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Abstract. We propose a novel concept of shape prior for the processing of tubu-
lar structures in 3D images. It is based on the notion of an anisotropic area energy
and the corresponding geometric gradient flow. The anisotropic area functional
incorporates a locally adapted template as a shape prior for tubular vessel struc-
tures consisting of elongated, ellipsoidal shape models. The gradient flow for this
functional leads to an anisotropic curvature motion model, where the evolution
is driven locally in direction of the considered template. The problem is formu-
lated in a level set framework, and a stable and robust method for the identifica-
tion of the local prior is presented. The resulting algorithm is able to smooth the
vessels, pushing solution toward elongated cylinders with round cross sections,
while bridging gaps in the underlying raw data. The implementation includes
a finite-element scheme for numerical accuracy and a narrow band strategy for
computational efficiency.

1 Introduction

Segmentation of blood vessels from medical images, such as magnetic resonance an-
giography (MRA) and computed tomography (CT) is a challenging problem with sev-
eral applications that are very important in diagnosis and surgery. Detection of stenosis
and aneurysm, and measuring tortuosity are examples where an accurate segmentation
of the vasculature can help in the diagnosis and quantification of certain disease-related
characteristics of vessel geometry, such as diameter [25] Also, in surgical applications,
it is important to have accurate estimates of the locations of vessels.

Many different approaches have been proposed for segmenting vessels, or more
generally tube-like structures, in the literature. We give a brief overview in Section 1.1.
In this paper, we propose the use of a new prior model for tubular geometry that can
be used to post process segmented volumes or as a component of an active contour
models. Active contour models typically start with an initial model and propagate the
model according to some partial differential equation (PDE). This PDE is typically con-
structed as a weighted sum of two terms: (i) a data term that drives the model towards
the boundaries of the shape to be segmented, and (ii) a shape prior (or model) that
ensures the smoothness of the resulting surface. The latter is critical due to noise and
incomplete data, and the effectiveness of such priors can be evaluated independently of
the data term by studying the incremental effects of their application to noisy input data.
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Thus, this paper focuses on introducing a novel shape prior for level set surfaces that
is specifically designed to represent tubular structures and studies the effectiveness of
this model as a surface smoothing process. The proposed method is derived as the gra-
dient flow for a suitable geometric penalty function that includes a local, scale invariant
classification of the geometry using the approach of Wulff shapes, known from mate-
rial science. It incorporates the corresponding Frank diagram directly in the geometric
energy density. The paper presents the mathematics of this approach, the associated
numerical scheme, and results on synthetic and real data.

1.1 Related Work

Many different approaches for filtering and segmenting vascular structures from medi-
cal images have been proposed in the literature, and here we give a brief overview of the
trends. One approach to vascular segmentation is to track the centerlines of vessels with
oriented filters [4]. Alternatively, morphological image processing has been proposed
for salient path finding [11]. Second-order differential structure of image intensity has
been used in the form of curvature maxima [20] and multiscale Hessians [21, 17]. As in
a variety of image segmentation problems, vascular segmentation has been approached
using active contours [14, 18] and statistics [5]. Several authors have introduced filter-
ing methods for denoising and enhancing curvilinear structures in images [12, 21, 15].
Generally, denoising methods are used as a pre-processing step for segmentation [15]
or for visualization [21]. However, denoising or smoothing methods that are derived
from a variational formulation can also be combined with a fitting term to perform seg-
mentation based on deformable models [13]. The focus of this work is on geometric
flows implemented with level-set surfaces, and a particularly relevant body of work is
the work on surface deformation that uses level sets and incorporates various kinds of
directional smoothing. Several authors have noted that mean curvature flow is not a suit-
able prior for thin, tubular structures, because it favors the principle curvature of greater
magnitude and therefore tends to collape these vessels and break them into pieces early
on in the processing. Whitaker [23], shows that a surface motion proportional to the
normalized product of Gaussian and mean curvatures favors tubular structures. Other
researchers have studied alternate formulations of anisotropic smoothing of level-set
surfaces based on principle curvatures. For instance, Preusser and Rumpf [6] propose
an anisotropic conductance tensor for this purpose and demonstrate the ability to pre-
serve features, while Krissian et al.[16] propose a weighted combination of curvatures
along each of the principle (and normal) directions. Ambrosio et al. [2] prove that a
surface moving with a velocity equal to the minimum (magnitude) principle curvature
minimizes the length of the center curve associated with very thin (in the limit) tubu-
lar structures. Lorigo et al. [18] use this idea for segmenting vascularature. They show
that segmentation results, with level-set surface models, can be significantly improved
by propagating the surface according to the minimum principal curvature, rather than
the mean curvature. Their method includes a data term to reconnect vessels that appear
broken in the initialization. This is necessary because the minimal curvature prior itself
cannot force vessels to grow and reconnect. The same is true of all methods that are
based on convex combinations of principle curvatures. One of the advantages of the
proposed method is the ability to grow and reconnect gaps in tubular structures with
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or without a data term. Of course, the inclusion of the data term would improve the
resulting segmentations, but the data attachment is not the focus of this work, and in
this paper we study only the effects of the various priors, which we use as a smoothing
term.

