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Abstract

In this work, we introduce a surface representation that is composed of a set of points in
3D space. The set of points can be the raw output of a 3D scanner or generated during
an interactive modeling session. The idea of representing surfaces with 3D points has
been suggested twenty years ago, but until recently it has not been widely used. Recent
advances in 3D scanning along with the memory capacity and processing speed of today’s
personal computers rejuvenated point-based object modeling. Most point-based modeling
algorithms represent a surface as a union of discs. This object representation requires
applying various filtering techniques to achieve high-quality real-time rendering. The focus
of this work is on the geometric modeling aspects of representing surfaces with points.

We introduce a new point-based surface representation which we callpoint set surface
(PSS) that is globally smooth and at the same time computed locally. This surface repre-
sentation combines the advantages of point-based modeling with solid mathematical basis
with guaranteed geometric properties.

Point set surfaces

Point set surfaces are defined using an intriguing idea of a projection operator. The projec-
tion operator takes a point near the surface and translates it to the surface; the surface is then
defined as the set of points that project to themselves. The projection operator is based on
the moving least squares (MLS) paradigm, where a function is fitted for each point. Unlike
parametric surfaces, where a function is fitted over an area of the surface and continuity
is archived by constructing functions with the desired continuity at the boundaries, in the
MLS paradigm, a function at a point is approximated using a linear combination of smooth
functions. The computation of the projection operator is a two-step procedure: first a local
reference domain is fitted to the neighborhood of a point; then a polynomial is fitted over
the reference domain. The result is aC∞ continuous, globally smooth surface. In contrast
to radial-basis function interpolation, the computation of the projection operator is local.

The computation of the projection operator involves assigning weights to neighboring
points using a smooth weight function. The PSS can either interpolate or approximate the
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ABSTRACT iii

input set of points. For noisy input or if the user wishes to smooth a surface, we define
an approximating weight function. The scale of the weight function controls the amount
of smoothing. For clean data, an interpolating weight function is defined. The intrinsic
geometric attributes of a PSS can be approximated by the attributes of the locally fitted
polynomial.

Finally, we present tools for resampling a PSS. By resmapling a surface to meet the
screen resolution and an accurate normal, we obtain a high-quality rendering algorithm.

This part of our work was first presented inIEEE Visualization 2001and an extended
version appeared inIEEE Transactions on Computer Graphics and Visualization.

Progressive point set surfaces

Progressive point set surfaces (PPSS) is a geometric modeling technique that represents
an object in levels, from coarse to fine and from smooth to detailed. We construct a pro-
gressive representation of a PSS by first decimating the object to form a simplified and
smoothed version of the object. Then, we incrementally refine the base object by inserting
new points with additional details. The refinement procedure implicitly adds new points
near the surface and projects them both on the base point set and on the input model. A
detail vector is then added to the point that was projected on the base point set. The detail
vector is equal to the difference between the two projections of the point.

We decompose the detail of an inserted point to a tangential and normal components.
The tangential component is implicitly defined by a set of refinement rules and the normal
component is the only part that needs to be encoded. We use an approximated projection
procedure that projects a point on the input model using the reference domain of the current
coarse object. This allows us to store the normal component using a single scalar value,
leading to a highly compact object representation.

This part of our work was published inACM Transactions on Graphics.

Bilateral mesh denoising

In this chapter, we introduce a feature preserving surface denoising algorithm. Unlike
denoising a surface using PSS, this algorithm preserves sharp features. Robust statistics
algorithms ignores outliers in the sampled data; the idea behind this algorithm is that two
vertices on two opposing sides of an edge treat one another as outliers. We adapt an image
denoising algorithm (the bilateral filter) that is related to robust statistics to surfaces. The
adaptation is inspired by the computation of the PSS projection operator. For each vertex
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we build a local reference domain and project the neighborhood of the vertex onto the ref-
erence domain; the use of a local frame decomposes the local neighborhood to a tangential
and normal components, where the tangential component represents the parameter infor-
mation and the normal component represents the geometric information. We then apply the
bilateral filter in this local frame to the geometric component.

In addition, we show how to select the parameters of the algorithm using an interactive
technique. The user marks a part of the model that is supposed to be smooth by selecting a
point and a radius for applying the smoothing. The remaining parameters are inferred from
the neighborhood of the selected point.

This part was presented inSIGGRAPH 2003, special issue ofACM Transactions on Graph-
ics.
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Chapter 1

Overview

Representing objects as a set of points in three dimensions received increasing interest in
recent years for two main reasons: (i) point-based surface representation allows editing
of objects without the necessary bookkeeping of topological information inherent in tra-
ditional mesh representations. (ii) highly detailed objects are represented by very dense
sampling of the surface, making the connectivity information redundant. The geometric
model that is used by most point-based algorithms is a union of discs. This model is useful
for rendering and interactive editing purposes; but, since a union of discs is not a continuous
or smooth geometric model, rendering requires filtering of points, and geometric process-
ing algorithms are not applied directly to point-based models. In this work, we introduce a
point-based geometric representation that is locally defined and globally smooth.

One source for point-based objects are three-dimensional scanners that sample the sur-
face of an object to generate a set of points in space. This set of points is termedscattered
data, unorganized points, or apoint sets, we will use these terms interchangeably. Once an
object has been scanned, it goes through a number of transformations to form another rep-
resentation that is suitable for further processing and rendering. A natural representation
for such on object is simply the set of point that were obtained from the scanner, which is
the goal of this work.

1.1 The model acquisition pipeline

The process of producing a mathematical representation from a scanned object,the model
acquisition pipeline, consists of several stages (see Figure 1.1). First, an object is scanned
from several viewing directions to cover the object. Then the different scans are regis-
tered, transforming the points from all scans to a single coordinate system. Next, the noise
that is introduced by the scanning process is removed, and finally, the cloud of points is
converted to a some surface representation. In this work, we are mostly interested in the
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ModelObject

Range images Registration Noise reduction

Scanning

Surface reconstrution

Figure 1.1: The model acquisition pipeline.

surface representation, its usability for different applications, and its resilience to noise.
For more information on three dimensional registration, see [Rusinkiewicz 2001] and ref-
erences therein.

Resilience to noise is achieved by smoothly approximating the set of points. Inter-
polating methods preserve the geometry of the input set of points and thus require an-
other denoising step. The model acquisition pipeline as described here is a conceptual
paradigm; naturally, different surface representations and reconstruction algorithms omit
different stages or perform them in different order.

1.2 Surface representations

Some operations are more natural to one surface representation than to another; for ex-
ample it is more natural to perform constructive solid geometry (CSG) operations such as
union and intersection of objects in implicit surface representation than in a triangular mesh
representation. In this section we give a short overview of three types of surface represen-
tations: (i) parametric surfaces, where we concentrate on polygonal meshes that are the
most common representation for scanned object reconstruction. (ii) implicit function rep-
resentation, where we concentrate on radial basis function interpolation (RBF) for which
modern algorithms were developed for fast reconstruction and evaluation. (iii) point-based
object representation. In the context of surface reconstruction and representation, there is a
close relationship between polygonal mesh representation and implicit surface representa-
tion. The first is used as a representation for real-time rendering for the second, while the
second is used as a first stage in reconstructing polygonal meshes from unorganized points.

For each surface representation, we briefly review a number of representative recon-
struction algorithms from scattered data, the ways surface representation and the recon-
struction algorithms cope with noise, the smoothness of the reconstructed surface, and
methods for representing derivative discontinuities, i.e. edges, creases and corners. The
final point we examine is the computational complexity of performing operations on the
surface and in particular rendering the surface. For more in depth discussion of scattered
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data techniques, see [Lodha and Franke 1999].

1.2.1 Parametric surface representations

A parametric surface representation defines an object by modeling its boundary. It is de-
fined by a function over a parameter domainF (u, v) 7→ <3. An object, defined by its
boundary, cannot always be represented using a single planar parameter domain and there-
fore an object’s manifold is represented as the union of parametric surfaces namedpatches.
Every two patches should overlap only at their boundaries and never intersect each other.
A surface reconstruction algorithm, must make sure that the reconstructed surface is con-
tinuous, and it is further desirable that the surface isC1 or C2 smooth.

Polygonal meshes

A special case of parametric surface representation is a polygonal mesh, typically a mesh
of triangles. Polygonal meshes are represented by the pair〈V, F 〉, whereV is the set of
vertices of the triangle mesh, representing the geometry of the object, andF is the set of
faces of the mesh, that is, a union of ordered lists (triplets in triangle meshes) of vertices.
The edges of the faces represent the topology of the mesh.

Polygonal meshes are simple to represent. They are rendered using specialized hard-
ware, and using subdivision schemes, they can represent smooth surfaces [Catmull and
Clark 1978; Warren and Weimer 2001].

Converting scattered data to polygonal surfaces is often performed by first defining
an implicit function, either using the input set of points [Hoppe et al. 1992] or using a
volumetric representation [Curless and Levoy 1996]. The function is sampled and con-
verted to a mesh using themarching cubesalgorithm [Lorensen and Cline 1987]. Hoppe
et al. [1994] use the above recovered polygonal mesh as an initial estimate of the surface
which is further refined by a nonlinear optimization algorithm. They optimize the follow-
ing constraints: smoothness using subdivision rules, preservation of sharp features, and
simplicity of the object. Curless and Levoy [1996] form a volumetric representation of the
signed distance function. They interpolate each new scan into the already computed signed
distance function with weights that are based on the confidence of the sample in order to
create a consensus surface.

Another approach for creating a mesh from scanned data was taken by Turk and Levoy
[1994]. Each scan, which is a depth image, is meshed. The meshes from different scans
are merged the together in a process they namemesh zippering.

The question of sampling criteria was considered by Amenta and Bern [1999]. They
concentrate on a surface reconstruction algorithm that given a “good sample” produces
“correct reconstruction”. Amenta and Bern provide both theoretical guarantees, assuming
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noise free samples [Amenta and Bern 1999], and practical experience of using their al-
gorithm [Amenta et al. 1998]. They define a good sample as one in which the sampling
density is proportional to the distance to the medial axis of the object. A good reconstruc-
tion is defined as one that is topologically equivalent to the input model.

Recently Igarashi and Hughes [2003] defined a smooth surface from a mesh that was
used in a free-form modeling system for mesh fairing. They locally fit a quadric to the
vertices of a mesh. A point on the mesh is then evaluated as a linear combination of a
projection of the point on the quadrics associated with the vertices that are closest to the
point.

High order parametric surfaces

High order parametric surfaces are defined by polynomial approximation or interpolation
using a set of control points. The most widely used are tensor product of smooth curves
such as B-splines or NURBS. Patches are connected together, maintaining continuity of
derivatives.

Since the pioneering work of Pierre E. Bézier [1968], surface patches became common
modelling tools for computer aided design and manufacturing (CADM), and for modelling
of smooth geometric objects. Their major advantage is that they are intuitive to edit using
a small number of control-points. Surfaces that are acquired by 3D scanners are highly
detailed and therefore difficult to edit [Greiner et al. 1996]. For this reason, they are not
widely used for detailed geometric surface representation and reconstruction. Krishna-
murthy and Levoy [1996] reconstruct a scanned model using a hybrid of surface patches
and geometric details. Each patch is a smooth approximation of the underlying surface that
is further refined using detail vectors that are stored in an image format.

1.2.2 Implicit surface representations

Implicit surfaces are defined as the zero set of a functionF (x) : <3 7→ <. They can be
modeled using basic geometric primitives such as spheres, Gaussian blobs etc. Computing
CSG operations such as union, intersection and subtraction of implicit surfaces is simple,
enabling the construction of complex objects. Rendering implicit surfaces is not a real-time
process, though they can be sketched using particles [Witkin and Heckbert 1994].

Reconstructing a surface from 3D scanned dataS = {pi} of sizeN = |S| can be
viewed as a scattered data interpolation problem. An implicit function solution to scattered
data interpolation uses radial basis functions (RBF). A radial basis function is defined as:

f(x) =
N∑

i=1

ai · φ(‖x− pi‖) +
M∑
i=1

bi · P (x), (1.1)
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where P is a polynomial of degreem andM = m(m+1)
2

. In order to define an RBF inter-
polation to an input model, one has to solve a linear system ofN + M equations. In order
to avoid the trivial solution, a number of points that are inside and outside the model with
negative and positive values respectively are added. Altogether, one has to solve a linear
system of equations with up to3N + M variables.

