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Abstract— The paper presents a novel approach for dynamic
magnetic resonance imaging (MRI) cardiac perfusion image
reconstruction from sparse k-space data. It formulates the
reconstruction problem in an inverse-methods setting. Relevant
prior information is incorporated via a parametric model
for the perfusion process. This wealth of prior information
empowers the proposed method to give high-quality recon-
structions from very sparse k-space data. The paper presents
reconstruction results using both Cartesian and radial sampling
strategies using data simulated from a real acquisition. The
proposed method produces high-quality reconstructions using
14% of the k-space data. The model-based approach can
potentially greatly benefit cardiac myocardial perfusion studies
as well as other dynamic contrast-enhanced MRI applications
including tumor imaging.

I. INTRODUCTION

Dynamic imaging is an important and rapidly growing
area in magnetic resonance imaging (MRI) with profound
implications for medical diagnosis and treatment. One such
application is the measurement of myocardial perfusion.
Subendocardial perfusion has recently been shown to be a
good indicator of ischemia [1], [2]. MRI has the potential
to become a widely-used non-invasive tool for myocardial
perfusion measurement. The high spatial resolution in MRI
allows differentiation between subendocardial and subepicar-
dial regions [3], which is not possible with clinical positron
emission tomography or single photon emission computed
tomography.

Dynamic contrast-enhanced (DCE) MRI, with gadolinium
as the contrast agent, tracks the exchange of this contrast
agent between the blood and the myocardial tissue. The
exchange is rapid and entails sampling the kinetics of the
contrast-agent distribution, typically, at every heartbeat [4].
This need for high temporal resolution severely limits the
resolution, spatial coverage, and signal-to-noise ratio (SNR)
of current DCE-MRI acquisitions. For a reasonable field-of-
view and resolution, complete heart coverage of about 10
slices with a heartbeat rate of up to 100 beats per minute
entails acquisition times of less than 50 milliseconds per
slice. Accounting for the magnetization-preparation time, this
translates to at most 10-25 lines of k-space for each image.

Conventional MRI reconstruction of dynamic signals ap-
plies the inverse-Fourier transform to each image individually
to produce a time series of images for every slice through

the heart. Even with cutting-edge multi-coil methods, it
is virtually impossible to obtain clinically useful images
from such sparse data by independently reconstructing the
time frames. Furthermore, even if the images could be
reconstructed without artifacts, the SNR would be extremely
low because SNR is proportional to the square root of the
number of acquired k-space lines.

An effective strategy of dealing with sparse data is to
incorporate prior information in the reconstruction. We pro-
pose to introduce such prior information in the form of a
parametric model for the perfusion process. In this way, we
reduce the reconstruction task from estimating each pixel
intensity over time to estimating only the parameters of the
model.

The proposed model-based reconstruction method leads to
significant improvements in SNR with very sparse k-space
data. Moreover, the gain in SNR can be traded for fewer
k-space samples. This can, in turn, lead to acquisitions with
higher resolutions in space or time. The proposed method has
the potential to greatly benefit myocardial perfusion studies
and other DCE-MRI applications, such as tumor imaging.

II. RELATED WORK

Over the years, researchers have presented a variety
of methods for increasing the acquisition speed for many
dynamic-MRI applications. Typically, speedup is achieved
by reducing the amount of data acquired in k-space. The
ratio of the total number of k-space lines to the number
of lines acquired is termed thereduction factor, R. Cur-
rent commercial systems offer cardiac perfusion imaging
sequences that incorporate multi-coil parallel imaging, e.g.
SENSE [1] and GRAPPA [5], and provideR ≈ 1.6 (24
“autocalibration” lines around the center of k-space and every
other line sampling (R = 2) outside of the center). The
TSENSE method withR = 2 has also recently been applied
to perfusion imaging [6].

A number of methods use, implicitly or explicitly, an
a priori model for the perfusion process over time. For
instance, sliding window is a data-sharing method that
implicitly assumes slow object or contrast-agent (tracer)
kinetics. The sliding-window strategy lends itself to both
Cartesian [7], [8] and radial reconstruction [9], [10] schemes.
An extension of the sliding-window approach is to use
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specific acquisition patterns to match the k-space contribu-
tions of the time-varying signals. For example, the time-
resolved interpolation for contrast kinetics (TRICKS) [11],
[12] and the block-regional interpolation scheme for k-space
(BRISK) [13] methods acquire different portions of k-space
with different temporal-sampling rates. Similarly, UNFOLD-
type methods [14], [15], [16] acquire even and odd phase
encodes alternately in each temporal frame. Such methods
have found applications in cardiac perfusion imaging [17],
cardiac cine imaging [14], as well as functional MRI [14].

