized as follows. Section 2
discusses related work, Sect. 3 summarizes the maximum
likelihood nonparametric surface estimation process, and
Sect. 4 derives a CRB for nonparametric surface estimators
and gives results for synthetic data. Section 5 presents re-
sults for real data. Section 6 summarizes the contributions
of this paper and discusses possibilities for future research
directions.

2. Related Work

The CRB states the minimum achievable error for an es-
timator, and therefore, provides fundamental limits on the
performance of any estimation process. The expression for
the CRB is independent of the specific form of the estima-
tor; it depends only on the statistics of the input measure-
ments and the bias of the estimator. Moreover, for asymp-
totically efficient estimators, such as the maximum likeli-
hood estimator (MLE), the CRB is a tight lower bound, i.e.
for MLEs the CRB is achievable. Thus, the CRB quantifies
the expected error of the output of an estimation process in
the absence of ground truth. In the context of surface recon-
struction, it provides a well-founded, systematic mechanism
for computing the error of a reconstructed surface.

Researchers have extensively used CRBs for problems
where the estimator is relatively simple, such as scalar or
vector quantities. For instance, parameter estimation to de-
termine the location, size and orientation of a target has
been studied using CRB analysis [6]. More recently, sev-
eral authors have derived CRB expressions for paramet-
ric shape estimators. Hero et al. [7] compute the CRB
for B-spline parameters of star-shapes estimated from mag-
netic resonance imagery. Ye et al. [8] compute the
CRB for more general parametric shape estimators. Con-
fidence intervals for shape estimators can be computed us-
ing CRBs [9], which provides an important computational
advantage over using a Monte-Carlo simulation [10]. How-
ever, these results apply only to parametric shape estima-
tors. The goal of this paper is to fill a gap in 3D surface re-
construction by deriving the CRB for nonparametric shape
estimators and expressing the error in terms of a statistical
model of a scanning laser range finder.

3. Maximum Likelihood Surface Reconstruc-
tion

This section describes a particular formulation for a non-
parametric MLE surface estimator. The results in this paper
establish a bound that applies to any nonparametric surface

estimator. However, these results provide a tight bound for
MLE estimators, and the formulation for the MLE estima-
tor introduces some basic concepts that are important for
the CRB.

We begin by describing a mathematical model of a range
image. A range finder is a device that measures distances to
the closest point on an object along a particular line of sight.
A range scanner produces a 2D array (image) of range mea-
surements r; ;, through a scanning mechanism that aims the
line of sight accordingly, see Figure 1. Therefore each el-
ement or pixel of a range image consists of two things: a
line of sight and a range measurement, which together de-
scribe a 3D point. We denote a single range image R) and
a collection of range images taken from different scanner
locations as { RV, ..., RM)}.

The object or scene also requires a precise specification.
We define the surface S as the closure of a compact subset
of 3D, Q. Thus, S is the “skin” that covers the solid Q2.

The range measurements are random variables, but if we
know the sensor model, we can compute the probability of
a particular set of range image conditional on the scene as
P (RW,...,R™)|8). This is the likelihood. An MLE esti-
mator is defined as

S’:argsupP(R(l),...,R(M)|S). (1)
s

Any estimator that minimizes the likelihood is asymtoti-
cally efficient and unbiased. That is, as the number of mea-
surements goes to infinity, the estimator is correct on the
average and is as good as any other unbiased estimator.
Whitaker [5] shows that the maximum likelihood estima-
tor of such a collection of range images can be computed as
the set of zero crossings of scalar function G(x). That is

§={xeR’|G(x) =0}, 6

Curless [3] uses a similar implicit formulation to reconstruct
surfaces from multiple range scans.
For the MLE formulation G(x) is

G(x) =Y _ h(D;(x)), 3)

where D;(x) is the distance from the j’th scanner location
to the point x € IR®, and & is the derivative of the log-
arithm of the pdf for the range measurement error model.
The model assumes that the range measurements within a
single scan are sufficiently close and are suitable for in-
terpolation. Notice that if the sensor model is Gaussian h
is linear. Certain classes of range measurements, such as
ladar, have been shown to have noise characteristics that
can be described as Gaussian with outliers [11].
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Figure 1. A range finder produces a dense range
map of a scene.