The above scattered data interpolation problem has an infinite number of solutions. A
common solution is to select a radial function that minimizes the total curvature, known as
thin-plate spline interpolation, whose definition in two dimensions is:

φ(x) = x2 log(x), (1.2)

and in three dimensions:
φ(x) = x. (1.3)

Notice that these functions have a support that grows as a point gets farther from the center,
forming a full symmetric positive definite matrix.

Solving Eq. 1.1 is anO(n3) problem that can be solved for objects of moderate size
[Turk and O’brien 2002]. A number of algorithms for fast solution and evaluation of radial
basis functions were introduced in recent years. Carr et al. [2001] applied fast evaluation
of radial basis functions [Beatson and Newsam 1992] withO(N log(N)) time for solving
Eq. 1.1 andO(1) with setup time ofO(N log(N)) for evaluating the function. The main
idea in their solution is to hierarchically cluster points that are far from a point to a single
representative. In addition, they developed a method for approximating a set of points using
RBF and a single parameter that controls the smoothness of the surface.

Compactly supported radial basis functions is a different approach for the computa-
tional and stability problems of direct solutions for Eq. 1.1 [Morse et al. 2001]. Compactly
supported RBFs form a sparse matrix for Eq 1.1 by using a radial basis function with fi-
nite or truncated support. This sparse matrix can be solved inO(N1.5), and evaluating the
function becomes anO(log(N)) problem. The cost of using compactly supported RBFs is
an additional parameter that is the size of the support.

Radial basis function interpolation forms a smooth function, which is desirable in many
cases. However some objects have derivative discontinuities, i.e. edges, creases and cor-
ners. Dinh et al. [2001] used anisotropic basis functions for surface interpolation. They
scale the distance from a center anisotropically based on an eigenvector analysis of the
neighborhood of the point.

Recently, Ohtake et al. [2003] introduced an implicit function representation from
points that requires only local computation. Starting with a bounding box of the input
set of points, a function is fitted to the points. If the error between the function and the
points is larger than some threshold, the box is subdivided into eight sub-boxes and the
process is repeated recursively. Three types of functions are fitted: a parametric polyno-
mial, a quadric similar to Igarashi and Hughes [2003], or an intersection of two functions
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that is used to captures sharp features. The implicit model is then defined using partition of
unity of the functions in the neighborhood of a point.

Performing constructive solid geometry (CSG) operations on implicit surfaces is simple
usingmin, max, andnegateoperators. Filleting and blending operations are also easily per-
formed [Bloomenthal et al. 1997]. With the exception of the work of Ohtake et al. [2003],
any modification to the points must be followed by solving a matrix, an operation that is
too costly for an interactive editing session.

Implicit functions are rendered by ray-tracing [Hart 1996], or by first converting them to
a polygonal mesh [Bloomenthal 1994; Bloomenthal 1988], and then rendering them using
standard graphics hardware.

1.2.3 Point-based surface representation

Research on point-based object representation was mainly concerned with fast rendering
of complex objects or scenes. The idea of using points as graphic primitives was first
considered by Levoy and Whitted [1985]. Chen and Williams [1993] introduced a walk-
through system that used images with depth as a model. Images with depth representation
(commonly known asimage based rendering(IBR)) are mostly concerned with reusing
real or synthetic images for fast rendering, exploiting the coherence inherent in images.
Researches in image based rendering are mostly interested in capturing objects and envi-
ronments [Gortler et al. 1996; McMillan and Bishop 1995], data structures for representing
such models [Shade et al. 1998], good sampling [Stuerzlinger 1999; Fleishman et al. 2000],
and surface sampling algorithms that lead to rendering without introducing holes or cracks
in the image [Chai et al. 2000].

Rendering

Grossman and Dally [1998] suggested to represent complex objects using points for real-
time rendering with no specialized hardware. They presented an object sampling criteria
such that the rendered image contains no holes. The main idea in this work is to cover the
output image with an virtual triangle mesh such that the length of triangle edges are less
than the side size of a pixel.

Rusinkiewicz and Levoy [2000] introduced a point-based system for interactive ren-
dering and compact encoding of objects. They model an object as a union of overlapping
spheres. A hierarchy of spheres that utilizes relative coordinates for compact encoding is
built from the union of spheres in a bottom-up manner. The model is rendered by travers-
ing the hierarchy from the root downwards, stopping whenever a leaf node is reached, the
projected size of a node is less than a pixel or the time budget is reached.

Pfister et al. [2000] model an object as a union of discs. They introduce an image space
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elliptical weighted average (EWA) filter for high-quality point-based rendring. In addition,
they use an octree for point-based level of detail rendering and fast culling.

Kalaiah and Vershney [2003] store at every point the principal directions and curva-
tures in addition to color and normal information. Areas of low curvature should have low
sampling density, while areas of high curvature should be sampled more densely; therefore,
they simplify an object by discarding points whose geometric information is represented
by their neighbors within a user specified error. For hardware rendering, they precompute
normal maps for different curvature values.

Schaufler and Wann-Jensen [2000] introduced a ray tracing algorithm for point-sampled
geometry. They also represent an object as a union of discs, implemented by tracing a
cylinder with some predefined radius until a point is hit. Their visual results are very
appealing, however their model may change when the camera parameters change. This
problem can be solved by filtering or by using a different geometric representation.

Modeling and editing

Adams and Dutre [2003] introduced interactive boolean operations on point-based mod-
els. They paint an octree that bounds the object with three colors, one for cells that are
completely outside the object, one for cells that completely inside the object and one for
cells that contain part of the boundary of the object. For CSG operations, the octrees of the
two objects are traversed, quickly handling cells that are completely inside or outside of
the objects. The remaining cells are handled by defining additional clipping planes based
on the points in the cell. In a second step, for better approximation of the sharp curve that
is formed by the CGS operations, they resmaple the surface near the intersection curve by
decreasing the radius of points and adding new points with smaller radius.

Pointshop3D [Zwicker et al. 2002] is a point-based surface editing system that supports
surface painting and carving. The system is based on parameterization and resampling op-
erators. To apply a tool to the surface, both the tool and the surface patch are parameterized
over the same domain, then they are resampled to the same resolution and finally, the tool
is applied to the patch in the parametric domain. Pauly et al. [2003] extended that system
with boolean operations and free-form deformations with point set surfaces [Alexa et al.
2003] as the underlying surface representation. Boolean operations are performed by clas-
sifying points as inside/outside of the object. The classification is accelerated by exploiting
local coherence; every point that is contained in a sphere with a radius that is equal to the
distance between a classified point and the closest point on the surface has the same classi-
fication as the point. They also recover sharp features by computing and adding new points
along the intersection curve. In a final step, they upsample or downsample [Pauly et al.
2002] the object to maintain the desired sampling density. The inside/outside classification
is also used for topology control in interactive free-form deformation of an object.
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1.3 Summary

In this work, we introduce a geometric surface definition from point sets which we call
point set surfaces(PSS). The surface is defined using a projection operator that utilizes the
moving least squares (MLS) paradigm with local parameter space [Levin 2003]. Given a
point near the surface, the projection operator translates the point to the surface, and the
surface is defined as the set of points that project to themselves. The computation of the
projection operator is a two step procedure: first a local reference domain is fitted to the
neighborhood of a point. Then a polynomial is fitted over the reference domain. The result
is aC∞ continuous, globally smooth surface. The computation of the projection operator
is local, so that moving a point during an editing session, for example, does not affect the
entire surface. The projection operator relies on a single parameter that is the average of
point spacing. The smoothness of the surface is controlled by this parameter, allowing
reconstruction of objects from clean, as well as noisy point sets.

In Chapter 2, we describe the point set surface, show how to compute the projection
operator, use our surface definition for smoothing and denoising surfaces, and provide tools
for resampling the surface. Surface resampling to screen resolution gives rise to a high
quality point-based rendering algorithm.

In Chapter 3, a progressive representation of point set surfaces is introduced. Progres-
sive point set surfaces (PPSS) are a multilevel point-based surface representation. A PPSS
representation of an object is constructed by creating a base point set that is a decimated
and a smooth version of the input model. Next, using a refinement operator, we insert new
detail points that are a combination of a new point that is projected on the surface with an
additional detail vector.

We decompose the detail of an inserted point into tangential and normal components.
The tangential component is implicitly defined by the refinement operator and the normal
component is the only part that needs to be encoded. We use an approximated projection
procedure that projects a point on the input model using the reference domain of the coarser
object. This allows us to store the normal component using a single scalar value, leading
to a highly compact object representation.

The PSS is a smooth surface representation, thus it smoothes sharp features when used
for denoising. In Chapter 4, we introduce a feature-preserving surface denoising algorithm.
We use the idea of local maps from the projection operator and the separation to tangential
and normal components from the PPSS definition in order to apply an image denoising
algorithm locally to every point in the input model. In particular, we adapt the bilateral
filter [Smith and Brady 1997; Tomasi and Manduchi 1998] image deoising algorithm to
surfaces. The result is a very simple and fast algorithm for surface denoising. We sum up
with a discussion and suggest ideas for future work in Chater 5.



Chapter 2

Point Set Surfaces

Point sets are receiving a growing amount of attention as a representation of models in
computer graphics. One reason for this is the emergence of affordable and accurate scan-
ning devices generating a dense point set, which is an initial representation of the physical
model [Levoy et al. 2000]. Another reason is that highly detailed surfaces require a large
number of small primitives, which contribute to less than a pixel when displayed, so that
points become an effective display primitive [Pfister et al. 2000; Rusinkiewicz and Levoy
2000].

A point-based representation should be as small as possible while conveying the shape,
in the sense that the point set is neither noisy nor redundant. It is important to have
tools which adequately adjust the density of points so that a smooth surface can be well-
reconstructed. Figure 2.1 shows a point set with varying density. Amenta et al. [1998] have
investigated the problem from a topological point of view, that is, the number of points
needed to guarantee a topologically equivalent reconstruction of a smooth surface. Our
approach is motivated by differential geometry and aims at minimizing the geometric error
of the approximation. This is done by locally approximating the surface with polynomials
using moving least squares (MLS).

We understand the generation of points on the surface of a shape as a sampling process.
The number of points is adjusted by either up-sampling or down-sampling the representa-
tion. Given a data set of pointsP = {pi} (possibly acquired by a 3D scanning device),
we define a smooth surfaceSP (MLS surface) based on the input points (the definition of
the surface is given in Section 2.2). We suggest replacing the pointsP definingSP with a
reduced setR = {ri} defining an MLS surfaceSR which approximatesSP . This general
paradigm is illustrated in 2D in Figure 2.2: PointsP , depicted in purple, define a curveSP

(also in purple).SP is resampled with pointsri ∈ SP (red points). This typically lighter
point set called therepresentationpoints now defines the red curveSR which approximates
SP .

9
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Figure 2.1: A point set representing a statue of an angel. The density of points and, thus,
the accuracy of the shape representation are changing (intentionally) along the vertical
direction.

The technique that defines and resamplesSP provides the following important proper-
ties:

Smooth manifold: The surface defined by the point set is guaranteed to be a 2-manifold
andC∞ smooth, given that the points are sufficiently close to the surface being rep-
resented.

Bounded sampling error: Let SR be defined by the set of representation pointsri ⊂ SP .
The representation has bounded errorε, if d(SP , SR) < ε, whered(·, ·) is the Haus-
dorff distance.

Local computation: For computing a point on the surface only a local neighborhood of
that point is required. This results in a small memory footprint, which depends only
on the anticipated feature size and not the number of points (in contrast to several
other implicit surface definitions, e.g. those based on radial basis functions).
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In the context of surface consolidation (see Section 2.1), our approach has two impor-
tant features:

Noise reduction: Filtering imperfect data and generating a thin point set, in the sense that
the points do not deviate from the surface being represented.

Redundancy reduction: The point set is down-sampled by removing redundant informa-
tion introduced by oversampling the surface.

Finally, we present a rendering method that approximatesSR from the local polynomial
approximations offering. The bounded sampling error substantiates our claimed for the
following properties of our rendering scheme:

High quality: SinceSR is a smooth surface, proper resampling leads to smooth silhouettes
and normals resulting in superior rendering quality at interactive frame rates.