More generally, this paper describes a framework in which local models of image
structure give rise to variational expressions that can be used to force surfaces to adhere
more closely to those models. In this way the framework could be extended to include
various kinds of shape models and mechanisms for making decisions about appropriate
models. Thus, the framework could be adapted to a variety of problems in which usual
curvature-based flows are insufficient.

2 Methods

Given the raw data intensity function I : Ω 7→ R with Ω ⊂ R3, we ask for a vessel
description in terms of an iso-surface of a level set function φ : Ω 7→ R. As an ini-
tial guess we consider a threshold volume V = {x ∈ Ω : I(x) ≥ α} and define φ as the
signed distance function for the vessel boundary ∂V. In general, simple thresholding
will not always be a reliable way of finding initial segmentations. Nevertheless for the
application case study provided here, we confine to this method for the initialization.
Hence, the vessel setV is implicitly defined as sub volumes {x ∈ Ω : φ(x) ≤ 0}. Unlike
parameterized surfaces, surfaces defined with level set can change topology in a natu-
ral way. This is an important advantage in processing thin tubular surfaces with many
topological artifacts such as breaks and extraneous pieces in the raw data. The method,
we propose here, is based on several building blocks:

- the local classification of vessel radii and vessel directions,
- the definition of a local prior based on this classification,
- a gradient flow for the relaxation of this energy, including
- a localized volume preservation.

These building blocks are explained next.

2.1 Local classification of vessel radii and vessel directions

We aim to represent tubular vessel structures in MRA by elongated ellipsoid shapes
as local priors. Thus, we have to identify the local orientation of the vessels to define
correspondingly elongated ellipsoids. This classification is based on a moment analysis
and underlying robust estimate of vessel radii.

Moment analysis. Given the image function I and a threshold α, that can be used to
approximately separate the vessels from the background, we consider the characteristic
function χV for the vessel structuresV. From this characteristic function, we calculate
the local first moment for each point x0 as

MV(x0) :=
1

mV(x0)

∫
Br(x0)

χV(x)(x −CV(x0)) ⊗ (x −CV(x0)) dx, (1)
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Fig. 1. Comparison of Mean Curvature Flows: The first row depicts the classical isotropic MCF,
the second row the isotropic but volume-preserving MCF, whereas in the third and fourth row the
anisotropic and volume-preserving anisotropic MCF can be seen.

where mV(x) =
∫

Br(xo) χV(x) dx is the mass and CV(x0) is the center of gravity of the
distribution χV in the ball Br(x0). The eigenvectors vi, i = 1, 2, 3 and eigenvalues λ1 ≥

λ2 ≥ λ3 of this matrix, provide information about the shape and orientation of the
mass distribution of χV and thus of the vessel structures. If the mass is distributed
uniformly, all eigenvalues will be approximately equal. If it is distributed as a disc, we
have λ1 ≈ λ2 >> λ3 ≈ 0. For details we refer to [7]. In case of a long cylindrical
distribution, we get λ1 >> λ2, λ3 ≈ 0. Hence, for recognizing vessel structures which
are supposed to be long cylindrical structures, we look at the ratio c = λ2+λ3