4. Cramer-Rao Error Bounds

The only description of the surface offered by nonpara-
metric estimators, (2), is the set of points % in 3D that lie
on the surface. Therefore we formulate the error as a sepa-
rate bound for each surface point. Errors on points are di-
rectional, but without any correspondence between the esti-
mate and the true surface, the only important aspect of the
error is how far each point is from the nearest point on the
actual surface. Given a point %, we can compute the CRB
as E [||x — S||?/S], where ||% — S|| denotes the shortest
Euclidean distance between % and S, the actual surface, and
FE denotes the expected value for all possible x. The local
error bound gives us a map of errors over the entire surface
estimate. This is a more useful and general result than a
global error bound.

Let n be the number of scanners (range images) to which
the point % is visible. Each of the n scanners has one line
of sight, L9 associated with %. This is the vector from the
scanner location to %. Let (9 denote the range measure-
ment for the i’th scanner taken for the line of sight L(®. In
principle, % is a function only of the set (1), ..., (™), Using
the Cramer-Rao error bound formula for unbiased estima-
tors [12], we find

E> ! . @

2
n  poof dP(r()]S) 1 )
Zz’:l fo ( dS ) p(,,,(i)ls) dr(l)
In the rest of this paper, we use FE to denote

E[||% — S||?/S]. Equation (4) is a function of the deriva-
tive of the pdf with respect to S. To compute this derivative,

we use a local first-order approximation to the surface, i.e.
the tangent plane. Let N denote the surface normal vector,
which is perpendicular to the tangent plane. Then, perturba-
tions of the surface can be locally approximated by moving
the tangent plane along the normal direction dS = €N, see
Figure 2(a). Let 8 denote the angle between N and —L(9),
Also, let r§’> denote the true distance from the scanner to the
surface along L(?). The geometric relationship between the
surface perturbation € and the change in the true distance
from the scanner to the surface, see Figure 2(a), dictates

(0 _
Ary cos (%) ®)
Using this relationship, we obtain
dP(r(i)|S) B P(r(i) |S + €N) —P(r(i)|3)
s ¢
P r(i)|r(i) + AR P r(i)|r(i)
o PO £ 4n0) P (01 )
e—0 €
. P r(i)\rt(i)—f-Art(i) —P| r(i)|rt(i)
11mAr§“—>0 ( Ar?? ( )
B cos (%)
1 ap(rOn) (6)
" cos () dr{?
Substituting this result into (4) yields
E > ( 1 (,)) 5 .
n i) [o° ap(r@®|r i
Yy sect® [g < ' ® > P(r(im(i)) dr(®
()

The next step is to formulate the conditional pdf for
range measurements. There are two possible sources of er-
ror in each range measurement:

e the angular error in aiming the line of sight, and

e the error in the distance measurement along the actual
line of sight.

The uncertainty in the line-of-sight can be used to describe
several sources of error. First, the scanner measures range
along a discrete grid of line-of-sights, and therefore, it intro-
duces a sampling error. Moreover, given an intended line-
of-sight on the discrete grid, there is an error in aiming the
range finder. We will refer to this discrepancy between the
intended and the actual line of sights as pointing error. Fi-
nally, when estimating surfaces from multiple range images,
error is introduced by imperfections in the registration of the
different range images to each other.