Faster data acquisition is still required for myocardial
perfusion MRI to increase spatial coverage, increase spatial
resolution, and reduce motion artifacts. The contributions
in this paper can help speedup the data-acquisition stage.
The proposed approach poses the reconstruction problem as
an inverse problem. Inverse-problem approaches have found
utility in static MRI applications [19], [20]. Inverse-problem
methods have been applied to cardiac imaging [21], although
without any parametric models. Parameterized models en-
code stronger prior information and, hence, may have the
ability to produce superior results.

III. A PARAMETRIC MODEL FOR
CARDIAC PERFUSION IMAGES

Let us assume that we have a set of magnetic resonance
(MR) images for each slice in the heart, one for each time
framet ∈ I. Each image comprises a set of pixelsx ∈ I

D on
a D-dimensional Cartesian grid. Thus,D = 2 implies a slice
of data at each timet. Denote the pre-contrast MR image
intensity at each pixelx asIp(x). Denote the input function
to the heart produced by the incoming contrast agent byC(t),
which is a function of the timet. Then the intensitiesg(x, t)
observed at pixelx at time t are

g(x, t) = Ip(x)+

C(t) ∗ β1(x) exp

(

−
t − β3(x)

β2(x)

)

∗ H(t − β3) ∗

exp

(

−
t2

β2
4(x)

)

exp (jφ(x)) , (1)

where ∗ denotes convolution,H(t) denotes the discrete
Heaviside-step function, andj is the imaginary unit number.
Thus, the parameter set for the model is

α = {Ip(x), β1(x), β2(x), β3(x), β4(x), φ(x) : ∀x}. (2)

We observe that (a)β1(x) corresponds to perfusion and
scales the input function, (b)β2(x) andβ3(x) describe the
rate of contrast agent washout and the time delay associated
with the first exponential function, respectively, and (c)β4(x)
describes the decay rate of the second exponential function.
The convolution with the second exponential function signi-
fies thedispersion of the input signal. This model implicitly
assumes that the phaseφ(x) in the complex-MR image
remains constant over time.

IV. K-SPACE SAMPLING SCHEMES

One of the most popular techniques of sampling the k-
space is to sample straight lines, along the read direction,
that follow a specific pattern. For instance, UNFOLD-type
methods [14], [15], [16] acquire all even and all odd phase
encodes alternating over time frames. The strategies in the
proposed method significantly differ from conventional ones.
The first proposed sampling is similar to the approach taken
by Portniaguineet al. [21]. Here, the idea is to acquire a fixed
number of k-space lines aligned along the read direction, but
with the specific lines selected randomly in each time frame.
In each time frame, moreover, we take 4 lines from the center
of the k-space. The idea behind this approach is to get the
low-frequency components in each time frame via the central
k-space lines, while making the high-frequency errors across
time frames asindependent as possible. Figure 1(a) shows
such a sampling scheme for one time frame.

A number of researchers use radial acquisitions for cardiac
cine imaging [16] and MR-angiography applications. Radial
techniques can produce higher spatial resolution, for a given
amount of scan time, as compared to Cartesian imaging [22].
Compared to Cartesian k-space sampling, undersampled ra-
dial k-space sampling results in much-reduced aliasing and
some streaking [23]. Thus, the second proposed sampling
strategy is to acquire a pattern of equiangular radial slices
through the center of the k-space in each time frame, while
rotating this acquisition pattern randomly across time frames.
Figure 1(b) shows the radial sampling scheme for one time
frame. Figure 2 gives an example of artifacts from k-space
data sampled using the two proposed strategies. The radial
k-space sampling retains more information from the imaged
signal.