λ1+λ2+λ3
, which

is close to 0 for long tubes. Consequently, for each point, if the ratio c is smaller than a
threshold ε, we choose the eigenvector belonging to the biggest eigenvalue as direction
of the vessels in x0. Let us denote this directional field by v. If c > ε, we decide that
there is no vessel at this point. In that case, we switch to ball shaped Wulff shapes and
the corresponding isotropic mean curvature as the local driving force in the evolution.
In a final step we normalize this vector field. Let us emphasize that we incorporate
anisotropic smoothing, if and only if the directional field v gives a clear indication for
an elongated tubular structure.

Vessel radius approximation. In the above analysis, the choice for the radius of
the ball around a point x0 in equation (1) is important. If this ball is too small, linear
structures won’t be recognized, whereas if the ball is too large, nearby but separate
vessels will have an influence in the direction computation. Furthermore, it is not pos-
sible to choose a fixed radius for every pixel of the picture, because of varying vessel
thicknesses. To estimate the local radius of vessels the above defined local mass of the
characteristic function can be used. For a straight, infinitely long cylinder located at xo

of radius Rv << R, the expected mass of the characteristic function contained in BR(xo)
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is approximately 2RπR2
v . Therefore, the vessel radius at xo can be estimated as

RV(xo,R) =

√
m(xo)
2πR

.

In practice, to improve robustness, we propose to evaluate Rv(xo,R) for a set of ball
radii and choose the resulting median as vessel radius RV. For a single, noisy vessel
we expect a small variance. However, if there are two vessels close by, Rv will be over-
estimated. Alternatively, if the vessel is broken up into smaller pieces then the above
defined mass will be smaller than the true mass. As a result, the vessel radius will be
underestimated (cf. Fig. 11 for a color coding of the radii estimate on MRA data). Nev-
ertheless, we observe that the computation of the directional field v is not effected by
this and remains numerically stable.

Smoothing the field of vessel directions. The image of vessel orientations is not
smooth due to the noise in the data. Therefore, we consider a smoothing of the vessel
directions. Here, we apply a Gaussian filter to the directions represented by the rank
one matrices vvT , where v is the dominant principal component of the structure tensor
defined above. By doing so the filtered matrix field is generically of full rank. Thus,
we again choose the eigenvector corresponding to the dominant eigenvalue as our final
smoothed vector in x0, (cf. Fig. 2 for the resulting directional field in case of a simple
torus like tubular structure as a test data set).

Fig. 2. Vectorfield on a cross section of a torus, left: original, middle: smoothed with Gaussian
filter, right: smoothed with the described method

2.2 Defining a local prior

As mentioned above, we aim to represent blood vessel’s structure locally by elongated
ellipsoids. As the implicit representation of an ellipsoid with half-axis a, b, c ∈ R, we
choose a function γ as follows:

γ(z) =

√
z2

1

a2 +
z2

2

b2 +
z2

3

c2 . (2)

This ellipsoid has to be rotated into the orientation of the blood vessel at each point
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Fig. 3. Left: oriented ellipsoids overlaying a test geometry, right: processing of this geometry with
grid size h ≈ 0, 015 and time step τ ≈ 3 · 10−7, displayed timesteps 0 (initial data),15 and 70.

(cf. Fig. 3). We consider the local vector v(x0) for this orientation and restrict ourselves
here to a circular cross section in the orthogonal direction and a fixed aspect ratio. In
our applications we have considered an aspect ratio ranging from 10 to 100. It is known
from Finsler geometry [24] that convex shapes - such as our ellipsoidal shape - appear
as minimizers of certain energy functionals. Indeed, given the implicit representation γ
(which is supposed to be one homogeneous) we consider a dual function γ∗ defined as

γ∗(z) := sup‖n‖=1
z · n
γ(n)
.