Single step procedure:Resampling respects screen space resolution and guarantees suf-
ficient sampling, i.e. no holes have to be filled in a postprocessing step.

a)

d)c)

b)

pi
ri

SP

SR
SR

ri

SP

SP

Figure 2.2: An illustration of the paradigm: The possibly noisy or redundant point set
(purple points) defines a manifold (purple curve). This manifold is sampled with (red)
representation points. The representation points define a different manifold (red curve).
The spacing of representation points depends on the desired accuracy of the approximation.
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2.1 Related work

2.1.1 Consolidation

Recent technological and algorithmic advances have improved the process of automatic
acquisition of 3D models. Acquiring the geometry of an object starts with data acquisition,
usually performed with a range scanner. This raw data contains errors (e.g., line-of-sight
error [Hebert et al. 1993; Rutishauser et al. 1994]) mainly due to noise intrinsic to the
sensor used and its interaction with the real-world object being acquired. For a non-trivial
object, it is necessary to perform multiple scans, each in its own coordinate system, and to
register the scans [Besl and McKay 1992]. In general, areas of the objects are likely to be
covered by several samples from scans performed from different positions. One can think
of the output of the registration as athickpoint set.

A common approach is to generate a triangulated surface model over the thick point set.
There are several efficient triangulation techniques, such as [Amenta et al. 1998; Bajaj et al.
1995; Bernardini et al. 1999; Boissonnat 1984; Gopi et al. 2000]. One of the shortcom-
ings of this approach is that the triangulated model is likely to be rough, containing bumps
and other kinds of undesirable features, such as holes and tunnels, and be non-manifold.
Further processing of the triangulated models, such as smoothing [Taubin 1995; Desbrun
et al. 1999] or manifold conversion [Gueziec et al. 1998], becomes necessary. The promi-
nent difficulty is that the point set might not actually interpolate a smooth surface. We call
consolidationthe process of “massaging” the point set into a surface. Some techniques,
such as Hoppe et al. [1992], Curless and Levoy [1996], and Wheeler et al. [1998] consol-
idate their sampled data by using an implicit representation based on a distance function
defined on a volumetric grid. In [Hoppe et al. 1992], the distances are taken as the signed
distance to a locally defined tangent plan. This technique needs further processing [Hoppe
et al. 1993; Hoppe et al. 1994] to generate a smooth surface. Curless and Levoy [1996]
use the structure of the range scans and essentially scan convert each range surface into the
volume, properly weighting the multiply scanned areas. Their technique is robust to noise
and is able to take relative confidence of the samples into account. The work of Wheeler et
al. [1998] computes the signed distance to a consensus surface defined by weighted aver-
aging of the different scans. One of the nice properties of the volumetric approach is that it
is possible to prove under certain conditions that the output is a least-square fit of the input
points (see [Curless and Levoy 1996]).

The volumetric sign-distance techniques described above are related to a new field in
computer graphics calledVolume Graphicspioneered by Kaufman and colleagues [1993;
1995; 1999] which aims to accurately define how to deal with volumetric data directly,
and answer questions related to the proper way to convert between surface and volume
representations.
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It is also possible to consolidate the point set by performing weighted averaging di-
rectly on the data points. In [Turk and Levoy 1994], model triangulation is performed first,
then averaging is performed in areas which overlap. In [Soucy and Laurendeau 1992], the
data points are first averaged, weighted by a confidence in each measurement, and then
triangulated.

Another approach to define surfaces from the data points is to perform some type of
surface fitting [Goshtasby and O’Neill 1993], such as fitting a polynomial [Lei et al. 1996]
or an algebraic surface [Pratt 1987] to the data. In general, it is necessary to know the
intrinsic topology of the data and (sometimes) have a parametrization before surface fitting
can be applied. Since this is a non trivial task, Krishnamurthy and Levoy [1996] have
proposed a semi-automatic technique for fitting smooth surfaces to dense polygon meshes
created by Curless and Levoy [1996]. Another form of surface fitting algorithms couples
some form of high-level model recognition with a fitting process [Ramamoorthi and Arvo
1999].

The process of sampling (or resampling) surfaces has been studied in different settings.
For instance, surface simplification algorithms [Cignoni et al. 1998] sample surfaces in dif-
ferent ways to optimize rendering performance. Related to our work are algorithms which
use particle systems for sampling surfaces. Turk [1992] proposes a technique for comput-
ing level of details of triangular surfaces by first randomly spreading points on a triangular
surface, then optimizing their positions by letting each point repel their neighbors. He uses
an approximation of surface curvature to weight the number of points which should be
placed in a given area of the surface. A related approach is to use physically-based parti-
cle systems to sample an implicit surface [Witkin and Heckbert 1994; de Figueiredo et al.
1992]. Crossno and Angel [1997] describe a system for sampling isosurfaces, where they
use the curvature to automatically modulate the repulsive forces.

Lee [2000] uses a moving-least squares approach to the reconstruction of curves from
unorganized and noisy points. He proposes a solution for reconstructing two and three-
dimensional curves by thinning the point sets. Although his approach resembles the one
used here (and based on theory developed in [Levin 2003]), hisprojectionprocedure is dif-
ferent, and requires several iterations to converge to a clean point set (i.e., it is not actually
a projection, but more of a converging smoothing step).

An alternative to our point-based modelling mechanism is proposed by Linsen [2001].
His work is based on extending thek neighborhood of a point to a “fan” by using an angle
criterion (i.e., a neighborhood should cover the full360 degrees around). Using this simple
scheme, Linsen proposes a variety of operations for point clouds, including rendering,
smoothing, and some modelling operations.
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2.1.2 Point sample rendering

Following the pioneering work of Levoy and Whitted [1985], several researchers have re-
cently proposed using “points” as the basic rendering primitive, instead of traditional ren-
dering primitives, such as triangulated models. One of the main reasons for this trend is that
in complex models the triangle size is decreasing to pixel resolution. This is particularly
true for real-world objects acquired as “textured” point clouds [McAllister et al. 1999].

Grossman and Dally [1998] presented techniques for converting geometric models into
point-sampled data sets, and algorithms for efficiently rendering the point sets. Their tech-
nique addresses several fundamental issues, including the sampling rate of conversion from
triangles to points, and several rendering issues, including handling “gaps” in the rendered
images and efficient visibility data structures. The Surfels technique of Pfister et al. [2000]
builds and improves on this earlier work. They present alternative techniques for the sam-
pling of the triangle mesh, including visibility testing, texture filtering, and shading.

Rusinkiewicz and Levoy [2000] introduce a technique which uses a hierarchy of spheres
of different radii to model a high-resolution model. Their technique uses small spheres
to model the vertices at the highest resolution, and a set of bounding spheres to model
intermediate levels. Together with each spherical sample, they also save other associated
data, such as normals. Their system is capable of time-critical rendering, as it adapts the
depth of tree traversal to the available time for rendering a given frame.

Kalaiah and Varshney [2001] introduced an effective method for rendering point primi-
tives that requires the computation of the principal curvatures and a local coordinate frame
for each point. Their approach renders a surface as a collection of local neighborhoods, and
it is similar to our rendering technique proposed later, although they do not use dynamic
level of detail in their system.

All the above techniques account for local illumination. Schaufler and Jensen [2000]
propose to compute global illumination effects directly on point-sampled geometry by a
ray tracing technique. The actual intersection point is computed, based on a local approxi-
mation of the surface, assuming a uniform sampling of the surface.

Point-based rendering suffers from the limited resolution of the fixed number of sam-
ple points representing the model. At some distance, the screen space resolution is high
relative to the point samples, which causes undersampling. Tackling this problem by in-
terpolating the surface points in image space is limited. A better approach is to resample
the surface during rendering at the desired resolution in object-space, guaranteeing that
sampling density is sufficient with respect to the image space resolution.

Hybrid polygon-point approaches have been proposed. Cohen et al. [2001] introduces a
simplification technique which transitions triangles into (possibly multiple) points for faster
rendering. Their system uses an extension of DeFloriani et al’s Multi-Triangulation data
structure [Floriani et al. 1997; Floriani et al. 1998]. A similar system has been developed
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by Chen and Nguyen [2001] as an extension of QSplat [Rusinkiewicz and Levoy 2000].

2.2 Defining the surface - point projection

Our approach relies on the idea that the given point set implicitly defines a surface. We
build upon recent work by Levin [2003]. The main idea is the definition of a projection
procedure, which projects any point near the point set onto the surface. Then, the MLS sur-
face is defined as the points projecting onto themselves. In the following, we explain the
projection procedure, prove the projection and manifold properties, motivate the smooth-
ness conjecture, and, give details on how to efficiently compute the projection.

2.2.1 The projection procedure

Let pointspi ∈ <3, i ∈ {1, . . . , N}, be sampled from a surfaceS (possibly with a measure-
ment noise). The goal is to project a pointr ∈ <3 nearS onto a two-dimensional surfaceSP

that approximates thepi’s. The following procedure is motivated by differential geometry,
namely that the surface can be locally approximated by a function.

r

q

n

H

g

pi

fi

Figure 2.3: The MLS projection procedure: First, a local reference domainH for the purple
point r is generated. The projection ofr ontoH defines its originq (the red point). Then,
a local polynomial approximationg to the heightsfi of pointspi overH is computed. In
both cases, the weight for each of thepi is a function of the distance toq (the red point).
The projection ofr ontog (the blue point) is the result of the MLS projection procedure.

1. Reference domain: Find a local reference domain (plane) forr (see Figure 2.3).
The local planeH = {x|〈n,x〉 − D = 0,x ∈ <3},n ∈ <3, ‖n‖ = 1 is computed
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so as to minimize a local weighted sum of square distances of the pointspi to the
plane. The weights attached topi are defined as the function of the distance ofpi

to the projection ofr on the planeH, rather than the distance tor. Assumeq is the
projection ofr ontoH, thenH is found by minimizing

N∑
i=1

(〈n,pi〉 −D)2 θ (‖pi − q‖) (2.1)

whereθ is a smooth, monotone decreasing function, which is positive on the whole
space. By settingq = r + tn for somet ∈ <, (2.1) can be rewritten as:

N∑
i=1

〈n,pi − r− tn〉2θ (‖pi − r− tn‖) . (2.2)

We define the operatorQ(r) = q = r + tn as the local minimum of Eq. 2.2 with
smallestt and the local tangent planeH nearr accordingly. The local reference
domain is then given by an orthonormal coordinate system onH so thatq is the
origin of this system. Note that the global minimum of Eq. 2.2 is approaching zero
ast approaches∞. To avoid this solution, Eq. 2.2 is normalized with the sum of
weightsθ(·).

2. Local map: The reference domain forr is used to compute a local bivariate polyno-
mial approximation to the surface in a neighborhood ofr (see Figure 2.3). Letqi be
the projection ofpi ontoH, andfi the height ofpi over H, i.e. fi = n · (pi − q).
Compute the coefficients of a polynomial approximationg so that the weighted least
squares error

N∑
i=1

(g(xi, yi)− fi)
2 θ (‖pi − q‖) (2.3)

is minimized. Here(xi, yi) is the representation ofqi in a local coordinate system in
H. Note that, again, the distances used for the weight function are from the projection
of r ontoH. The projectionP of r ontoSP is defined by the polynomial value at the
origin, i.e.P(r) = q + g(0, 0)n = r + (t + g(0, 0))n.

2.2.2 Properties of the projection procedure

In our application scenario the projection property (i.e.P(P(r)) = P(r)) is extremely
important: We want to use the above procedure to compute points exactly on the surface.
The implication of using a projection operator is that the set of points we project and the
order of the points we project do not change the surface. From Eq. 2.2 it is clear that if(t,n)

is a minimizer forr then(s,n) is a minimizer forr+(s− t)n. Assuming the minimization
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is global in a neighborhoodU ∈ < of q thenQ is a projection operation inU , because the
pair (0,n) is a minimizer forr− tn = q. Furthermore,q + g(0, 0)n = r + (t + g(0, 0))n

is a minimizer and, thus,P is also a projection inU .
We like to stress that the projection property results from using distances toq rather

thanr. If θ depended onr the procedure would not be a projection because the values ofθ

would change along the normal direction.
The surfaceSP is formally defined as the subset of all points in<3 that project onto

themselves. A simple counting argument shows that this subset is a two-parameter family
and, thus,SP a 2-manifold. Eq. 2.2 essentially has6 degrees of freedom:3 for r, 2 for n,
and1 for t. On the other hand there are4 independent necessary conditions: For a local
minimum the partial derivatives of the normal andt have to be zero and forr to be on the
surfacet = 0 is necessary. This leaves6 − 4 = 2 free parameters for the surface. It is
clear from simple examples that the parameter family includes manifolds which cannot be
expressed as functions over<2.