Reconstructions from non-Cartesian k-space sampling,
such as radial sampling, entail modifications to the Cartesian
parallel-imaging methods. Recall that we define the paramet-
ric model for the perfusion process on the magnitude-MR
data, and not on the k-space data. Thus we need methods to

(a) (b)

Fig. 1. Proposed k-space sampling strategies acquiring 14%k-space data.
The k-space center is at the corners of the image. Black locations indicate
acquired samples. (a) Sampling along the read direction: random lines in
each time frame including 4 lines in each time frame passing through the
k-space center. (b) Radial sampling: a pattern of equiangular radial lines
through the k-space center. This pattern rotates randomly at each time frame.
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(a) (d)

(b) (e)

(c) (f)

Fig. 2. (a) Magnitude of the Fourier inverse of 100% k-space data for
one time frame. Magnitude of the Fourier inverse of the sparse (14%) k-
space data where samples are acquired along (b) random lines(with 4 in
the center each time frame) (see Figure 1(a)), and (c) equiangular radial
lines through the center of the k-space (see Figure 1(d)). Note: the image
intensities in (a)-(c) are scaled up so that the lower intensities in the heart
region are visible, thereby causing the brighter regions outside the heart to
appear white. (d), (e), and (f) show zoomed versions of images (a),(b), and
(c), respectively, to clearly show the region around the heart (the region of
interest).

transform data to, as well as from, the k-space domain. For
this purpose, we can either (a) interpolate the non-Cartesian
k-space data to a Cartesian k-space grid [24] and then rely
on fast discrete-Fourier transforms to move data between
the domains, or (b) form a direct functional link between
the magnitude-MR data on a Cartesian grid to the non-
Cartesian k-space data. In this paper, for simplicity, we use
simulated k-space data (simulated from real MRI data) on
Cartesian-grid-discretized radial lines. We can improve this

scheme by dealing directly with radial k-space data that is
not represented on a Cartesian grid using methods such as
POCSENSE [25]. The key ideas in the proposed approach
will, however, remain unchanged.

V. MODEL-BASED
IMAGE RECONSTRUCTION

Let us denote the intensity at pixelx and time t in
the reconstructed image sequence byg(α, x, t), which is a
function of the parameter setα defined in Equation ( 2).
We refer to the entire sequence of reconstructed images by
g(α). Let us denote the given sparse k-space data asd(x, t).
Let F (·) andF−1(·) denote Fourier-transform and inverse-
Fourier-transform operator, respectively. LetW (·) denote a
reduction operator that zeros out those elements from the
k-space where the data is not provided. Then we define an
energy of the form

J(α) =‖ WFg(α) − d ‖2
2, (3)

that quantifies the discrepancy between the estimated image
reconstructions and the data. In a standard inverse-methods
formulation, the task is to find such image reconstructions
g(α), i.e. such anα, that would produce k-space data as
close to the given datad, thereby minimizing the energy
J(α). That is

αoptimal = argmin
α

J(α). (4)

We employ an iterative gradient-descent optimization
strategy, with finite forward differences. Given an estimate
of the parametersαn at iterationn, we obtain

αn+1 = αn − λ
∂J(α)

∂α
= αn − λ

∂J(α)

∂g

∂g(α)

∂α
, (5)

whereλ is the update rate. We have

∂J(α)

∂g
= 2F−1(WFg(α) − d). (6)

We have found that the parameterβ4(x) does not hold
significant expressive power in the model. Thus, we can
eliminate this parameter from the model and still model
real data accurately using the remaining parameters. For
simplicity, we also assume the phaseφ(x) to be zero at all
pixels in all images.

The partial derivatives ofg(α) with respect to each of the
parameters in the setα are:

∂g(α, x, t)

∂Ip(x)
= 1, (7)

∂g(α, x, t)

∂β1(x)
= C(t) ∗ exp

(

−
t − β3(x)

β2(x)

)

H(t − β3(x)), (8)

∂g(α, x, t)

∂β2(x)
= C(t)∗

β1(x)

(

t − β3(x)

(β2(x))2

)

exp

(

−
t − β3(x)

β2(x)

)

H(t − β3(x)),

(9)
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and

∂g(α, x, t)

∂β3(x)
= C(t) ∗ β1(x)

[

exp

(

−
t − β3(x)

β2(x)

) (

H(t − β3(x))

β2(x)
+ δ(t − β3(x))

)]

,

(10)

whereδ(t) is the discrete delta function.

A. OBTAINING THE INPUT FUNCTION

We can derive an input function (C(t)) from the right-
ventricular blood pool in a pre-bolus scan [26]. Only a single
slice is required to estimate the input function and, hence,
we can use a complete k-space acquisition. Such a pre-bolus
approach has recently been used by several groups to provide
accurate input functions free from saturation effects [26],
[18]. The key idea here is that the input function from the
right ventricle can be used with Equation ( 1) to model
everything in the field of view. Moreover, the input function
has a good SNR because it is an average of the time-curves
taken from a fairly-large spatial region.