In our case we achieve γ∗(z) =
√

a2z2
1 + b2z2

2 + c2z2
3, this is again a function of the el-

lipsoidal type (2). Now, we take into account this function evaluated on surface normals
n as an energy integrant for an anisotropic area functional E[S] defined on a surface S:

E[S] =
∫
S

γ∗(n) da.

Up to a scaling the so called Wulff shape W = {z ∈ R3 : γ(z) = 1} — in our case
the ellipsoid with half-axis a, b, c — locally minimizes this energy [3]. Obviously the
structure classification varies with the position on the image domain. Thus, we consider
anisotropies γ∗ : Ω × R3 → R, (x, z) 7→ γ∗(x, z) which in addition depends on this
position x. Hence, we have a variational formulation at hand to quantify the coincidence
of local structures with the local prior, which is computationally cheap to evaluate and
as pointed out in the next section allows for an effective numerical discretization and
relaxation.

2.3 Gradient flow

To define the above energy on level sets and level set ensembles, respectively, we inte-
grate the energy over all level sets of a function φ, apply the co-area formula, the one
homogeneity of γ∗, and obtain

E[φ] =
∫
Ω

γ∗
(
x,
∇φ(x)
‖∇φ(x)‖

)
‖∇φ(x)‖ dx =

∫
Ω

γ∗(x,∇φ) dx . (3)
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Thus, the first variation of the energy is given by

d
dε

E[φ + εϑ]
∣∣∣∣∣
ε=0
=

∫
Ω

d
dε
γ∗ (x,∇φ + ε∇ϑ)

∣∣∣∣∣∣∣∣
ε=0

dx =
∫
Ω

γ∗z (x,∇φ)∇ϑ dx .

Now, we consider a gradient descent corresponding to this energy and the standard L2

metric on surfaces:
∂

∂t
φ = −gradL2 E[φ] .

Following [9] we finally derive the variational formulation∫
Ω

∂tφ(x)
‖∇φ(x)‖

ϑ(x)dx = −
∫
Ω

γ∗z (x,∇φ)∇ϑ(x)dx (4)

for all test functions ϑ ∈ C∞0 . Our algorithm is now based on a straightforward finite
element discretization in space and a semi-implicit backward Euler discretization in
time [8]. Due to the minimizing property of the local ellipsoidal Wulff shapes we expect
that under this gradient descent the vessel structures will be smoothed and will converge
to round tubes. Another advantage of this approach is that small gaps in the vessels will
be closed.

Mathematically, this gradient flow is known as the anisotropic mean curvature mo-
tion. The isotropic counterpart, classical mean curvature flow (MCF) will nicely smooth
surfaces but it is far from being appropriate for long tubular structures like blood vessels
(cf. Figure 4). One can introduce the anisotropic curvature hγ as the first variation of
the weighted energy (3) and obtain hγ(x) = div

(
γ∗z (∇φ(x))

)
. Thus, we are lead to the

classical formulation of our evolution problem [3]

∂tφ = hγ‖∇φ‖.

2.4 Local volume preservation

The flow described above uses the anisotropic mean curvature. As this curvature won‘t
be zero even for the convex shapes the flow converges to, the objects won‘t stop shrink-
ing until they disappear. As a consequence we need some modification to preserve
the volume of objects. The idea is now simply to modify the velocity of the flow in
such a way, that the average velocity is zero. This is satisfied if we consider the flow
∂tφ(x) =

(
hγ(x) − h0

γ

)
‖∇φ(x)‖ with h0

γ =
>
φ=0

hγ da. The correction term h0
γ is the aver-

age anisotropic mean curvature and it is easy to show, that the volume of the object will
stay constant under this flow (see for example [22]). However, this global correction
is not appropriate for the vessel smoothing problem, because it results in local mass
accumulations and deformations. Instead, we use local volume preservation:

∂tφ(x) =
(
hγ(x) − hεγ(x)

)
‖∇φ(x)‖ with hεγ(x) =

?
Bε(x)∩{φ=0}

hγ da.
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In this flow the local average velocity is only approximately zero, but this is completely
sufficient for our method.