The particular charm of this surface definition is that it avoids piecewise parameteriza-
tions. No subset of the surface is parameterized over a planar piece but every single point
has its own support plane. This avoids the common problems of piecewise parameteriza-
tions for shapes, e.g. parameterization dependence, distortions in the parameterization, and
continuity issues along the boundaries of pieces.

However, in this approach we have the problem of proving continuity for any point on
the surface because its neighbors have different support planes in general. The intuition for
SP ∈ C∞ is, of course, that Eq. 2.1 interpreted as a function<6 7→ < is C∞ so that also a
particular kernel of its gradient isC∞.

The approximation of single points is mainly dictated by the weight functionθ. The
weight function suggested in [Levin 2003] is a Gaussian

θ(d) = e−
d2

h2 (2.4)

whereh is a fixed parameter reflecting the anticipated spacing between neighboring points.
By changingh the surface can be tuned to smooth out features of size< h in S. More
specifically, a small value forh causes the Gaussian to decay faster and the approximation is
more local. Conversely, large values forh result in a more global approximation, smoothing
out sharp or oscillatory features of the surface. Figure 2.4 illustrates the effect of different
h values.

2.2.3 Computing the projection

We explain how to efficiently compute the projection and what values should be chosen for
the polynomial degree andh. Furthermore, we discuss trade-offs between accuracy and
speed.
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Figure 2.4: The effect of different values for parameterh. A point set representing an
Aphrodite statue defines an MLS surface. The left side shows an MLS surface resulting
from a small value and reveals a surface structure resulting from the wood carving. The
right side shows a larger value forh, smoothing out small features or noise.

Step 1 of the projection procedure is a non-linear optimization problem. Usually,
Eq. 2.2 will have more than one local minimum. By definition, the local minimum with
smallestt has to be chosen, which means the plane should be close tor. For minimizing
(2.2) we have to use some iterative scheme, which descends toward the next local minimum.
Without any additional information we start with t = 0 and first approximate the normal.
Note that in this case the weightsθi = θ (‖pi − r‖) are fixed. LetB = {bjk} , B ∈ <3×3

the matrix of weighted covariances be defined by

bjk =
∑

i

θi

(
pij − rj

)
(pik − rk) . (2.5)

Then, the minimization problem (2.2) can be rewritten in bilinear form

min
‖n‖=1

nT Bn, (2.6)

and the solution of the minimization problem is given as the Eigenvector ofB that corre-
sponds to the smallest Eigenvalue.

If a normal is computed (or known in advance) it is fixed and the function is minimized
with respect tot. This is a non-linear minimization problem in one dimension. In general,
it is not solvable with deterministic numerical methods because the number of minima is
only bounded by the number N of pointspi. However, in all practical cases we have found
that for t ∈ [−h/2, h/2] there is only one local minimum. This is intuitively clear ash is
connected to the feature size and features smaller thanh are smoothed out, i.e. features
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with distance smaller thanh do not provide several minima. For this reason we make the
assumption that any pointr to be projected is at mosth/2 away from its projection. In
all our practical applications this is naturally satisfied. Using these prerequisites the local
minimum is bracketed with±h/2. The partial derivative

2
N∑

i=1

〈n,pi − r− tn〉
(

1 +
〈n,pi − r− tn〉2

h2

)
e−‖pi−r−tn‖2/h2

, (2.7)

can be easily evaluated together with the function itself. The derivative is exploited in a
simple iterative minimization scheme as explained in [Press et al. 1992, Chapter 10.3].

Oncet 6= 0 fixing t and minimization with respect to the normal direction is also a
non-linear problem becauseq = r + tn changes and, thus, also the weights change. The
search space can be visualized as the tangent planes of a sphere with center pointr and
radiust. However, in practice we have found the normal (orq) changes only slightly so
that we approximate the sphere locally around the current value ofr + tn as the current
plane definedt andn. On this plane a conjugate gradient scheme [Press et al. 1992] is used
to minimize among allq on the plane. The main idea is to fix a subspace for minimization
in which n cannot vanish so that the constraint‖n‖ = 1 is always satisfied. The use of
a simple linear subspace makes the computation of partial derivatives efficient and, thus,
conjugate gradient methods applicable. Clearly, this search space effectively changest

resulting in a theoretically worse convergence behavior. In practice, the difference between
the sphere and the plane is small for the region of interest and the effect is not noticeable.

Using these pieces the overall implementation of computing the support plane looks
like this:

Initial normal estimate in r: The normal in a point might be given as part of the input
(e.g. estimate from range images) or could be computed when refining a point set
surface (e.g. from close points in the already processed point set). If no normal is
available it is computed using the Eigenvector of the matrix of weighted co-variances
B (Eq. 2.5).

Iterative non-linear minimization: The following two steps are repeated as long as any
of the parameters changes more than a predefinedε

1. Minimize alongt, where the minimum is initially bracketed byt = ±h/2,

2. Minimize q on the current planeH : (t,n) using conjugate gradients. The new
value forq = r + tn leads to new values for the pair(t,n).

The last pair(t,n) defines the resulting support planeH.
The second step of the projection procedure is a standard linear least squares problem:

Once the planeH is computed, the weightsθi = θ (‖pi − q‖) are known. The gradient of
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(2.3) over the unknown coefficients of the polynomial leads to a system of linear equations
of size equal to the number of coefficients, e.g. 10 for a third degree polynomial.

Through experimentation, we found that high degree polynomials are likely to oscillate.
Polynomials of degree 3 to 4 have proved to be very useful as they produce good fits of the
neighborhood, do not oscillate, and are quickly computed.

2.2.4 Data structures and trade-offs

The most time-consuming step in computing the projection of a pointr is collecting the
coefficients from each of thepi (i.e. computing the sum). Implemented naively, this process
takesO(N) time, whereN is the number of points. We exploit the effect of the quickly
decreasing weight function in two ways:

1. In a certain distance fromr the weight function is effectively zero. We call this the
neglect distancedn, which depends solely onh. A regular grid with cell size2dn is
used to partition the point set. For each projection operation a maximum of9 cells
is needed. This results in a very small memory footprint and yields a simple and
effective out of core implementation, which makes the storage requirements of this
approach independent of the total size of the point set.

2. Using only the selected cells the terms are collected using a hierarchical method
inspired by solutions to the N-body problem [Barnes and Hut 1986]. The basic ob-
servation is, that a cluster of points far fromr can be combined into one point. To
exploit this idea, each cell is organized as an Octree. Leaf nodes contain thepi’s;
inner nodes contain information about the number of points in the subtree and their
centroid. Then, terms are collected from the nodes of the Octree. If the node’s di-
mension is much smaller than its distance tor, the centroid is used for computing
the coefficients; otherwise the subtree is traversed. In addition, whole nodes can be
neglected if their distance tor is larger thandn.

The idea of neglecting points could be also made independent of numerical issues by
using a compactly supported weight function. However, the weight function has to be
smooth. An example for such an alternative is

θ(x) = 2x3 − 3x2 + 1. (2.8)

When Eq. 2.4 and 2.8 are used, the PSS approximates the input set of points. A weight
function that interpolates the points should tend to infinity at zero. An example for such a
function is:

θ(x) =
e−x2/h2

1− e−x2/h2 + ε
, (2.9)
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whereh is the same as before, andε can be a small constant value, or it can be a function of
the confidence of the point; interpolating points with high confidence and approximating
points with low confidence.

A simple way to trade accuracy for speed is to assume that the planeH passes through
the point to be projected. This assumption is reasonable for input points, which are ex-
pected to be close to the surface they define (e.g. input that has been smoothed). This
simplification saves the cost of the iterative minimization scheme.

2.3 Approximation error

Consider again the setting depicted in Figure 2.2. Input points{pi} define a surfaceSP ,
which are then represented by a set of points{ri} ∈ SP . However, the set{ri} defines a
surfaceSR which approximatesSP . Naturally, we would like to have an upper bound on
the distance betweenSR andSP .

From differential geometry, we know that a smooth surface can be locally represented
as a function over a local coordinate system. We also know that in approximating a bivariate
functionf by a polynomialg of total degreem, the approximation error is‖g − f‖ ≤ M · hm+1

[Levin 1998]. The constantM involves the(m + 1)-th derivatives off , i.e.M ∈ O(‖f (m+1)‖).
In the case of surface approximation, sinceSP is infinitely smooth, there exists a constant
Mm+1, involving the(m + 1)-th derivatives ofSP , such that

‖SP − SR‖ ≤ Mm+1h
m+1, (2.10)

whereSR is computed using polynomials of degreem.
Note that this error bound holds for the MLS surfaceSR, which is obtained by the pro-

jection procedure applied to the data setR, using the same parameterh as forSP . More-
over, the same type of approximation order holds for piecewise approximation: Assume
each pointri defines a support plane so thatSP is a function over a patch[−h, h]2 around
ri on the plane and, further, that the points{ri} leave no hole of radius more thanh on the
surface. Then, the above arguments hold and the approximation error of the union of local,
non-conforming, polynomial patchesGi around pointsri approximatesSP as∥∥∥SP −

⋃
Gi

∥∥∥ ≤ Mm+1h
m+1. (2.11)

Here,Gi is the polynomial patch defined by an MLS polynomialgi for the pointri, with
corresponding reference planeHi with normalni, a corresponding orthonormal system
{ui,vi,ni}, and an origin atqi.

Gi = {qi + x · ui + y · vi + gi(x, y) · ni | (x, y) ∈ [−h, h]2}. (2.12)
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These error bounds explain nicely why curvature (see e.g. [Gopi et al. 2000]) is an
important criterion for piecewise linear approximations (meshes): The error of piecewise
linear functions depends linearly on the second derivatives and the spacing of points. This
means, more points are needed where the curvature is higher.

However, when the surface is approximated with higher order polynomials, curvature
is irrelevant to the approximation error. Using cubic polynomials, the approximation error
depends on the fourth order derivatives of the surface. Note that our visual system cannot
sense smoothness beyond second order [Marr 1983]. From that point of view, the sampling
density locally depends on an “invisible” criterion. We have found it to be sufficient to fix
a spacingh of pointsri on SP . A smallerh will cause the error to be smaller. However,
using higher order polynomials to approximateSP causes the error to decrease faster when
h is reduced.

2.4 Generating the representation point set

A given point set might have erroneous point locations (i.e. is noisy), may contain too
many points (i.e. is redundant) or not enough points (i.e. is under-sampled).

The problem of noise is handled by projecting the points onto the MLS surface they
define. The result of the projection procedure is a thin point set. Redundancy is avoided by
decimating the point set, taking care that it persists to be a good approximation of the MLS
surface defined by the original point set. In the case of under-sampling, the input point set
needs to be up-sampled. In the following sections, we show techniques to remove and add
points.

Figure 2.5 illustrates the idea of resampling at the example of the Buddha statue. Using
the techniques presented below it is possible to resample the geometry to be evenly sampled
on the surface.

2.4.1 Down-sampling

Given a point set, the decimation process repeatedly removes the point that contributes
the smallest amount of information to the shape. The contribution of a point to the shape
or the error of the sampling is dictated by the definition of the shape. If the point set
is reconstructed by means of a triangulation, criteria from the specific triangulation algo-
rithm should control the resampling. Criteria include the distance of points on the surface
[Hoppe et al. 1992], curvature [Gopi et al. 2000], or distance from the medial axis of the
shape [Amenta et al. 1998]. For a direct display of the point set on a screen homogeneous
distribution of the points over the surface is required [Grossman and Dally 1998; Pfister
et al. 2000]. Here, we derive a criterion motivated by our definition of the surface.
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(a)

(b)

(c)

Figure 2.5: Points acquired by range scanning devices or vertices from a processed mesh
typically have uneven sampling density on the surface (a). The sampling techniques dis-
cussed here allow to evenly resample the object (b) to ensure a sufficient density for further
processing steps, for example rendering (c).

e)d)c)a) b)

Figure 2.6: The point set representing an Aphrodite statue is projected onto a smooth MLS-
surface. After removing redundant points, a set of 37K points represents the statue (a). The
corresponding rendering is shown in (b). The point set is decimated using point removal.
An intermediate stage of the reduction process is shown in (c). Note that the points are
color-coded with respect to their importance. Blue points do not contribute much to the
shape and might be removed; red points are important for the definition of the shape. The
final point set in (e) contains 20K points. The corresponding rendering is depicted in (d)
and is visually close to the one in (b).
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The contribution of a projected pointpi to the surfaceSP can be estimated by com-
paringSP with SP−{pi}. Computing the Hausdorff distance between both surfaces is ex-
pensive and not suitable for an iterative removal of points of a large point set. Instead,
we approximate the contribution ofpi by its distance from its projection onto the surface
SP−{pi}. Thus, we estimate the difference ofSP andSP−{pi} by projectingpi ontoSP−{pi}
(projectingpi under the assumption it was not part ofP ).