For most range scanners, such as Ladar, the pointing er-
ror is small compared to the error in the distance measure-
ment. Hence, it is common to assume a perfectly aimed line
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Figure 2. (a) The relationship between perturba-
tions of the surface and its true distance from the
scanner. (b) The 2D geometry of line of sight error.

of sight, to simplify the formulation of the conditional pdf.
In this case, P (r(¥|S) depends only on the true distance

from the i’th scanner to S along the vector L), We can
assume a Gaussian distribution for the noise in the distance
measurement [5], and therefore

P (r(i) |S) =P (r(i)|r,§i)) ~ N(r,gi),af). (8)

Using results for Gaussian pdf’s from [12], we find that

(@) 1.1\ 2
/ dP(r .lrt ) 1 i dr(z) = g2 (9)
7 dr{? Pr®|[r) "

Substituting this result into (7), we get

1 o2

Bz S 1/02cos0@ 3T secHd)” (10)

This result states that if any of the n scanners have a
line of sight that is perpendicular to the normal vector at
% (D) = 0), the error bound for that point is zero. Fig-
ure 3 demonstrates this result with a sphere. We compute
the CRB for estimating a surface from six noisy range im-
ages of a sphere with unit radius taken along the six cardinal
directions. Figure 3 shows the CRB as a colormap on the
surface; the units are the radius of the sphere. The scanners
are located on the axis along the purple regions on the esti-
mator. As predicted by (10) these are the regions of highest
expected error. The red regions, where the CRB is 0, form
six circles on the sphere. These circles are the silhouettes
of the sphere as seen from the scanner locations. Therefore,
according to this incomplete CRB derivation, it should be
possible to determine the location of any desired point ex-
actly by repositioning the scanner. This counter-intuitive re-
sult is due to ignoring the angular error in the line of sight.

N __=
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Figure 3. [Color]The incomplete CRB shown as a
colormap on the sphere, and (b) the color map for
the CRB. The radius of the sphere is 1 unit.

In practice, this error is non-zero, and we can not determine
any point on an object error-free. We derive a complete
conditional pdf and CRB in the rest of this section.

4.1. Error boundin 2D

We can derive an accurate conditional pdf for the range
measurement if we take the pointing error in the line of
sight into account. Let us first examine the simpler 2D
case, where Q@ c IR? and S is a curve. The vector from
the i’th scanner to % on the surface estimator, L(?, is now
the intended line of sight. Figure 2(b) illustrates L(«) and
a which represent the actual line of sight (random variable
A) and the angle it makes with the intended line of sight,
respectively. We assume that the pdf for « is a Gaussian
with zero mean (there is no constant offset error in aiming
the scanner) and o, standard deviation

P(a) ~ N(0,02). (11)

Given this actual line of sight, we assume a Gaussian distri-
bution for the distance measurement (random variable B)

P (r<i>|L(a),s) -p (r<">|r(a)) ~ N (r(@),02), (12)

where r(a) is the actual distance to the surface S along
L(a). Random variables A and B are independent; there-
fore, their joint probability is the product of (11) and (12).
Integrating this joint probability over the domain of «, we
compute the marginal distribution

P (rs) = / i P (r9[L(a),8) Pla)da.  (13)

—m



To evaluate this probability, we still need to determine the
expression for r(a) in (12).

Without loss of generality, define the scanner location
and L@ to be the origin of the coordinate frame and the

y-axis, respectively. Then, we have L(«a) = ((S;I;Z) and

N = sin 6') see Figure 2(b). Using the equation for
~ \cosf® ) g ' g q

the tangent line
(r(a)L(a) - rt(")L“)) ‘N =0, (14)

the distance () can be found as

S LG LN
rl@) = ”mL(a).N
) 1€
_ 7‘?) cos

cos acos8() — sin a sin (9
o) cos 69
¢ cos8@) — qsin O

rgi) <1 + atan G(i)) (16)

Q

(15)

X

Equation (15) follows from the fact that « is very small,
and therefore sina ~ « and cosa = 1. Equation (16) is
obtained using a first order Taylor series approximation to
(15) around o = 0.