B. OBTAINING INITIAL MODEL PARAMETERS

The model-based gradient-descent optimization process
needs an initial estimate. A gradient-descent process is prone
to local minima and, hence, it is reasonable that we start the
model-based optimization using an initial estimate that is
close to the solution. We can obtain such an initial estimate
by leveraging any current state-of-the-art methods.

In this paper, we chose an inverse-method reconstruction
scheme that we presented in [21] to generate the initial esti-
mate. The initial image estimate minimizes an energy which
is the sum of a fidelity term and a temporal-regularization
term:

g∗(x, t) = argmin
g(x,t)

‖ WFg − d ‖2
2 + ‖ ∇tg ‖2

2, (11)

where∇t is the gradient operator along time. The second
term is a penalty on the temporal gradient of the solution, and
that enforces smoothness on the reconstructed time curves.
This is the only prior information that we incorporate at this
stage.

Using this reconstruction, we initializeI0
p (x) as the aver-

age of the first few time frames (e.g. first 3 out of a total of
30 frames), i.e.

∀x : I0
p (x) =

1

3

∑

t=1,2,3

g∗(x, t) (12)

This is reasonable to do because the perfusion of the contrast
agent starts only after the first few time frames and, thus, the
first few images capture the same anatomical signal from the
heart.

After estimatingI0
p (x) in this manner, we subtract this

image from all the images in the sequence and fit a paramet-
ric time-curve (usingβ1(x), β2(x), β3(x)), independently, at

each pixelx, i.e.

∀x : {β0
1(x), β0

2(x), β0
3 (x)} =

= argmin
{β1(x),β2(x),β3(x)}

‖ g(α(x)) −
[

g∗(x) − I0
p (x)

]

‖2
2,

(13)

whereg(α(x)) andg∗(x) denotes the respective time curves
at pixel x. We use the Levenberg-Marquardt optimization
scheme to find the optimal-fitting parameters. Thus,

α0 = {I0
p (x), β0

1 (x), β0
2(x), β0

3 (x) : ∀x} (14)

forms our initial parameters estimate that we feed into the
model-based optimization procedure described in Section V.

VI. OVERVIEW OF THE
RECONSTRUCTION ALGORITHM

Given sparse k-space datad(x, t), the proposed reconstruc-
tion algorithm proceeds as follows:

1) Obtain an initial estimate of the parameters,α0.

a) Use any existing method to obtain a reconstruc-
tion g∗(x, t).

b) ∀x: fit the model to give
{I0

p (x), β0
1 (x), β0

2(x), β0
3 (x)}, as described

in Section V-B.

2) Given the estimateαn at iteration n, compute a
new parameter estimateαn+1 via a gradient-descent
scheme using finite-forward differences to minimize
J(α).

a) Computeh(αn) = 2F−1(WFg(αn) − d).
b) ∀x :

In+1
p (x) = In

p (x) − λ0h(αn, x) · ∂g(αn)
∂Ip(x)

βn+1
1 (x) = βn

1 (x) − λ1h(αn, x) · ∂g(αn)
∂β1(x)

βn+1
2 (x) = βn

2 (x) − λ2h(αn, x) · ∂g(αn)
∂β2(x)

βn+1
3 (x) = βn

3 (x) − λ3h(αn, x) · ∂g(αn)
∂β3(x) ,

where· denotes the dot-product operator.

3) If ‖g(αn+1)−g(αn)‖2
2

‖g(αn)‖2
2

< θ, whereθ is a small threshold,
then terminate, otherwise go to step 2.

VII. SIMULATING CARDIAC PERFUSION DATA
FROM REAL DATA

The parametric cardiac perfusion model assumes that the
sequence of images is well registered and has no motion arti-
facts. Here we simulate well-registered data using complete-
k-space data from real cardiac perfusion dynamic MR im-
ages. We apply an inverse-Fourier transform to this data, and
then take the magnitude of the resulting complex number at
each pixel. This essentially gives us a reconstruction using
complete k-space data that does not necessarily have well-
registered time frames. To enforce registration, we pixelwise
fit the parametric-curve model to this magnitude data. The
smoothness over the time-curves enforced by the parametric
model generates fitted data that is well-registered. We use
this fitted magnitude data, assuming a phaseφ(x) of zero at
each point, to generate simulated k-space data.
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(a) (c)

(b) (d)

Fig. 3. Magnitude of the inverse-Fourier transforms of 100%(a) original k-
space data, and (b) simulated k-space data. (c) and (d) show zoomed versions
of images (a) and (b), respectively, to clearly show the region around the
heart (the region of interest).

