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Abstract— The paper presents a novel approach for dynamic the heart. Even with cutting-edge multi-coil methods, it
magnetic resonance imaging (MRI) cardiac perfusion image s virtually impossible to obtain clinically useful images
reconstruction from sparse k-space data. It formulates the 4y gych sparse data by independently reconstructing the
reconstruction problem in an inverse-methods setting. Relvant . . .
prior information is incorporated via a parametric model time frames. Fwthermo_re’ even if the images could be
for the perfusion process. This wealth of prior information ~ reconstructed without artifacts, the SNR would be extrgmel
empowers the proposed method to give high-quality recon- low because SNR is proportional to the square root of the
structions from very sparse k-space data. The paper presest number of acquired k-space lines.
reconstruction results using both Cartesian and radial samling An effective strategy of dealing with sparse data is to

strategies using data simulated from a real acquisition. Te . ¢ ior inf tion in th tructi We
proposed method produces high-quality reconstructions Lag Incorporate prior information in the reconstruction. We-pr

14% of the k-space data. The model-based approach can POSe to introduce such prior information in the form of a
potentially greatly benefit cardiac myocardial perfusion dudies  parametric model for the perfusion process. In this way, we

as well as other dynamic contrast-enhanced MRI applicatios  reduce the reconstruction task from estimating each pixel
including tumor imaging. intensity over time to estimating only the parameters of the
model.
The proposed model-based reconstruction method leads to

Dynamic imaging is an important and rapidly growingsignificant improvements in SNR with very sparse k-space
area in magnetic resonance imaging (MRI) with profoundata. Moreover, the gain in SNR can be traded for fewer
implications for medical diagnosis and treatment. One sudlspace samples. This can, in turn, lead to acquisitionis wit
application is the measurement of myocardial perfusiomigher resolutions in space or time. The proposed method has
Subendocardial perfusion has recently been shown to bet®e potential to greatly benefit myocardial perfusion ssdi
good indicator of ischemia [1], [2]. MRI has the potentialand other DCE-MRI applications, such as tumor imaging.
to become a widely-used non-invasive tool for myocardial
perfusion measurement. The high spatial resolution in MRI Il. RELATED WORK
allows differentiation between subendocardial and suiagpi  Over the years, researchers have presented a variety
dial regions [3], which is not possible with clinical positr of methods for increasing the acquisition speed for many
emission tomography or single photon emission computetynamic-MRI applications. Typically, speedup is achieved
tomography. by reducing the amount of data acquired in k-space. The

Dynamic contrast-enhanced (DCE) MRI, with gadoliniunratio of the total number of k-space lines to the number
as the contrast agent, tracks the exchange of this contra$tlines acquired is termed theeduction factor, R. Cur-
agent between the blood and the myocardial tissue. Thent commercial systems offer cardiac perfusion imaging
exchange is rapid and entails sampling the kinetics of theequences that incorporate multi-coil parallel imaging, e
contrast-agent distribution, typically, at every heaastblgl]. SENSE [1] and GRAPPA [5], and providB ~ 1.6 (24
This need for high temporal resolution severely limits théautocalibration” lines around the center of k-space aratev
resolution, spatial coverage, and signal-to-noise r&8MK) other line sampling R = 2) outside of the center). The
of current DCE-MRI acquisitions. For a reasonable field-ofTSENSE method with? = 2 has also recently been applied
view and resolution, complete heart coverage of about 10 perfusion imaging [6].
slices with a heartbeat rate of up to 100 beats per minute A number of methods use, implicitly or explicitly, an
entails acquisition times of less than 50 milliseconds pea priori model for the perfusion process over time. For
slice. Accounting for the magnetization-preparationtithés instance, sliding window is a data-sharing method that
translates to at most 10-25 lines of k-space for each imagieplicitly assumes slow object or contrast-agent (tracer)

Conventional MRI reconstruction of dynamic signals apkinetics. The sliding-window strategy lends itself to both
plies the inverse-Fourier transform to each image indiafiyu  Cartesian [7], [8] and radial reconstruction [9], [10] sotes.
to produce a time series of images for every slice throughn extension of the sliding-window approach is to use