The contribution values of all points are inserted into a priority queue. At each step
of the decimation process, the point with the smallest error is removed from the point set
and from the priority queue. After the removal of a point, the error values of nearby points
have to be recalculated since they might have been affected by the removal. This process
is repeated until the desired number of points is reached or the contributions of all points
exceed some prespecified bound.

Figure 2.7 illustrates our decimation process applied on the set of red points depicted in
(a). First, the red points are projected on the MLS surface to yield the blue points. A close-
up view over a part of the points shows the relation between the input (red) points and the
projected points. In (b), we show three snapshots of the decimation process, where points
are colored according to their error value; blue represents low error and red represents
high error. Note that in the sparsest set, all of the points have a high error, that is, their
removal will cause a large error. As the decimation proceeds, fewer points remain and
their importance grows and the error associated with them is larger. Figure 2.6 shows the
decimation process in 3D with corresponding renderings of the point sets.

2.4.2 Up-sampling

In some cases, the density of the point set might not be sufficient for the intended usage
(e.g. direct point rendering or piecewise reconstructions). To alleviate this problem, we
try to decrease the spacing among points. Additional points should be placed (and then
projected to the MLS surface) where the spacing among points is larger then a specified
bound.

The basic idea of our approach is to compute Voronoi diagrams on the MLS surface
and add points at vertices of this diagram. Note that the vertices of the Voronoi diagram
are exactly those points on the surface with maximum distance to several of the existing
points. This idea is related to Lloyd’s method [Lloyd 1982], i.e techniques using Voronoi
diagrams to achieve a certain distribution of points [Okabe et al. 1992]. The same idea was
used for image by Eldar et al. [1997].

However, computing the Voronoi diagram on the MLS surface is excessive and local
approximations are used instead. More specifically, our technique works as follows: In
each step, one of the existing points is selected randomly. A local linear approximation is
built and nearby points are projected onto this plane. The Voronoi diagram of these points
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is computed. Each Voronoi vertex is the center of a circle that touches three or more of the
points without including any point. The circle with largest radius is chosen and its center
is projected to the MLS surface. The process is repeated iteratively until the radius of the
largest circle is less than a user-specified threshold. (see Figure 2.8). At the end of the
process, the density of points is locally near-uniform on the surface. Figure 2.8 shows the
original sparse point set containing 800 points, and the same object after adding 20K points

2.5 Rendering

The challenge of our interactive point rendering approach is to use the representation points
and (when necessary) create new points by sampling the implicitly defined surface at a res-
olution sufficient to conform to the screen space resolution (see Figure 2.9 for an illustration
of that approach).

Usually, the representation points are not sufficient to render the object in screen space.
In some regions, it is not necessary to render all points as they are occluded, backfacing,
or have higher density than needed. However, typically, points are not dense enough to be
projected directly as a single pixel and more points need to be generated by interpolation
in object space.

2.5.1 Culling and view dependency

The structure of our rendering system is similar to QSplat [Rusinkiewicz and Levoy 2000].
The input points are arranged into a bounding sphere hierarchy. For each node, we store a
position, a radius, a normal coverage, and optionally a color. The leaf nodes additionally
store the orientation of the support plane and the coefficients of the associated polynomial.
The hierarchy is used to cull the nodes with the view frustum and to apply a hierarchical
backface culling [Kumar et al. 1996]. Note that culling is important for our approach
since the cost of rendering the leaf nodes (evaluating the polynomials) is high compared to
simpler primitives. Moreover, if the traversal reaches a node with an extent that projects to a
size of less than a pixel, this node is simply projected to the frame-buffer without traversing
its subtree. When the traversal reaches a leaf node and the extent of its bounding sphere
projects to more than one pixel in screen space, additional points have to be generated.

The radius of a bounding sphere in leaf nodes is simply set to the anticipated feature size
h. The bounding spheres for inner nodes naturally bound all of their subtree’s bounding
spheres. To compute the size of a bounding sphere in pixel space the radius is scaled
by the model-view transform and then divided by the distance of center and eye point in
z-direction to accommodate the projective transform.
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2.5.2 Sampling additional points

The basic idea is to generate a grid of points sufficient to cover the extent of a leaf node.
However, projecting the grid points using the method described in Section 2.2 is too slow in
interactive applications. The main idea of our interactive rendering approach is to sample
the polynomials associated with the representation points rather than really projecting the
points.

It is clear that the union of these polynomial patches is not a continuous surface. How-
ever, the Hausdorff-error of this approximation is not worse than the error of the surface
computed by projecting every point using the operatorP (see Section 2.3). Since the
Hausdorff-error in object space limits the screen space error the error bound can be used to
make the approximation error invisible in the resulting image.

However, to conform with the requirements formulated in Section 2.3 the point set
and the associated polynomials are required to be near-uniform on the surface. It might
be necessary to first process a given point set with the up-sampling methods presented
in Section 2.4. This way, we ensure that the local, non-conforming (i.e. overlapping or
intersecting) polynomials are a good approximation to the surface inside a patch[−h, h]2

around a point and, thus, the resulting image shows a smooth surface. However, most
dense point sets can be readily displayed with the approach presented here. For example,
Figure 2.11 shows several renderings of the original Stanford Bunny data.

It is critical to properly define the extent of a polynomial patch on the supporting plane,
such that neighboring patches are guaranteed to overlap (to avoid holes) but do not overlap
more than necessary. Since no inter-point connectivity information is available, it is unclear
which points are immediate neighbors of a given point on the surface.

To compute the extent of a polynomial patch associated to the pointpi on the support
planeH all points inside a ball of radiush around the projectionq = Q(pi) are collected.
These points are projected to the support planeH, which leads to local(u, v) coordinates
for each projected point. The extent is defined by a circle aroundq that encloses all pro-
jected points. More specifically, assumeq has the local coordinate(0, 0), the radius of
the circle is given by the largest 2-norm of all local(u, v) coordinates of projected points.
Since the spacing of points is expected to be less thanh, patches of neighboring points are
guaranteed to overlap.

Note that using a constant extent (e.g. a disk of radiush on the support plane) can lead
to errors, as the polynomialg over H might leave the ball of radiush, in which a good
approximation of the point set is expected. Figure 2.10 illustrates the computation of the
patch sizes.

The grid spacingd should be so computed that neighboring points have a screen space
distance of less than a pixel. Thus, the grid spacing depends on the orientation of the
polynomial patch with respect to the screen. Since the normals change on each polynomial
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patch we rather use a simple heuristic to conservatively estimated: The grid spacingd is
computed so that a grid perpendicular to the viewing direction is sufficiently sampled in
image space.

If the grid is, indeed, perpendicular to the viewing direction, the sampling is also cor-
rect on the polynomial. If the grid is not perpendicular to the viewing direction, the pro-
jected area might be oversampled or undersampled depending on the orientation of the
support plane and the derivatives of the polynomial. Note, however, that sufficient sam-
pling is guaranteed if the derivatives are less than1. In practice we have rarely encountered
higher derivatives so we decided not to evaluate the maximum derivatives of all polynomial
patches. However, this could be done in a preprocess and the density could be adjusted ac-
cordingly.

Upon the view-dependent grid spacingd, the polynomials are evaluated by a forward
difference approach, where the polynomial is scanned across its extent in its localu, v

parametric space. The affine map transforming from support plane coordinates to world
coordinates is factored into polynomial evaluation, thus, generating points in world coordi-
nates. These points are then fed into the graphics pipeline to be projected to the screen.

Surprisingly, we have found that quad meshes are processed faster by current graphics
hardware than a set of points. For this reason we use quad meshes to represent the polyno-
mial patches. This has the additional advantage that during lazy evaluation (see below) no
holes occur.

2.5.3 Grid pyramids

The time-critical factor is the view-dependent evaluation of the points on the polynomial.
Optimally, these are recomputed whenever the projected screen space size changes. To
accelerate the rendering process, we store a grid pyramid with various resolutions per point.
Initially, the pyramid levels are created, but no grid is actually evaluated. When a specific
grid resolution is needed, the system creates and stores the level that slightly oversamples
the polynomial for a specific resolution, such that small changes in the viewing position do
not result in new evaluations.

To enhance the interactivity of our approach, we also allow the point size to adapt to
changing viewing conditions. For example, while rotating or zooming, sparser grids with
large points are used to guarantee an interactive frame rate. Once the viewer stops moving,
a proper grid is chosen from the pyramid.

2.5.4 Results

We have tested our approach on a variety of point sets. Figure 2.11 shows the renderings
of the Stanford Bunny. In (a), the original point set is shown. Splatting (b) is not leading to
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good results, because the model is not sampled densely enough. The traditional Gouraud-
shaded mesh in (c) and (g) is compared to our approach in (d) and (h). Note the accuracy
of the highlights. The non-conforming local polynomial patches are shown color-coded in
(e) and (f). An example of a environment mapping to demonstrate the normal continuity
is given in Figure 2.12. Note that silhouettes and normals are smooth, which leads to less
distortions on the boundary and in the reflections.

The frame rates we achieve are mainly dictated by the number of visible representation
points (i.e. graph traversal time) and the number of pixels to be filled. All models depicted
here are displayed at more than 5 frames per second in a5122 screen window (see the
accompanying video for more information). The number of representation points ranges
from 1000 (for the torus) to 900K (for the angel statue). Tests are performed on a PC with
GeForce2 graphics board.
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a) b)

Figure 2.7: Noisy input points (green points) are projected onto their smooth MLS curve
(orange points). The figures in (a) show the point sets and a close-up view. The decimation
process is shown in (b). Points are color-coded as in Figure 2.6.

Figure 2.8: The up-sampling process: Points are added at vertices of the Voronoi diagram.
In each step, the vertex with the largest empty circle is chosen. The process is repeated until
the radius of the largest circle is smaller than a specified bound. The wavy torus originally
consisting of 800 points has been up-sampled to 20K points.
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Figure 2.9: Up-sampling could be used generate enough points on the surface to conform
with the resolution of the image to be rendered. The right image shows a close-up rendered
with splats.

h

Figure 2.10: The patch size of a polynomial: Points inside a ball of radiush around the
red point are projected onto the support plane of the red point. The patch size is defined
as the bounding box (in local coordinates) of the projections. Note that using a disk of
radiush or a square patch of[−h, h]2 would lead to unpleasant effects in some cases, as
the polynomial might leave the ball of radiush.
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a) b) c) d)

e) f) g) h)

Figure 2.11: The Stanford Bunny: The points defining the bunny are depicted in (a) (some
points are culled). Points are splatted in (b) to satisfy screen space resolution. Note the
difference of a piecewise linear mesh over the points (c) and close-up in (g) to the rendering
of non-conforming polynomial patches (d) and (h). The patches are color-coded in (e) and
(f).

Figure 2.12: Comparison of mesh rendering with our technique with environment mapping.
The left column shows renderings of a mesh consisting of 1000 vertices. The right column
shows our technique using the vertices as input points. The environment maps emphasize
the improved normal and boundary continuity.



Chapter 3

Progressive Point Set Surfaces

Point sets are emerging as a surface representation. The particular appeal of point sets is
their generality: every shape can be represented by a set of points on its boundary, where the
degree of accuracy typically depends only on the number of points. Point sets do not have
a fixed continuity class or are limited to certain homology groups as in most other surface
representations. Polygonal meshes, in particular, have a piecewise linearC0 geometry,
resulting in an unnatural appearance. To overcome the continuity problem, research has
been devoted to image space smoothing techniques (e.g. Gouraud shading), or procedures
to smooth the model’s geometry such as subdivision surfaces.

To define a manifold from the set of points, the inherent spatial interrelation among
the points is exploited as implicit connectivity information. A mathematical definition or
algorithm attaches a topology and a geometric shape to the set of points. This is non-trivial
since it is unclear what spacing of points represents connected or disconnected pieces of
the surface. Moreover, most surfaces are manifold, which limits the possibilities of using
functions for global interpolation or approximation. Recently, Levin gave a definition of a
manifold surface from a set of points [Levin 2003], which was used in [Alexa et al. 2001]
to render shapes.