Closing gaps in the data. Surfaces that are implicitly given by a level set function,
can change their topology in a natural way. This is an advantage for our application
since we want gaps in vessels to be closed. If we choose a strong anisotropy term, i. e.
we choose the ellipsoid to be very long (e. g. a = 100, b = c = 1), then the objects
tend to grow into this strong direction. We can accelerate this growth by weighting the
volume correction term depending on the normal of the surface and the direction of the
vector field v (for normals that are parallel to the direction of the vessel, we want to
have no volume preservation) and end up with the flow

∂tφ(x) =
(
hγ(x) −

(
1 −
∇φ(x) · v(x)
‖∇φ(x)‖

)
hεγ(x)

)
‖∇φ(x)‖. (5)

We want to emphasize, that this method will close gaps, even in the total absence of
underlying data in the gap (cf. Fig. 4). This is an important difference of our method
from previous works. For gaps to be closed, the vector field has to span it. Since we
smooth the vector field, this is fulfilled for all small gaps.

Fig. 4. Top: Gaps in the data set are closed by our approach, even in the total absence of data be-
tween the two ends, bottom: Smoothing by the standard morphological method based on volume
preserving MCF fails to close the gap.

3 Finite element discretization

Up to now, we have considered a continuous level set function φ on the image domain
Ω ⊂ R3. Now, we aim at discretizing the approach following the usual finite element
paradigms. Due to the highly anisotropic Wulff shapes being considered as local prior
the resulting geometric evolution problem not only involves the usual geometric nonlin-
earities already known from isotropic mean curvature motion but the underlying diffu-
sion will be highly anisotropic. The finite element approach naturally incorporates this
anisotropy based on a straightforward discretization of the variational formulation of the
evolution problem. In case of a finite difference implementation the reliable treatment
would cause serious difficulties. The variational weak formulation of the anisotropic
MCF including our volume preservation term is derived as follows. We multiply equa-
tion (5) with a test function ϑ, integrate over the domain Ω and apply integration by
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parts making use of the above definition of the anisotropic mean curvature. Finally, we
obtain∫

Ω

∂tφ(x)
‖∇φ(x)‖

ϑ(x) + γ∗z (x,∇φ)∇ϑ(x) dx =
∫
Ω

(
1 −

∇φ(x)
‖∇φ(x)‖

· v(x)
)

hεγ∗ (x)ϑ(x) dx

where ϑ ∈ C∞0 is the still continuous test function [3]. Next, we consider the actual
discretization in space and time. In the application, images typically arises as arrays of
voxels. We interpret voxel values as nodal values on an uniform hexahedral mesh C cov-
ering the whole image domain Ω and consider trilinear interpolation on cells C ∈ C to
obtain discrete intensity functions in the accompanying piecewise trilinear and continu-
ous finite element space Xh. For the sake of simplicity, we will assume that Ω = (0, 1)3

and a grid size h. To clarify the notation, we will always denote spatially discrete quan-
tities with upper case letters to distinguish them from the corresponding continuous
quantities in lower case letters. With the aim to finally derive a fully practical algo-
rithm we have to incorporate numerical quadrature scheme in case of non polynomial
integrant. They are as usual obtained replacing the integrant by a suitable polynomial
interpolation. Furthermore, for the discretization in time, we use a semi-implicit back-
ward Euler discretization with τ as selected time step size and use indices to indicate
the current time step. Hence we approximate the partial derivative ∂tΦ by the difference
quotient Φ

k+1−Φk

τ
.