. INTRODUCTION
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specific acquisition patterns to match the k-space contribu IV. K-SPACE SAMPLING SCHEMES
tions of the time-varying signals. For example, the time-
resolved interpolation for contrast kinetics (TRICKS) J11
[12] and the block-regional interpolation scheme for kespa

One of the most popular techniques of sampling the k-
space is to sample straight lines, along the read direction,

that follow a specific pattern. For instance, UNFOLD-type

(BRIS.K) [13] methods acquir_e different POT“O”S of I('Sp"mefnethods [14], [15], [16] acquire all even and all odd phase
with different temporal-sampling rates. Similarly, UNFDL encodes alternating over time frames. The strategies in the

type methods [14], [_15]’ [16] acquire even and odd phaslg oposed method significantly differ from conventional ®ne
encodes alternately in each temporal frame. Such metho.(l;lr

have found applications in cardiac perfusion imaging [17] Re first proposed sampling is similar to the approach taken

. L i . by Portniaguinet al. [21]. Here, the idea is to acquire a fixed
cardiac cine imaging [14], as well as functional MRI [14] number of k-space lines aligned along the read direction, bu

Faster data acquisition is still required for myocardial,;it, the specific lines selected randomly in each time frame.
perfusion MRI to increase spatial coverage, increasea@patj, gach time frame, moreover, we take 4 lines from the center
resolution, and reduce motion artifacts. The contribugion,¢ o k-space. The idea behind this approach is to get the
in this paper can help speedup the data-acquisition stagg, frequency components in each time frame via the central
The proposed approach poses the reconstruction problemagpace jines, while making the high-frequency errors sero
aninverse problem. Inverse-problem approaches have foun¢ime frames asndependent as possible. Figure 1(a) shows
utility in static MRI apphc_atlons [19]_, [ZQ]. Inyerse-pbdrem such a sampling scheme for one time frame.
methods have been applied to cardiac imaging [21], although o ,mper of researchers use radial acquisitions for cardiac

without any parametric mod_els. Parameterized models egg, o imaging [16] and MR-angiography applications. Radial
COF’? stronger prior qurmatlon and, hence, may have ﬂ‘{‘échniques can produce higher spatial resolution, for argiv
ability to produce superior results. amount of scan time, as compared to Cartesian imaging [22].
Compared to Cartesian k-space sampling, undersampled ra-
I1l. APARAMETRIC MODEL FOR dial k-space sampling results in much-reduced aliasing and
CARDIAC PERFUSION IMAGES some streaking [23]. Thus, the second proposed sampling
strategy is to acquire a pattern of equiangular radial slice
Let us assume that we have a set of magnetic resonartbeough the center of the k-space in each time frame, while
(MR) images for each slice in the heart, one for each timeotating this acquisition pattern randomly across timea.
framet ¢ 1. Each image comprises a set of pixels I” on  Figure 1(b) shows the radial sampling scheme for one time
a D-dimensional Cartesian grid. ThuB, = 2 implies a slice frame. Figure 2 gives an example of artifacts from k-space
of data at each time. Denote the pre-contrast MR imagedata sampled using the two proposed strategies. The radial
intensity at each pixet as,(x). Denote the input function k-space sampling retains more information from the imaged
to the heart produced by the incoming contrast agerd @y,  signal.

which is a function of the timeé. Then the intensitieg(x, t) Reconstructions from non-Cartesian k-space sampling,
observed at pixet at timet are such as radial sampling, entail modifications to the Catesi
parallel-imaging methods. Recall that we define the paramet
g(z,t) = Ip(z)+ ric model for the perfusion process on the magnitude-MR
t — Bs(x) data, and not on the k-space data. Thus we need methods to
C(t) % B1(x) exp (—7) x H(t — (3) *
Ba(z)
( - ) (6(x)) &)
exp | ——=5— | exp (jo(z)),
i (x)

where « denotes convolutionH (t) denotes the discrete
Heaviside-step function, andis the imaginary unit number.
Thus, the parameter set for the model is

a = {I,(z), B1(x), B2(x), B3(), Ba(x), p() : Va}.  (2)