To achieve a certain geometric fidelity many points are needed to describe a shape. The
necessary uniformity of the point’s density might further increase the number of points. The
relation between point density and accuracy calls for the definition of levels of detail and
the notion of progressiveness. That is, the point set should have a base set that represents
a coarse and a smooth version of the surface, which can be refined by a series of point
insertions in the spirit of progressive meshes [Hoppe 1996], or adaptive parameterization
of surfaces (MAPS) [Lee et al. 1998; Guskov et al. 2000].

Progressive or multi-scale representations are useful not only to cut down on the amount
of data but also for modelling and visualization purposes (See Figure 3.1). This is because
of the connection between detail levels and spectral bands [Kobbelt et al. 1998a; Kobbelt
et al. 1998b; Zorin et al. 1997]. Ideally, the geometric representations of the levels are

32
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Figure 3.1: The progressive series of the Isis model, on the left a model with 19K points
progressively refined up to 189K points in the model on the right.

relative to each other and independent of the position and orientation of the shape. This
is achieved by decomposing the geometric components into a normal and a tangential di-
rection, and encoding each level as a displacement of a coarser level [Khodakovsky et al.
2000; Guskov et al. 2000]. Furthermore, tangential components can be described implicitly
by the refinement rule so that a single scalar / point is sufficient to encode the shape. Note
that this also leads to an efficient geometry compression scheme.

This approach has been described and analyzed for mesh geometry using subdivision
techniques by [Guskov et al. 2000; Lee et al. 2000]. Based on the method of moving
least squares (MLS) presented in [Alexa et al. 2001; Levin 2003], in this paper we define
a projection operator and a refinement rule. Together, they allow us to refine a given base
point set towards a reference point set (input model). The projection operator defines a local
tangential coordinate frame, which allows us to specify the position of inserted points, with
a scalar representing the normal component. The tangential components are defined by the
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refinement rule. As such, the scheme is reminiscent of subdivision techniques for meshes.
Based on the properties of the refinement process we develop a simplification scheme

for point sets to construct a base point set, which represents a smoother version of the
original shape. The base point set is then refined by point insertion to add levels of detail.
The surface could be refined adaptively creating point sets with densities varying with
respect, say, to the viewing parameters or the local geometric behavior of the surface. In
this paper we:

• introduce a point-based geometric modelling technique that is based on the MLS
projection mechanism;

• present a progressive scheme for point set surfaces, where the levels of an object
represent both coarse–to–fine and smooth–to–detailed hierarchy;

• use a local operator that allows accurate computation of local differential surface
properties;

• apply an encoding scheme for compressing progressive point sets.

3.1 Related Work

Our work is related to the recent research efforts in developing point-based representa-
tions for shapes [Grossman and Dally 1998; Pauly and Gross 2001; Pfister et al. 2000;
Rusinkiewicz and Levoy 2000]. Most of the mentioned techniques are targeted at fast
processing and rendering of large point-sampled geometry. Our techniques are focused
on advancing the “modelling” of primitives with points. In this respect our work fits into
the field ofdigital geometry processing(DGP) [Desbrun et al. 1999; Guskov et al. 1999;
Guskov et al. 2000; Lee et al. 1998; Taubin 1995], which aims at extending standard signal
processing concepts to the manifold surface domain. [Pauly and Gross 2001], have shown
how to extend these techniques to point-based representations by collecting sets of points to
patches, over which the points define an irregularly sampled function. Most approaches for
meshes also construct a multiresolution representation by progressively refining a base do-
main and exploiting the connection of the refinement levels to spectral properties. Meshes
are generally composed of two parts: the connectivity of the mesh; and the geometry (i.e.,
the position of the vertices). Few DGP techniques can be directly applied to such a rep-
resentation (one example is the pioneering work presented in [Taubin 1995]). DGP algo-
rithms require parameterization of the surface, which could be represented in mesh form as
a subdivision surface [Lee et al. 1998; Kobbelt et al. 1999; Eck et al. 1995].

A recent work related to our surface representation is [Carr et al. 2001] which recon-
structs 3D objects by fitting a global radial basis function (RBF) to point clouds. An RBF
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forms a solid model of an object, allowing analytic evaluation of surface normal, direct
rendering and iso-surface extraction, similar to the properties of the surface representation
we use.

Several different hierarchical representations have been proposed for geometric objects.
Object simplification [Cignoni et al. 1994; Cohen et al. 1996; He et al. 1996; Hoppe et al.
1993; Zhou et al. 1997] is often used to generate a hierarchical representation, which could
be used for many purposes, for example, rendering [Duchaineau et al. 1997; El-Sana and
Varshney 1999; Xia et al. 1997].

Linsen [2001] also describes a multiresolution representation of point-based objects.
Similarly to our method, the detail points are inserted using a prediction operator. In our
work we focus on a space efficient progressive representation of a point set. Another recent
related work is the one by Pauly et al. [2002], which describes a number of point-based
simplification methods. The method we present here for building the base point set is
similar to their clustering method.

A leading technique for representing hierarchical meshes isprogressive meshes[Hoppe
1996], a mesh representation of varying resolution where a series of edge-split operations
progressively refines a base mesh up to the original resolution of the source. This repre-
sentation motivates solutions to mesh simplification, progressive transmission and loading
from a disk or from a remote server. A number of mesh compression and streaming tech-
niques are based on this concept [Cohen-Or et al. 1999; Pajarola and Rossignac 2000;
Taubin et al. 1998]. For a recent survey of mesh simplification and compression techniques
see [Gotsman et al. 2001].

Subdivision surfaces [Catmull and Clark 1978; Warren and Weimer 2001] are defined
by a topological refinement operator and a smoothing rule. Given a mesh of arbitrary topol-
ogy, they refine the mesh toward a smooth limit surface. Point set surfaces are similar to
subdivision surfaces, in that it is possible to add points to the defined smooth surface with-
out additional information. However, to describe an arbitrary surface using subdivision
techniques, inserted points need to be displaced. Normal Meshes [Guskov et al. 2000] as
well asdisplaced subdivision surfaces[Lee et al. 2000] demonstrate this idea of a multires-
olution subdivision mesh where vertices are displaced by a single scalar value in the normal
direction. These approaches are attractive since a single scalar value is easier to manipulate
or store. The underlying concept can be understood as decomposing the surface represen-
tation into a tangential and a normal component (see [Guskov et al. 2000]). Note that we
use the same idea, however without coding the tangential component explicitly as the mesh
connectivity but implicitly as point proximity.
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3.2 MLS surfaces

The MLS surfaceSP of a set of pointsP = {pi},pi ∈ <3, i ∈ {1, . . . , N} is defined
implicitly by a projection operator. To project a pointr ontoSP two steps are necessary:
First, a local reference domainH = (n, d), whered is the origin of the plane andn is the
normal to the plane is computed. Then, a local bivariate polynomial is fitted overH to
the point set. More precisely, the local reference domainH = {x|〈n,x〉 − d = 0,x ∈
<3},n ∈ <3, ‖n‖ = 1 is determined by minimizing

N∑
i=1

(〈n,pi − r− tn〉)2 e−‖pi−r−tn‖2/h2

(3.1)

in all normal directionsn and offsetst. Hered = r + tn. A local coordinate system over
H is defined by taking the standard basis for<3, e1, e2, e3 and compute a rotation matrix
M such thatn = M · e3. The local coordinate system is defined by(M · e1, M · e2). This
rotation matrix is not uniquely defined. For our purposes, any solution will do as long as
we use the same procedure to computeM in all of our computations.

Letq be the projection ofpi ontoH, andfi the height ofpi overH, i.e. fi = n·(pi−q).
The polynomial approximationg is computed by minimizing the weighted least-squares
error

N∑
i=1

(g(xi, yi)− fi)
2 e−‖pi−r−tn‖2/h2

. (3.2)

The projection ofr is given by

MLS(r) = r + (t + g(0, 0))n. (3.3)

Formally, the surfaceSP is the set of points (Ω ⊂ <) that project onto themselves. In this
definition,h is the anticipated spacing of the points. Thus, the point set together with an
adequately chosen value forh defines the surface. As part of the projection procedure, we
not only determine the position on the surface where a point projects to, but we also obtain
high-order derivative information analytically, which can be used to accurately determine
normal, curvature, etc. A detailed description of computing the reference domain and
polynomial is presented in [Alexa et al. 2003]. In the following,SX will generally be the
surface with respect to a point setX defined by the above procedure. We will call this the
MLS-surface ofX.

3.3 Progressive point set surfaces

First, we give an overview of the concept of progressive point set surfaces (PPSS) and then
explain the details in the following sections.
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Given a reference (input) point setR = {ri} defining a reference surfaceSR. The point
setR is reduced by removing points to form a base point setP0 ⊂ R. This base point set
defines a surfaceSP0 which differs fromSR. Next, we will resample the surface adding
more points so that the difference between our surface andSR decreases.

The base point setP0 is refined by inserting additional points yielding the setP1. The
refinement operator first inserts points independent of the reference setR, which means
P1 6⊂ R. Then, the inserted points are displaced so that the difference between the surfaces
decreases, i.e.d(SP1 , SR) < d(SP0 , SR).

This process is repeated to generate a sequence of point setsPi with increasing size and
decreasing difference from the reference surface. A progressive point set surfaces is defined
as the MLS surface ofP = P0, P1, . . ., where each point setPi is encoded by the (scalar)
displacements of inserted points, yielding a compact representation of the progressive point
set surface.

In the following we explain the necessary steps for this procedure in detail. We denote
the reference domain plane of a pointp with respect to a point setS asHS(p) and the
polynomial is similarly denoted bygS(p).

3.3.1 The refinement operator

Let R be the reference point set as before andP be the point set to refine. The setP is
refined by generating additional pointsA = {aj}, which are sampled in the local neighbor-
hoods of thepi.

More specifically, let the local reference domainHp(pi) of a pointpi (see Figure 3.2a)
be determined as the local minimum of Eq. (3.1) with respect to the points inP . The
reference planeHp(pi) is sampled regularly at intervalsρ, yielding a set of(u, v) coordi-
nates for the pointsa′j on the plane. These points are placed in the neighborhood of the
surface using the polynomialg = gp(pi) (defined by Eq. (3.2) ), yielding the set of points
aj = (u, v, g(u, v)).

To find and encode the positions of the additional points, the planeHp(aj) of aj is com-
puted, and then two local polynomial fits are computed on the basis of the given reference
domainHp(aj): the first polynomialgp is with respect to the points inP and the second,
gr, is with respect to the points inR. The height of a pointaj is given asgr(0, 0), i.e. on
the local polynomial fit to the points in the reference set (see Figure 3.2b).

Since the coordinate(u, v) is generated implicitly by specifying the regular sampling
parameterρ, only the height has to be encoded. Based on Eq. (3.3), the height ofaj can be
expressed as the difference:

∆ = gr(0, 0)− gp(0, 0). (3.4)

Since the distance betweengr andgp is significantly smaller than the distance betweengr

and the reference plane, the∆ can be efficiently encoded.
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Figure 3.2: An illustration of the point set refinement process: (a) a new pointa is generated
in the neighborhood of the surface of the current level (the blue points). The reference plane
Hp(pi) and polynomialg = gp(pi) of pi are computed. By scanning the neighborhood of
pi, a new pointa′ onHp(pi) is generated and projected on the polynomialg, i.e. a = g(a′).
In (b),a is projected onMLSp (the blue curve) by computing its reference planeHp(a) and
polynomialgp(a). Next,a is projected again onSR (defined by the black points) using the
same reference plane, but with the appropriate polynomialgr(a). Finally, the detail value
∆ = ar − ap is computed.

The regular sampling pattern has to be adapted to avoid oversampling and sampling of
empty regions. We introduce two criteria for deciding whether to insert a point. A pointai

is inserted only if

1. none of the already inserted pointsP ∪ {aj, j < i} is closer thanρ and

2. it is in the convex hull of points inP closer thanh or, more formally, iff ai ∈
CH{pi|‖pi − ai‖ < h}.

The first criterion avoids oversampling, and the second aims at detecting boundaries of
the manifold by defining the extent of the local neighborhood.

The sampling parameterρ can be used to specify the refinement convergence. Ifρ

is halved in every refinement step the number of points approximately quadruples from
one point set to the next. However,ρ can also be used to adapt the sampling density to the
application needs, for example, visible regions of the surface or local curvature if piecewise
linear approximations are needed.