Thus, this discretization in space and time lead us to the following discrete problem:
Find a sequence of finite element functions

(
Φk

)
k
, such that

∫
Ω

I1
h


(
Φk+1(x) −Φk(x)

)
τ‖∇Φk(x)‖ε

Θ(x)

 + I3
h

(
γ∗z

(
x,∇Φk(x)

)
∇Θ(x)

)
dx

=

∫
Ω

I1
h

((
1 −
∇Φ(x) · V
‖∇Φ(x)‖ε

)
Hεγ∗ (x)Θi(x)

)
− λ
γ∗(∇Φ(x))
‖∇Φ(x)‖2ε

∇
(
Φk+1(x) −Φk(x)

)
∇Θ(x) dx

for all test functions Θ ∈ Xh. Here I1
h denotes the elementwise Lagrange interpola-

tion operator and I3
h the interpolation with respect to a Gauss quadrature of third order

accuracy. Following the approach of Deckelnick and Dziuk in [8] we have added the
second term on the right hand side as a stabilization term. According to their results on
numerical analysis, λ has to be chosen such that

λ inf
|p|=1
γ∗(p) > (

√
5 − 1)−1 max{sup

|p|=1
|γ∗

′

(p)|, sup
|p|=1
|γ∗

′′

(p)|}

is fulfilled.
Furthermore (cf. also the fundamental paper by Evans and Spruck [10]) we replace
‖∇Φk‖ by ‖∇Φk‖ε, where ‖v‖ε :=

√
‖v‖2 + ε2. I. e. we choose ε ≈ h. Finally, Hεγ∗ ∈

Xh is a suitable discrete average mean curvature and V ∈ (Xh)3 a discrete unit length
directional field.
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3.1 A fully practical numerical approach

We will now describe in detail, how to define the numerical quadrature rules and the
discrete functions Hεγ∗ and V . We finally derive the linear system of equations to be
solved in each time step. The quadrature rules are given by∫

Ω

I1
h ( f ) :=

∑
C

vol(C)
8

8∑
i=1

f |C(xi),
∫
Ω

I3
h ( f ) :=

∑
C

vol(C)
8

8∑
i=1

f |C(yi),

for a function f : Ω → R. Here {xi} denotes the set of nodes and {yi} the set of Gauss
quadrature points on the hexahedral mesh C. On the unit cube the coordinates of the

quadrature points are given by the 8 possible combinations of the weights 1
2 ±

√
1
8 . In

particular for all grid nodes x and for all cells C which share x as a vertex, we consider
different gradient evaluations ∇Φ(x) on these cells.
We define the discrete directional field V via nodalwise evaluation of the formulas given
in section 2. To compute the finite element function Hεγ we first introduce a discrete
anisotropic mean curvature function Hγ∗ ∈ Xh implicitly given by a discrete version of
the variational formulation for the anisotropic mean curvature∫

Ω

Hγ∗ (x)Θ(x) dx = −
∫
Ω

γ∗z (x,∇Φ)∇Θ(x) dx, (6)

for all Θ ∈ Xh. Let Hγ∗ =
(
Hγ∗i

)
i∈I

be the vector of nodal values of the finite element
function Hγ∗ . Here I denotes the index set of the grid nodes. From the above equation
we obtain

Hγ∗ = −M−1Lγ∗ [Φ
k
] , (7)

where M is the classical lumped mass matrix defined by

M =


∫
Ω

I1
h

(
Θi(x)Θ j(x)

)
dx


i, j∈I

(the term on the left hand side of equation (6) is given by MHγ∗ ) and

Lγ∗ [Φ
k
] =


∫
Ω

I3
h

(
γ∗z (x, Φk)∇Θi(x)

)
dx


i∈I

,

defines the anisotropic stiffness matrix induced by the anisotropy γ∗. With this func-
tion at hand, we can compute a discrete, locally averaged anisotropic mean curvature
Hεγ∗ (x0) averaging over all nodal values of the coefficient vector Hγ∗ for nodes within
the ε-ball around x0.
Finally, we formulate the linear system of equations to be solved in each time step.
Therefore let Φ be the vector of nodal values for a finite element function Φ. We then
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define a nonlinear mass matrix M =M[Φ
k
] and a nonlinear stiff matrix L = L[Φ

k
] by

M[Φ
k
] =


∫
Ω

I1
h

(
Θi(x)Θ j(x)
‖∇Φk(x)‖ε

)
dx


i, j∈I

,

L[Φ
k
] =


∫
Ω

I1
h

(
γ∗(x,∇Φk(x))∇Θi(x)∇Θ j(x)

‖∇Φk(x)‖2ε

)
dx


i, j∈I

,

and complete the system by the right hand side

R[Φ
k
] =


∫
Ω

I3
h

(
γ∗z (x, Φk)∇Θi(x)
‖∇Φk(x)‖ε

)
− I1

h

((
1 −
∇Φ(x) · V(x)
‖∇Φk(x)‖ε

)
Hγ∗0 (x)Θi(x)

)
dx


i∈I

.