Figure 3 shows one time frame of the inverse-Fourier-
transform magnitude images produced by the original
(100%) data and simulated data. The simulated data closely
approximates the features and variations in the original data.

VIII. RESULTS

This section gives the results of the proposed method
on the simulated data comprising 29 time frames of 192
× 144 pixels each. We performed two experiments using
14% k-space data with the axis-aligned and radial sampling
mechanisms described in Section IV. We chose the updates
rates conservatively:λ0 = 10−2, λ1 = λ2 = λ3 = 10−5.
The results are not sensitive to the specific values of these
parameters. The model fitting to obtain the initial parameter
estimatesα0 takes about 10 minutes for the simulated data
on a standard Pentium personal computer. Each iteration of
the model-based gradient-descent optimization process takes
about a quarter minute and the process converges in about
50 iterations. Thus, the entire reconstruction process takes
about 23 minutes for this dataset.

Figure 4 shows the reconstruction for the thirteenth time
frame. Figure 4(a) and Figure 4(b) show that both sampling
schemes produce visually-comparable results. However, the
difference images in Figure 4(e) and Figure 4(f) show that
the radial-sampling scheme produces a reconstruction with
better fidelity to the original signal. The root mean square

(a) (b)

(c) (d)

(e) (f)

Fig. 4. One time frame among the reconstructed magnitude-MRsequence
for 14% k-space data acquired using the (a) axis-aligned sampling strategy
(see Figure 1(a)), and (b) radial sampling strategy (see Figure 1(b)). (c) and
(d) show zoomed versions of images (a) and (b), respectively, to clearly
show the region around the heart (the region of interest). (e) and (f) show
the difference images for the regions around the heart between the simulated
data (ground truth) and the reconstructions in (a) and (b), respectively.

errors (RMSEs) for the two reconstructions, normalized with
respect to the intensity range of the original magnitude-MR
data, were 1.46% and 0.53% for the axis-aligned and radial
sampling, respectively. The RMSEs for a small rectangular
region around the heart (see Figure 4(c) and Figure 4(d)),
normalized to the magnitude-MR intensity range in the
original image in this region, were 10.18% and 1.86% for
the axis-aligned and radial sampling, respectively.

IX. DISCUSSION AND CONCLUSIONS

The proposed reconstruction method is more computa-
tionally intensive than many of the methods in current use.
While some low resolution rapidly reconstructed images are
important to gauge the immediate success of the acquisition,
an off-line reconstruction taking thirty minutes or even an
hour is acceptable to make a diagnosis—post-processing
required approximately an hour per scan in a recent clinical
study of 102 subjects using SENSE [1].

As well, the proposed algorithm is trivially parallelizable.
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The implementation can be multi-threaded to exploit multi-
processor computer architectures, such as those common in
dual-processor PCs, to yield virtually linear speedup.

This model assumes that the sequence of images is well
registered with no motion artifacts. We can incorporate
registration into the proposed reconstruction scheme so that
in-plane translations are estimated, along with the images,
at each time frame. Alternatively, motion can, in theory, be
tracked with a navigator or respiratory strap and incorporated
into the reconstruction. These issues are beyond the scope
of the current work, which is to establish the potential of a
model-based reconstruction method for dynamic MRI.

The model-based reconstruction approach was shown to
perform well with simulated data. The simulations were gen-
erated from acquired magnitude data. Thus, the k-space data
possessed Hermitian symmetry. An important part of future
work comprises more experiments that explicitly obtain a
pre-contrast phase map and then estimate the image phase
temporal variations (which are small). It will be important
to assess how well the proposed method works in practice.

The proposed method makes no assumptions regarding the
aliasing of the data and, hence, the method can use arbitrary
sampling patterns. This also means that the method can in-
corporate some ideas, from kt-BLAST-type techniques [28],
of estimating the overlaps due to a specific sampling pattern.
The proposed method can also be combined with multi-
coil methods. The multi-coil methods exact an SNR penalty,
while the model-based reconstruction improves SNR.
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