Let us put together equations (11-13) and (16) to evaluate
P (rs)

(T(i)_rgi) (1+a tan 9(")))2

o0 2
/ 1 2 1 —e
¢ 207 e 29 da
—oo V27O, V2o,

(17)
We can change the range of integration from (—, ) in (13)
to (—oo, 00) above because o, < w, and hence P(a) =
0 for |a| > w. Then, using the change of variables y =

r{ tan 6 q, the above integral can be rewritten as

(©O=rf-)"

[ e a9
e o7 ———e 20 ,
—oo V2O, 2nol, Y
where .
o, =) tan 6D g,. (19)

Equation (18) is in the form of convolution of two Gaus-
sians. Consequently, probability theory states that the result
is the Gaussian pdf

P <r(i)|8) =P (r(i)|r,§i),0(i)) ~N (r,gi),af + (0;)2) .

(20)
For the purposes of differentiating this pdf with respect to
r,ﬁ"), we ignore the dependence of ¢ on 7«9. Hence, the
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Figure 4. (a) The 3D geometry of line of sight error,
(b) the u-v-z coordinate frame.

derivation (6) also applies here. Using results for Gaussian
pdf’s from [12], we find that

. i i 2
/ dP(r(@)lrg ),0( )) 1 . d?“(i)=0'2+(0'l)2.
) drt? P(r®|r), g)) R

(21)
Finally, using these result in (4)
E > 1
- n - (3) ) 2
S, sech®/ (a,? + (rt tan 0(’)0(’1) )
1
= n 1 (22)

Zi:l cos (1) g2 +sin 6(%) (ri(")a{l)Z
Note that, provided o2 # 0 and o2 # 0, which is always
the case for a real range finder, (22) is neverO.

4.2. Error boundin 3D

The 3D case differs from the 2D because there are two
angles of deviation in the line of sight that we need to con-
sider; however, we show that only one of these angles mat-
ter and the 3D case can be reduced to the 2D case. Consider
the geometry illustrated in Figure 4(a). Without loss of gen-
erality, define the scanner location and L(9 (the intended
line of sight) to be the origin of the coordinate frame and
the z-axis, respectively. The surface can be locally approx-
imated by its tangent plane defined by the surface normal
vector N. Using N, define the following unit vectors:

v=Nxzand u=v x z, (23)



where z is the unit vector in the direction of the z-axis, and
“x” denotes the vector cross product. The unit vectors u, v
and z define an orthonormal coordinate frame.

The two angles of deviation for the line of sight can be
defined as rotations of the intended line of sight around any
pair of orthogonal pair of vectors in the plane perpendicu-
lar to the z-axis. Without loss of generality, we choose the
angles of deviation a and S to be rotations around the v
and u axes, respectively, as shown in Figure 4(b). The ran-
dom variables « and 3 are independent and identically dis-
tributed with the pdf A" (0,52). The intended line of sight

isL® = (0 0 l)T in the u-v-z coordinate frame. The
actual lines of sight can be expressed in the u-v-z coordinate
frame as

1 sin a
L Q, /B = Sin ,B
(5) VsinZa +sin?f4+1\ 1
1 «a
~ B, (24)

\/0(2+,82+1 1

where we have used the small angle approximation sin o =
a and sin 8 = . We can also express the surface normal
in the same coordinate frame. By definition, N - L() =
N-z=—cosf), N.-v=N-(Nxz)=0and||N| =1,
therefore,

sin §

N = 0

cos 60

We can use the equation for the tangent plane, which is the

same as equation (14) for the tangent in 2D, to find the dis-
tance r(a, )

_ @ LW-N
r(,B) = L(a.f) N

() €08 09 /a2 + 52 +1
t o cosf@) — asin @)

& rt(i) (1 + atan 0(")) (25)

Equation (25), which is exactly the same result as (16) for
2D, follows from a first order Taylor series approximation
around @« = B = 0. Hence, the Cramer-Rao bound (22)
also applies to the 3D case.