Notice, that the anisotropic mean curvature function Hγ∗ (x) has to be recomputed in
each timestep. With this evaluation at hand, we finally obtain the following linear sys-
tem of equations (

M[Φ
k
] + τλL[Φ

k
]
) (
Φ

k+1
−Φ

k
)
= −τR[Φ

k
],

where the initial data Φ0 is the signed distance function of the thresholded data. In
the implementation we solve this linear system of equations with a PCG-solver and a
SSOR-preconditioner.
So far we have explained the computation of a single time step. Finally, let us briefly
recall the preparatory steps to be performed in advance:

1. Threshold the intensity function I of the MRA data set with an appropriate thresh-
old function α.

2. Estimate the radii of the vessels based upon the resulting discrete characteristic
function.

3. Define the narrow band around the vessels using the computed radii.
4. Compute the directions of the vessels based upon the threshold and the radii.
5. Smooth this vector field.
6. Compute the signed distance function of the thresholded image to obtain the initial

data Φ0 for the actual discrete evolution.

4 Numerical Results and Application

We have applied the above anisotropic, locally volume preserving curvature motion
approach to real MR angiography data to underline the methods potential for real appli-
cations. On the 3D images tubular Wulff shapes are incorporated if the moment analysis
and the radii estimate indicate such structures locally. Fig. 3, 4 show the application of
our method to test data sets and highlight the capability to close gaps and to ensure
nicely rounded cross sections for the tubular structures. By applying level set methods,
a d-dimensional problem is transferred into a d + 1-dimensional space, which results in
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more computing time. We reduce the amount of computation by defining a narrow band
around the vessels where computation is performed. We only consider grid cells for the
narrow band [1] on which the vessel radius estimate returns reliable results (cf. Fig. 11).
This leads to a saving of approximately 95% on typical MRA images. After we have
estimated the radii and defined the narrow band we perform the remaining preparatory
steps only on the nodes in this band.
We have to consider rather small time steps (τ ≈ 10−6 · · · 10−7) to avoid too much
smoothing due to numerical viscosity. On a 1283 voxel grid one time step takes about
30 sec on a PC with Pentium IV with 3.4 GHz.
Following the convergence results by Deckelnick and Dziuk [8] the parameter λ has to
be chosen as described in section 3. Practically, λ can be chosen much smaller. We have
used a constant value λ = 2.5.
By construction the algorithm will restore and enhance tubular structures. As a first crit-
ical test case we take into account branch points on tubular structures. Thus, we consider
bifurcations with a different dihedral angle and apply our method to noisy versions of
the originally smooth implicit representation of these structures. Fig. 5 demonstrates the
robustness of our approach fairly independent of the local branching configuration. As
a quantitative measure for the performance we compute the L1 difference between the
original structure (before noise has been added) and our restoration results and compare
it with the initial difference for the noisy images.
The next experimental validation concerns highly curved structures and the impact of a
varying vessel diameter. Thus, we have applied our algorithm to a 3D image represent-
ing an implicit model of a helix with decreasing diameter and increasing curvature of
the center line. The result is depicted in Fig. 6, which underlines that even after many
timesteps highly curved regions do not deform artificially and the diameter of the struc-
tures is sufficiently preserved. Furthermore, we have applied the presented method to
actual MRA data sets of the human brain with a resolution 256× 256× 128. The data is
courtesy of Carlo Schaller, Neurosurgery Hospital at Bonn Medical Center. Fig. 9 and
10 show results of the proposed method on two different data sets.