As the point density increases from one refinement level to the next, alsoh should be
adapted. We adapth to the change inρ, for example, ifρ is halved in every step, so ish.
We assume, however, that a suitableh is given for the base point set. This is discussed in
the following section.
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Figure 3.3: Close-ups of smooth renderings for different levels in the hierarchy of a PPSS.
The base level of a PPSS defines a smooth surface, which is visualized here by upsampling
the smooth surface by adding points without displacing them. Note that higher levels add
the missing details to the PPSS representation.

3.3.2 Constructing the base point set

The refinement operator uses local reference domains on the basis of the reduced point
set to compute polynomial fits to the reference point set. This requires the local reference
domain of a pointpi with respect to the points inP and to the points inR to be about the
same. We use this requirement as a criterion for reducing the reference point set to the base
point set.

Given a neighborhood sizeh and a maximum deviationε, let Qi be the point set which
results from removing the points in ah-neighborhood aroundri, i.e.

Qi = {rk|‖rk − ri‖ > h}. (3.5)

A point ri can be used in the base point set if its original reference domainHR(ri) is close
to the reference domainHQi

(ri) with respect to the reduced point setQi. More specifically,
the distance betweenHR(ri) andHQi

(ri) is measured as the scalar product between their
normal components (see Section 3.2).

In practice, the points inR are visited in random order. Ifri can be included inP0,
all points in theh-neighborhood aroundri are discarded for inclusion inP0. The process
terminates after all points are tested.
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Figure 3.4: A color-coding of the magnitude of the displacement for the Venus model.
Note that smooth regions have small displacements, while regions containing fine detail
need larger displacements The magnitude of the displacements essentially corresponds to
the energy in the respective frequency band.

3.4 The PPSS encoding

Figure 3.4 illustrates the magnitudes of the displacements of the progressive set. Observing
that the vast majority of the displacements are of small magnitudes give rise to a space
efficient encoding scheme. To create an encoding ofPi+1 givenPi, we perform the routine
described in Section 3.3.1. New points are generated and projected both onSPi

and onSR.
The difference between the two projections is thedisplacementdenoted by∆. Since the
distance between the two surfaces is small, the displacements are merely the details of the
surface and can be encoded in a small number of bits.

To decodePi+1, a reverse procedure is applied. New points are generated as described
in the encoding procedure. For each pointr, the reference plane and polynomial are com-
puted using Eqns. (3.1),(3.2). Then the point is projected using a modified Eq. (3.3) as
follows:

MLS(r) = r + (t + g(0, 0) + ∆)n. (3.6)

For efficient storage, we quantize the displacement values to a user-specified accuracy.
An error bound defines the maximal tolerated error with respect to the diagonal of the
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object’s bounding box. The range of the displacements and the error bound defines the
number of bits required to properly represent the displacements. Recall that the decoding
procedure is highly dependent on performing the exact same procedure that the encoder
performed. Quantizing the values and reconstructing them creates minor differences that
may lead to somewhat different sets of points that are added to each level. If this occurs the
encoder and decoder may no longer be synchronized. Therefore, in the encoding process
the displacements are quantized to guarantee that the decoder generates the exact set of
points that is encoded.
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Figure 3.5: Rate distortion curve: shows a comparison of size vs. accuracy achievable
with our compression method. The error is measured on a scale of10−4 of the bounding
box of the model.

3.5 Results

We have implemented the progressive point set representation as described in the previous
sections and applied it to several models. Table 3.1 summarizes the results by showing the
average number of bits / displacement required with respect to error tolerance. The error is
expressed with respect to the diagonal of the bounding box of the given model. Note that
the error is merely subject to the quantization applied to the displacements. For the models
in Table 3.1, five (for the dino model) to seven (for the dragon model) levels were generated.
Our experiments as shown in Table 3.2 and Figures 3.5 and 3.7 suggest that an average of
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bits / displacement
Points (error10−4)

Name Points in P0 0.001 0.01 0.1 0.5
Dragon 437K 16K 9.7 6.6 3.4 2.4

(0.026) (0.044) (0.29) (1.6)
Isis 187K 9K 9.9 6.9 4.7 1.8

(0.01) (0.04) (0.31) (1.9)
Venus 134K 7K 9.2 8.3 5.5 3.0

(0.08) (0.13) (0.27) (1.2)
Dino 56K 4K 10.9 8.1 4.9 2.9

(0.25) (0.24) (0.35) (0.97)

Table 3.1: Achieved bit-rates for given error bounds. The user can specify an error bound
on the displacement values. Depending on the error bound, a quantization scheme is cho-
sen, which influences the number of bits necessary to encode the displacements. The small
number of quantization levels typically results in a systematically smaller error as com-
pared to the error bound (shown in parentheses).

Inserted Bits / Total Total Average error
points ∆ points size b/p (10−4)
476370 2.3 493142 139K 3.66 2.7
472330 2.4 489102 144K 3.77 1.6
440907 3.5 457679 192K 4.92 0.29
439652 6.6 456424 364K 8.06 0.044
439840 9.7 456612 534K 11.1 0.026

Table 3.2: A comparison of the size vs. accuracy for the Dragon model. Each line
shows the size of the model as a function of the number of bits used for quantization of the
displacement values. The base point set contains16772 points compressed to37.4 bits /
point.
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five bits / point yields a pleasing visual quality. The base point setP0 is compressed by tri-
angulating the points using theball-pivoting algorithm(BPA) [Bernardini et al. 1999] and
applying a mesh compression tool [Gotsman et al. 2001]. The time to compress the models
in Table 3.1 range from several minutes to 120 minutes on PentiumTM III 1Ghz; our code
was not optimized and computes the MLS reference plane using nonlinear optimization.

Table 3.2 shows the compression achieved by varying the number of bits for the dis-
placement values. We measured the accuracy of the reconstructed model in the spirit of
Metro [Ciampalini et al. 1997], i.e. by sampling distances in normal direction. To measure
the distance between an MLS surfaceS1 defined by a set of pointsP1 and the reference
MLS surfaceS defined byP , we sample arbitrary points in the neighborhood ofS1, and
use the MLS projection procedure to project each point onS1 and onS. The average
difference between the two projections is the error.

We compared the PPSS–based compression technique with techniques for multireso-
lution mesh compression. In particular, we have used Khodakovsky’s mesh compression
technique [Khodakovsky et al. 2000] to generate meshes with increasing accuracy with re-
spect to a reference mesh. The vertices of the reference mesh were used to build a PPSS.
Since we do not have connectivity information the BPA was used to generate meshes from
the point sets. The resulting meshes have been compared to the reference using Metro. Fig-
ure 3.6 shows a visualization of the results. Note that the PPSS does not fit the piecewise
linear geometry of the reference mesh (as the mesh compression technique) but the MLS
surface defined by the vertices. This adds some bias to the resulting error for the PPSS.

Figure 3.7 shows a series of progressively refined point sets, where the shaded images
are rendered by an upsampling procedure [Alexa et al. 2001], which requires no displace-
ments. The rendering performs a local refinement of the surface around each point of the
model. The images in the second column of Figure 3.8 are rendered with the above up-
sampling method and the images in the third column are rendered using the OpenGLTM

glPointSize function. Since the MLS surface is continuous and smooth, the quality of the
upsampled renderings is higher than a splat rendering.

The MLS surface is smooth and as such does not reconstruct sharp features (since it is
not able to model discontinuities in its derivatives). While reconstructing point samples of
CAD models with sharp features (see Figure 3.9, those sharp features are smoothed out,
while the rest of the object is reconstructed faithfully. Our method deals with boundaries
by computing the convex hull of the neighborhood of a point (as previously described in
Section 3.3.1). For sharp edges in boundaries like the rectangular hole in Figure 3.9c and d,
our method converges to round corners with radius of the size of the input feature size, that
is, the spacing between points.
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103K e=0.0038 516K e=0.002741K e=0.008

41K e=0.03 94K e=0.011 197K e=0.0042

Figure 3.6: Comparison of meshes using Metro. The top row displays several steps during
the refinement process of Khodakovsky’s algorithm. The numbers below the figures show
their size and mean error with respect of the bounding box of the object, as reported by
the I.E.I-CNR Metro tool. The bottom row displays three meshes reconstructed from a
PPSS and compared to the input mesh. Note that the PPSS does not fit the reference mesh
but rather the smooth MLS-surface over the vertices. The point sets are triangulated using
BPA to be able to apply Metro. Color ranges from blue to green with respect to the error.
Note that the Metro tool normalizes the color map to the maximal error of the model being
colored.
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Figure 3.7: A progressive series of the Venus and Dragon models.

3.6 Discussion

As in other multilevel shape representations, the levels essentially correspond to different
bands in the spectrum of the shape. The Gaussian weight function leads to a Gaussian
filtering of the shape (compare Eqns. (3.1) and (3.2) ). The spatial radiush of the filter
is inversely related to the Gaussian in the frequency domain. Thus, the base point set
represents the shape with the most relative energy in the low frequency bands, while the
refinement levels add higher frequency bands (see the shape hierarchy in Figure 3.1, and the
details in Figure 3.3). The projection operator allows us to compute the scalar displacement
necessary to lift a point from one level to the next. The displacements are with respect to
local frames (as in [Kobbelt et al. 2000]). The magnitude of this displacement is, thus, a
measure of the energy in the respective frequency band. This is illustrated with color codes
in Figure 3.4.

The MLS surface definition is based on differential geometry, namely, that the surface
can be locally approximated by a function. If this assumption is not met, we fail to define
the plane (Eq.3.1) and cannot reconstruct the surface. This ill condition happens when
the surface is not sampled densely enough in areas of high curvature or in areas with low
SNR, i.e., when the noise is larger than the expected feature size. These conditions can be
identified, see [Alexa et al. 2003] for more details.

Because point-sampled objects contain no explicit topological information, it is nec-
essary to make assumptions about the underlying sampling density in order to properly
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Figure 3.8: Two intermediate representations of the Venus model in the hierarchy. On the
left we show the set of points. In the middle, the set of points are rendered by splatting using
OpenGLTM . The images on the right are rendered using an MLS upsampling procedure,
requiring no additional data.
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(a) (b)

(c) (d)

Figure 3.9: Reconstruction of sharp edges and boundaries: On the left (a) and (c), we show
the input models. (b) and (d) are the reconstructions of the models using our algorithm.
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reconstruct this connectivity information. In general, this is a tough problem, and substan-
tial practical and theoretical work has been performed in the area [Amenta and Bern 1999].
Provably good techniques, e.g. [Amenta et al. 1998], have been shown to be effective,
but quite slow for actual use, mostly due to the need to compute 3D Delaunay triangu-
lation of the complete point sets. For modeling point sets, simpler (and computationally
cheaper) techniques have been used. Zwicker et al. [2002] and Pauly et al. [2002] usek-
nearest neighbor queries to reconstruct a neighborhood. This works well for objects with
fairly isotropic and uniform sampling density; furthermore thek-nearest neighbor query
may unintuitively fill “real” holes in the model. Linsen [2001] used theangle criterionfor
choosing the neighbors of a points, assuming the object is of genus zero, or otherwise de-
fined some threshold on the point spacing. The approach we currently use for defining the
neighborhood of a point is to query for nearest neighbors in a user defined radius, assuming
that the distribution of points is fairly uniform. This assumption is reasonable for scanned
objects. As shown in [Alexa et al. 2003], this method can deal with some variation in the
input point density, but will fail if the density varies significantly.

Recently, Kalaiah and Varshney [2001] introduced an effective method for rendering
point primitives that requires the computation of the principal curvatures and a local coor-
dinate frame for each point. This approach is natural for the MLS surface representation
since it requires a local coordinate frame and the principal curvature for each. During the
MLS projection procedure a local coordinate frame is computed, and the principal curva-
tures can be estimated analytically from Eq. (3.2).



Chapter 4

Bilateral Mesh Denoising

With the proliferation of 3D scanning tools, interest in removing noise from meshes has
increased. The acquired raw data of the sampled model contains additive noise from var-
ious sources. It remains a challenge to remove the noise while preserving the underlying
sampled surface, in particular its fine features. Related techniques like mesh smoothing
or mesh fairing alter the given surface to increase its degree of smoothness. The goal of
these techniques is to create semi-uniform triangulation, often with subdivision connec-
tivity. This work focuses on mesh denoising, which is an important preprocess for many
digital geometry applications that rely on local differential properties of the surface.