5. Results and Discussion

Figure 5 shows the results of the experiment from Fig-
ure 3 with the complete CRB formulation (22), which in-
cludes angular error. As expected the CRB does not go to
zero along occlusion boundaries. This is in contrast to the
incomplete CRB formulation, which predicts a zero error
bound for the silhouette of a sphere.
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Figure 5. [Color](a) The CRB colormapped on the
sphere, (b) a close-up view of the CRB shown on
an instance of the estimator, and (c) the color map
for the CRB. The radius of the sphere is 1 unit.

As an alternative to the CRB results in this paper, con-
sider the method of computing error measures on simple
scalar estimators, which averages all measurements. For
such an estimator to be the error E > o2 /n, where n is
the number of measurements and o2 is the variance of any
one measurement. A naive application of this scheme to
surface reconstruction would produce an error measure that
depended only on the number of scanners that are visible
from any particular surface point. Unlike the CRB derived
in this paper, this trivial result does not take the sensor-
model geometry into account and is not correct. In Figure 5,
the CRB is highest (purple-blue) in regions seen by a single
scanner, and lowest (yellow) in regions seen by three scan-
ners. However, the CRB varies significantly within these
regions which can not be predicted by the trivial approach
that discounts the sensor-model geometry.

Next, we compute an actual estimator using a level-set



surface representation [5]. Figure 5(b) shows a close-up
view of the CRB colormapped on to this actual estimator.
If we consider the roughness of the estimated surface as a
subjective indicator of error, we observe that the actual es-
timation errors are approximately proportional to the error
predicted by the CRB. In other words, the estimator is in-
deed more noisy in blue-purple regions of the CRB com-
pared to the yellow regions.

Finally, we demonstrate the importance of error bounds
in a real surface reconstruction problem. Figure 6 illus-
trates the CRBs computed for reconstructions of an office
scene. Twelve range images were taken and registered with
the methods described in [14]. Then using a level set rep-
resentation, we reconstruct a surface model [5]. In the first
reconstruction, we use only 4 out of the 12 range images.
The occlusion shadows of the barrel and the chair are ob-
served as the black regions on the reconstructed surface in
Figure 6(a). Very high CRB values (purple) are also ob-
served at various locations including the top of the desk, and
on the bookshelves due to the occlusions of objects placed
on it. Unlike the occlusion shadows of the chair and the
barrel, these artifacts are not immediately observable from
the reconstructed surface. Hence, the CRB image brings
out useful information that can be used to choose further
scanning locations. In the second reconstruction, we use
all 12 range images. Overall, the average CRB is lower as
expected and there are much fewer occluded regions. How-
ever, notice that certain parts of the desk and bookshelves
still have infinite CRB values (black), indicating that these
parts are occluded in all 12 range images. This result can
be used to add another range image from a scanner location
that can see these parts. Or alternatively, it can inform users
(or some subsequent processing) not to trust the surface es-
timate in these locations.

6. Conclusion

This paper shows the derivation of a systematic error
measure for nonparametric surface reconstruction that uses
the Cramer-Rao bound. The CRB is a tight lower error
bound for unbiased estimators such as the maximum like-
lihood. However, there are some limitations in this formu-
lation. We have assumed no knowledge of surface shape
other than that given by the measurements. However, in
practice shape reconstruction often includes some a-priori
knowledge about surface shape, such as smoothness. The
inclusion of such priors corresponds to a maximum poste-
riori estimation process. The current formulation still gives
meaningful results—it tells us to what extent a particular
estimate is warranted by the data. That is, it gives us some
idea of the relative weighting of the data and the prior at
each point on the surface. Future work will include a study
of how to incorporate priors and estimator bias into these

(b)

15 mm
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Figure 6. [Color] MLE reconstruction from (a) 4
range images, (b) 12 range images, and (c) CRB
colorbar. The units of the CRB is in millimeters
(mm). The diameter of the barrel in the scene is
approximately 500 mm. The black regions have in-
finite CRB; these are the points not seen by any
scanner.



error bounds.
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