We observe that (ap;(x) corresponds to perfusion and
scales the input function, (b)2(z) and 8s(x) describe the

rate of contrast agent washout and the time delay associated
with the first exponential function, respectively, andgjx) () (b)

describes the decay rate of the second eXponential functi%. 1. Proposed k-space sampling strategies acquiring kképace data.
The convolution with the second exponential function signiThe k-space center is at the corners of the image. Blackitwsaindicate
fies thedispersion of the input signal. This model implicitly 22%"&‘1 es?rr:rfmleesihc(li)diszI|Iirr]1gesa:gngag;\etiﬁzdfrg?gtggmﬂgﬁstﬁg

assumes that the phaggz) in the complex-MR image k-space center. (b) Radial sampling: a pattern of equiangdial lines
remains constant over time. through the k-space center. This pattern rotates randonelgch time frame.
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scheme by dealing directly with radial k-space data that is
not represented on a Cartesian grid using methods such as
POCSENSE [25]. The key ideas in the proposed approach
will, however, remain unchanged.

V. MODEL-BASED
IMAGE RECONSTRUCTION

Let us denote the intensity at pixal and timet in
the reconstructed image sequenceddy, x,t), which is a
function of the parameter set defined in Equation ( 2).
We refer to the entire sequence of reconstructed images by
g(a). Let us denote the given sparse k-space datf{as).
Let F(-) and F~*(-) denote Fourier-transform and inverse-
Fourier-transform operator, respectively. U&t(-) denote a
reduction operator that zeros out those elements from the
k-space where the data is not provided. Then we define an
energy of the form

J(@) =|| WFg(a) - d |I3, ®3)

that quantifies the discrepancy between the estimated image
reconstructions and the data. In a standard inverse-m&thod
formulation, the task is to find such image reconstructions
g(a), i.e. such anq, that would produce k-space data as
close to the given datd, thereby minimizing the energy
J(a). That is

aPtimal — grgminJ(a). (4)
(0%
We employ an iterative gradient-descent optimization
strategy, with finite forward differences. Given an estienat
of the parameterg™ at iterationn, we obtain

0J(a) 0J(a) dg(a)
n+l _ n _ — A"
o = /\—aa @ /\—Bg 90 (5)
where ) is the update rate. We have
0J
8(90‘) = 2F Y (WFg(a) — d). (6)
(©) (f) We have found that the parametgr(x) does not hold

Fig. 2. (a) Magnitude of the Fourier inverse of 100% k-spaatador  sSignificant expressive power in the model. Thus, we can

one time frame. Magnitude of the Fourier inverse of the spdid%) k- g|iminate this parameter from the model and still model
space data where samples are acquired along (b) random(Viites4 in

the center each time frame) (see Figure 1(a)), and (c) eguianradial €@l data accurately using the remaining parameters. For
lines through the center of the k-space (see Figure 1(d))e:Nbe image simplicity, we also assume the phasér) to be zero at all
intensities in (a)-(c) are scaled up so that the lower irtiessin the heart pixels in all images.

region are visible, thereby causing the brighter regiortside the heart to . L .

appear white. (d), (e), and (f) show zoomed versions of imdgp(b), and The partial derivatives of(«) with respect to each of the

(c), respectively, to clearly show the region around therthghe region of ~parameters in the set are:

interest).
ag(a7x7t) _ 1 (7)
Ol p(z) -
transform data to, as well as from, the k-space domain. F(g
; P P _ ; g(OZ,.’L’,t) _ f—ﬁg(fﬂ)
this purpose, we can either (a) interpolate the non-Camesi————~ = C(t) xexp | ————= | H(t — (85(x)), (8)
k-space data to a Cartesian k-space grid [24] and then rel)ﬁﬂl(x) Pa(z)

on fast discrete-Fourier transforms to move data betwee

the domains, or (b) form a direct functional link between?9(® %,t) _ C(t)«

the magnitude-MR data on a Cartesian grid to the non- 952(x)

Cartesian k-space data. In this paper, for simplicity, we us <t - ﬂs(if)) (_t - 53(@) it —
simulated k-space data (simulated from real MRI data) on i) (Ba(x))? P Ba(z) (t = Fs(@)),

Cartesian-grid-discretized radial lines. We can imprdvis t (9)
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and each pixelz, i.e.
afgg (w)” C(t) * B (x) Ve {ﬁ?( (), B3 ()} = o
= argmln I 9(e()) = [ (@) — L, ()] I3,
Pa() Pa() ’ (13)
(10) whereg(a(x)) andg*(x) denotes the respective time curves
whered(t) is the discrete delta function. at pixel xz. We use the Levenberg-Marquardt optimization
scheme to find the optimal-fitting parameters. Thus,