4.1 Comparison to other algorithms

We have compared our approach to different other methods. Results of this comparison
for a 3D MR angiography data set are shown in Fig. 8. To be more explicit, we studied
another geometric evolution method designed for the enhancement of co–dimension
2 features on hypersurfaces [19]. As already indicated by Fig. 7 this method is not
appropriate for freestanding co–dimension 2 structures and the thin end of the helix
disappears. Furthermore, we have also applied isotropic mean curvature motion with
a local volume preserving term, characterized by sufficient smoothing but a loss or
break up of thinner structures. Clearly, due to the local averaging with a fixed kernel
width the local volume preservation can not be ensured on small scales. Finally, we
compare our method with the approach by Lorigo et al.[18], which also applies to co–
dimension 2 vessel structures based on a geometric diffusion in direction of the smallest
principle curvature. Here, we applied the implementation by C. F. Westin in the open
source package coded in the ITK class CurvesLevelSetImageFilter. As shown in Fig. 8



13

δ = 0, 015 δ = 0, 0029

δ = 0, 017 δ = 0, 0032

δ = 0, 015 δ = 0, 0028

Fig. 5. The algorithm is tested on three synthetic branching configurations with different dihedral
angles (first column) which are overlaid with significant noise (second column). The third column
shows the restoration results obtained by our method. As a quantitative measure the L1-norm of
the difference of the actual and the original image denoted by δ is plotted for the images in the
middle and right column.

some of the thinner vessel structures are better restored either by this or by our method.
Overall our approach is characterized by a better denoising. This is due to the fact that
our approach combines two diffusion scales: strong diffusion along the in principle co–
dimension 2 structures as in the approach by Lorigo et al.and in addition on a smaller
scale still an evolution towards circular cross sections.

4.2 Limitation of our approach.

The algorithm is well–suited for tubular structures of varying diameter and curvature.
Aneurysm and other morbid expansions of vessels are not reflected by the local tem-
plate construction. Thus, the method will fall back to an isotropic smoothing approach.
Furthermore, the method inherently tries to close small gaps along tubular structures.
This might be a shortcoming in case of vascular constrictions such as stenosis. Cur-
rently, the algorithm is conceived for a feasibility study. So far, apart from the narrow
band approach we have not exploited the potential to increase the methods performance
with respect to computation time.
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Fig. 6. The algorithm is applied to the implicit representation of a helix with varying diameter
and curvature of the centerline. From left to right the time steps 0,100,200 and 500 are depicted
demonstrating that the object is smoothed comparably quickly and even over a longer time the
geometry of the helix is not effected by the evolution.

Fig. 7. Application of the geometric anisotropic diffusion approach [19] to the helix test data set.

5 Conclusion and future work

Classical PDE approaches for feature preserving denoising usually fall short in the ap-
propriate processing of thin, elongated structures such as vessels in 3D angiography.
Based on a local classification of such tubular structures by elongated ellipsoids as local
master pieces and an anisotropic curvature motion model it is possible to preserve and
even enhance these structures properly. Thereby, the local anisotropy is explicitly con-
structed according to the previous classification. As long as gaps in these structures are
not too large they can be closed and circular cross-sections are emphasized by the new
method. The application to MR angiography is a first case study. Future improvements
are required to improve the efficiency of the proposed approach and other application
scenarios can be exploited.

Acknowledgment. The authors thank C. Schaller, C. Schlimper, and J. Scorzin from
the Neurosurgery Hospital at Bonn Medical Center for providing the MRA data.
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Fig. 8. Comparison of our approach to other methods for a 3D MR angiography data set. The orig-
inal geometry to be restored is shown in the upper left image. Results obtained by the anisotropic
geometric diffusion [19] (upper middle), a local volume preserving isotropic mean curvature mo-
tion (upper right), the ITK implementation of the approach proposed by Lorigo et al.[18] (lower
left), and our method (lower right) are compared.
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Fig. 11. Left: The vessel structures from image 9 are overlayed with a rendering of the narrow
band (yellow dots correspond to nodes in the band), right: The estimated values for the local
vessel radius are shown using color coding.