A. OBTAINING THE INPUT FUNCTION

a® = {I)(z), 57 (x), B3 (x), 65 () : Var} (14)

We can derive an input functiorC(¢)) from the right-
ventricular blood pool in a pre-bolus scan [26]. Only a SEmgn‘orms our initial parameters estimate that we feed into the
slice is required to estimate the input function and, hencg)odel-based optimization procedure described in Section V
e oSl A Dbl VI, OVERVIEW OF THE

pp . Yy y groupstop RECONSTRUCTION ALGORITHM
accurate input functions free from saturation effects [26]
[18]. The key idea here is that the input function from the Given sparse k-space dat@r, t), the proposed reconstruc-
right ventricle can be used with Equation ( 1) to modetion algorithm proceeds as follows:
everything in the field of view. Moreover, the input function 1) Obtain an initial estimate of the parametets,
has a good SNR because it is an average of the time-curves

_ \ X a) Use any existing method to obtain a reconstruc-
taken from a fairly-large spatial region.

tion g*(z,t).
b) Vz: fit the model to give
B. OBTAINING INITIAL MODEL PARAMETERS (1), (2), B(x), B(z)}, as described

The model-based gradient-descent optimization process in Section V-B.
needs an initial estimate. A gradient-descent proces®isepr  2) Given the estimaten” at iteration n, compute a
to local minima and, hence, it is reasonable that we start the  new parameter estimate™*! via a gradient-descent

model-based optimization using an initial estimate that is scheme using finite-forward differences to minimize
close to the solution. We can obtain such an initial estimate J(a).

by leveraging any current state-of-the-art methods. a) Computeh(a”) = 2F~1(WFg(a™) — d).
In this paper, we chose an inverse-method reconstruction b) Va :
scheme that we presented in [21] to generate the initial esti I"+(z) = I™(2) — Aoh(a™, z) - dg(a™)
mate. The initial image estimate minimizes an energy which ’;H pn n %gp(g”r?)
is the sum of a fidelity term and a temporal-regularization 1 (@) =B (2) = Ah(a™,2) - 26,(@)
term: 5 (@) = B3 (x) — Aah(a”, z) - S59S
1 (@) = 35 (@) — Ash(a”, @) - 355,

9"z, 1) = argmlnl\ WFg—d|3+IVig |3, (1)

(.0) where- denotes the dot-product operator

3) If % < 0, whered is a small threshold,

where V, is the gradient operator along time. The second then tefminafe, otherwise 9o to step 2.

term is a penalty on the temporal gradient of the solutiod, an
that enforces smoothness on the reconstructed time curvesy||. SIMULATING CARDIAC PERFUSION DATA
This is the only prior information that we incorporate atsthi FROM REAL DATA

stage. . . .
Using this reconstruction, we initialize) (z) as the aver- The parametric cardiac perfusion model assumes that the

age of the first few time frames (e.g. first 3 out of a total Ofequence ofimages is well registered and has no motion arti-
30 frames), i.e acts. Here we simulate well-registered data using coraplet

k-space data from real cardiac perfusion dynamic MR im-
N | X ages. We apply an inverse-Fourier transform to this dat, an
Vo Iy (w) = 3 t_;f (z,1) (12) then take the magnitude of the resulting complex number at
” each pixel. This essentially gives us a reconstructiongusin
This is reasonable to do because the perfusion of the contrasmplete k-space data that does not necessarily have well-
agent starts only after the first few time frames and, thues, thregistered time frames. To enforce registration, we piisgw
first few images capture the same anatomical signal from ttig¢ the parametric-curve model to this magnitude data. The
heart. smoothness over the time-curves enforced by the parametric
After estimatinglg(x) in this manner, we subtract this model generates fitted data that is well-registered. We use
image from all the images in the sequence and fit a paramdtis fitted magnitude data, assuming a phage) of zero at
ric time-curve (using3; (z), 52(x), B3(x)), independently, at each point, to generate simulated k-space data.
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(b)

Fig. 3. Magnitude of the inverse-Fourier transforms of 10@%eriginal k-

space data, and (b) simulated k-space data. (c) and (d) slmwed versions
of images (a) and (b), respectively, to clearly show theamgiround the
heart (the region of interest).

()

Figure 3 shows one time frame of the inverse-FouriefFi9- 4. One time frame among the reconstructed magnitudesktiience
r 14% k-space data acquired using the (a) axis-alignecpkagnstrategy

. . . i
transform magnltqde Images producgd by the O”ngiee Figure 1(a)), and (b) radial sampling strategy (seer€ig(b)). (c) and
(100%) data and simulated data. The simulated data closetly show zoomed versions of images (a) and (b), respectivelglearly

approximates the features and variations in the origintal.da Show the region around the heart (the region of interesp)aié (f) show
the difference images for the regions around the heart leettee simulated

data (ground truth) and the reconstructions in (a) and éspectively.

VIIl. RESULTS

This section gives the results of the proposed method
on the simulated data comprising 29 time frames of 198T0rs (RMSESs) for the two reconstructions, normalizedhwit
x 144 pixels each. We performed two experiments usin spect to the intensity range of the original magnitude-MR
14% k-space data with the axis-aligned and radial samplirgita’ were 1.46% and 0.53% for the axis-aligned and radial
mechanisms described in Section IV. We chose the upda@@Mpling, respectively. The RMSEs for a small rectangular
rates conservativelydg = 10~2,\; = Ao = A3 = 1075 region around the heart (see Figure 4(c) and Figure 4(d)),
The results are not sensitive to the specific values of the§@rmalized to the magnitude-MR intensity range in the
parameters. The model fitting to obtain the initial parametériginal image in this region, were 10.18% and 1.86% for
estimatesy® takes about 10 minutes for the simulated datie axis-aligned and radial sampling, respectively.
on a standard Pentium personal computer. Each iteration of
the model-based gradient-descent optimization procéss ta IX. DISCUSSION AND CONCLUSIONS
about a quarter minute and the process converges in abouThe proposed reconstruction method is more computa-
50 iterations. Thus, the entire reconstruction procesestaktionally intensive than many of the methods in current use.
about 23 minutes for this dataset. While some low resolution rapidly reconstructed images are

Figure 4 shows the reconstruction for the thirteenth timanportant to gauge the immediate success of the acquisition
frame. Figure 4(a) and Figure 4(b) show that both samplingn off-line reconstruction taking thirty minutes or even an
schemes produce visually-comparable results. However, thour is acceptable to make a diagnosis—post-processing
difference images in Figure 4(e) and Figure 4(f) show thakequired approximately an hour per scan in a recent clinical
the radial-sampling scheme produces a reconstruction wighudy of 102 subjects using SENSE [1].
better fidelity to the original signal. The root mean square As well, the proposed algorithm is trivially parallelizabl
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The implementation can be multi-threaded to exploit multif10] D. T. Boll, E. M. Merkle, D. M. Seaman, R. C. Gilkeson, A.lRirson,
processor computer architectures, such as those common in

dual-processor PCs, to yield virtually linear speedup.

This model assumes that the sequence of images is well

registered with no motion artifacts. We can incorporatél1

registration into the proposed reconstruction scheme &b th
in-plane translations are estimated, along with the imagel$2]
at each time frame. Alternatively, motion can, in theory, be

tracked with a navigator or respiratory strap and incorfeata
into the reconstruction. These issues are beyond the scope

of the current work, which is to establish the potential of L3l

model-based reconstruction method for dynamic MRI.

The model-based reconstruction approach was shown [fd!
perform well with simulated data. The simulations were gen-

erated from acquired magnitude data. Thus, the k-space data

possessed Hermitian symmetry. An important part of futuris
work comprises more experiments that explicitly obtain a
pre-contrast phase map and then estimate the image phase 2001.
temporal variations (which are small). It will be important(16] D. C. Peters, D. B. Ennis, and E. R. McVeigh, "High-resiin MRI
to assess how well the proposed method works in practice.
The proposed method makes no assumptions regarding thg
aliasing of the data and, hence, the method can use arbitrary
sampling patterns. This also means that the method can in-
corporate some ideas, from kt-BLAST-type techniques [28]18]
of estimating the overlaps due to a specific sampling pattern
The proposed method can also be combined with multi-
coil methods. The multi-coil methods exact an SNR penalty}9]

while the model-based reconstruction improves SNR.
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