Denoising the sampled data can be applied either before or after generating the mesh.
The advantage of denoising a mesh rather than a point-cloud, is that the connectivity in-
formation implicitly defines the surface topology and serves as a means for fast access
to neighboring samples. The information in a mesh can be separated into two orthogo-
nal components: atangentialand anormal component. The normal component encodes
the geometric information of the shape, and the tangential component holds parametric in-
formation [Guskov et al. 1999]. In this formulation, moving vertices along their normal
directions, modifies only the geometry of the mesh. Related to this notion are evolution
curves [Osher and Sethian 1988], where points are shifted in the direction of the normal
at a distance that is proportional to their curvature, to get smoother curves over time. Our
denoising method is based on this idea, shifting mesh vertices along their normal direction.

The extensive research on image denoising serves as a foundation for surface denoising
and smoothing algorithms. However, adapting these algorithms from the two dimensional
plane to a surface in three dimensions is not straightforward for three main reasons: (i)
Irregularity ; unlike images, meshes are irregular both in connectivity and sampling, (ii)
Shrinkage; image denoising algorithms are typically not energy preserving. While this
is less noticeable in images, in meshes, this is manifested as shrinkage of the mesh, (iii)
Drifting ; naive adaptation of an image denoising technique may cause artifacts known as
vertex drifts, in which the regularity of the mesh decreases.

49
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Figure 4.1: Denoising a scanned model: On the left is the input model, in the middle is
the result of implicit fairing [Desbrun et al. 1999], and on the right is the result of our
algorithm. The top row visualizes the details of the models, and on the bottom row is a
mean curvature visualization. Data courtesy of Alexander Belyaev.

The bilateral filter, introduced by Tomasi and Manduchi [1998], is a nonlinear filter
derived from Gaussian blur, with a feature preservation term that decreases the weight of
pixels as a function of intensity difference. It was shown that bilateral filtering is linked
to anisotropic diffusion [Barash 2002], robust statistics [Durand and Dorsey 2002], and
Bayesian approaches [Elad 2001]. Despite its simplicity, it successfully competes with
image denoising algorithms in the above categories. The bilateral filtering of images and
its adaptation to meshes has an intuitive formulation, which leads to a simple method for
selecting the parameters of the algorithm.

The contribution of this chapter is a mesh denoising algorithm that operates on the
geometric component of the mesh. The origin of the denoising algorithm is the bilateral
filter that has a simple and intuitive formulation, is fast and easy to implement, and adapting
it to meshes, yields results that are as successful as its predecessor.
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4.1 Previous work

Image denoising is part of on-going research in image processing and computer vision. The
state-of-the-art approaches to image denoising include: wavelet denoising [Donoho 1995],
nonlinear PDE based methods including total-variation [Rudin et al. 1992], and bilateral
filtering [Tomasi and Manduchi 1998]. These approaches can be viewed in the framework
of basis pursuit [Chen et al. 1999].

Typically, mesh denoising methods are based on image denoising approaches. Taubin
[1995] introduced signal processing on surfaces that is based on the definition of the
Laplacian operator on meshes. Peng et al. [2001] apply locally adaptive Wiener filter-
ing to meshes. Geometric diffusion algorithms for meshes was introduced by Desbrun
et al. [1999], they observed that fairing surfaces can be performed in the normal direction.
Anisotropic diffusion for height fields was introduced by Desbrun et al. [2000], and Clarenz
et al. [2000] formulated and discretized anisotropic diffusion for meshes. Recently, Bajaj
and Xu [2003] achieved impressive results by combining the limit function of Loop subdi-
vision scheme with anisotropic diffusion. Tasdizen et al. [2002] apply anisotropic diffusion
to normals of the level-set representation of the surface, and in the final step, the level-set
is converted to a mesh representation. Guskov et al. [1999] introduced a general signal
processing framework that is based on subdivision, for which denoising is one application.

4.2 Bilateral mesh denoising

We open with a description of our method for filtering a mesh using local neighborhoods.
The main idea is to define a local parameter space for every vertex using the tangent plane
to the mesh at a vertex. The heights of vertices over the tangent plane are synonymous
with the gray-level values of an image, and the closeness components of the filter are the
tangential components. The termoffsetis used for the heights. LetS denote the noise-free
surface, and let M be the input mesh with vertices that sampleS with some additive noise.
Let v ∈ M be a vertex of the input mesh,d0 its signed-distance toS, andn0 the normal to
S at the closest point tov. The noise-free surfaceS is unknown and so isd0, therefore we
estimate the normal to the surface as the normaln to the mesh, andd estimatesd0 as the
application of the filter, updatingv as follows:

v̂ = v + d · n. (4.1)

Note that we do not have to define a coordinate system for the tangential component; as
explained below, we apply a one-dimensional filter with a spatial distance as a parameter.
The filter is applied to one vertex at a time, computing a displacement for the vertex and
updating its position.
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4.2.1 Bilateral filtering of images.

Following the formulation of Tomasi and Manduchi [1998], the bilateral filtering for
imageI(u), at coordinateu = (x, y), is defined as:

Î(u) =

∑
p∈N(u)

Wc(‖p− u‖)Ws(|I(u)− I(p)|)I(p)∑
p∈N(u)

Wc(‖p− u‖)Ws(|I(u)− I(p)|)
, (4.2)

whereN(u) is the neighborhood ofu. The closeness smoothing filter is the standard Gaus-
sian filter with parameterσc: Wc(x) = e−x2/2σ2

c , and a feature-preserving weight function,
which we refer to as asimilarity weight function, with parameterσs that penalizes large
variation in intensity, is:Ws(x) = e−x2/2σ2

s . In practice,N(u) is defined by the set of
points{qi}, where‖u− qi‖ < ρ = d2σce.

4.2.2 Algorithm

We begin introducing the algorithm by describing how to compute the normal and tangen-
tial components that are assigned to Eq. 4.2, yielding a new offsetd. SinceS is unknown,
and we wish to use the edge preservation property of the bilateral filter, we defineSv ⊂ S

as the smooth connected component ofS that is closest tov. For the normal component,
we would like to compute the offsets of the vertices in the neighborhood ofv, denoted by
{qi}, over the noise-free smooth componentSv. We use the tangent plane tov defined by
the pair(v,n) as a first-order approximation toSv. The offset of a neighborqi is the dis-
tance betweenqi and the plane. The following is the pseudo-code for applying a bilateral
filter to a single vertex:
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D e n o i s e P o i n t ( Ver texv , Normal n )
{qi} = ne ighborhood (v )
K = |{qi}|
sum = 0

normalizer = 0

f o r i : = 1 to K
t = ||v − qi||
h = 〈n,v − qi〉
wc = exp(−t2/(2σ2

c ))

ws = exp(−h2/(2σ2
s))

sum += (wc · ws) · h
normalizer += wc · ws

end
re turn Ver tex v̂ = v + n · (sum/normalizer)

The plane that approximates the noise-free surface should on one hand, be a good ap-
proximation of the local surface, and on the other hand, preserve sharp features. The first
requirement leads to smoothing the surface, while the latter maintains the noisy surface.
Therefore, we compute the normal at a vertex as the weighted average (by the area of the
triangles) of the normals to the triangles in the 1-ring neighborhood of the vertex. The
limited neighborhood average smoothes the local surface without over-smoothing. In some
cases, for example, of a synthetic surface, the normal of an edge vertex will erroneously
point to the average direction and lead to a rounded edge.

For the tangential component, the correct measure of distance between vertices on the
smooth surface is the geodesic distance between points. Since we use local neighborhoods,
we approximate the geodesic distance using the Euclidean distance. This approximation
seems to introduce artifacts in the neighborhood of sharp features, since vertices that hap-
pen to be geodesically far from the smoothed vertex may be geometrically close. Fur-
thermore, the assumption from differential geometry that a neighborhood of a point on a
surface can be evaluated by a function over the tangent plane to that point may not be
satisfied. Both apparent problems do not hinder our algorithm because any of the above
offending vertices is penalized by the similarity weight function.

4.2.3 Mesh shrinkage and vertex-drift

Image denoising and smoothing algorithms that are based on (possibly weighted) averaging
of neighborhood, result is shrinkage of the object. Taubin [1995] solves this problem for
the Laplacian operator by alternating shrink and expand operations. Another common
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Figure 4.2: The shrinkage problem. On the left the model of Max Planck with heavily
added random noise. In the middle the denoised model after four iterations of our algorithm
without volume preservation. The Max-Planck model is courtesy of Christian Rössl from
Max Planck Insitut f̈ur Informatik.

approach is to preserve the volume of the object as suggested by Desbrun et al. [Desbrun
et al. 1999].

Our algorithm, also shrinks the object. This can be observed when smoothing a vertex
that is a part of a curved patch; the offset of the vertex approaches the average of the offsets
in its neighborhood. Therefore, we follow the volume preservation technique.

Vertex-drift is caused by algorithms that change the position of the vertices along the
tangent plane as well as the normal direction. The result is an increase in the irregularity of
the mesh. Our algorithm moves vertices along the normal direction, and so, no vertex-drift
occurs.

4.2.4 Handling boundaries

Often meshes, in particular scanned data sets, are not closed. There are two aspects to note
here: first, the shape of the boundary curve, which is the related problem of “mesh fairing”.
Second, is that a filter is defined for a neighborhood of a point. However for boundary
points, part of the neighborhood is not defined. One common solution to this problem is
to define a virtual neighborhood by reflecting vertices over edges. Our filter inherently
handles boundaries by treating them as sharp edges with virtual vertices at infinity. The
similarity weight sets the weight of virtual vertices to zero, and thus, the normalization of
the entire filter causes boundaries to be handled correctly.
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Figure 4.3: Comparison with AFP. On the left is the input model, in the middle is the result
denoised by AFP, and on the right is the result of bilateral mesh denoising. Observe the
difference in details in the area of the lips and eyes. The noisy model and the AFP denoised
models are courtesy of Mathieu Desbrun.

4.2.5 Parameters

The parameters of the algorithm are:σc, σs, the kernel sizeρ, and the number of iterations.
We propose an intuitive user-assisted method for setting these parameters. Two parameters,
σc andσs are interactively assigned: the user selects a point of the mesh where the surface
is expected to be smooth, and then a radius of the neighborhood of the point is defined.
The radius of the neighborhood is assigned toσc, and we setρ = 2σc. Thenσs is set to the
standard deviation of the offsets in the selected neighborhood.

One may choose a largeσc and perform a few iterations, or choose a narrow filter and
increase the number of iterations. Multiple iterations with a narrow filter has the effect of
applying a wider filter, and results in efficient computation. Using a small value forσc is
sensible for two reasons: (i) large values may cross features as shown in, and (ii) smaller
values result in a smaller neighborhood which leads to faster computation of every iteration.

In all the results shown in this paper, we used up to five iterations, we found a small
number of iterations sufficient for our purposes, and advantageous both to the speed of
computation and for the numerical stability of the filter.

Noisy data may lead to unstable computation of the normals if the 1-ring neighborhood
of a vertex is used to compute the normals. For extremely noisy data, the normal to a vertex
is computed using the k-ring neighborhood of the vertex, wherek is defined by the user.
For every scanned models that we denoised, the normals were computed using the 1-ring
neighborhoods. Note that only for the Max Palanck (Figure 4.2) model, we were required
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Figure 4.4: Results of denoising the face model. On the top row from left to right are
the input noisy mode, the results of [Jones et al. 2003], and our result. On the bottom we
zoom on the right eye of the model, where the bottom left image shows the results of Jones
et al. , and on the bottom right is the result of our method. The face model is courtesy of
Jean-Yves Bouguet.

Figure 4.5: Denoising of CAD-like model. (a) is the input noisy model, (b) is the result of
two iterations of our algorithm, (c) and (d) are the result of five iterations of our algorithm,
where in (d) the clean model was superimposed on the denoised model.
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Figure 4.6: Results of denoising the Fandisk model. On the left is the input noisy model,
in the middle is the results of [Jones et al. 2003], and on the right is our result.

to use the 2-ring neighborhood to compute normals.

4.3 Results

We have implemented the bilateral mesh denoising algorithm as described in the previous
section and compared our results to the results of the anisotropic denoising of height fields
algorithm (AFP) [Desbrun et al. 2000], Jones et al. [2003], and theimplicit fairing (IF)
algorithm [Desbrun et al. 1999]1. The times are reported on a 1GHz PentiumTM III. In
Figure 4.3, we compare the AFP algorithm with our results. The mesh with 175K vertices is
smoothed by three iterations in 10 seconds. Observe the preserved details near the mouth
of the model denoised by our algorithm. Figure 4.1 shows a comparison with implicit
fairing. The smoothness of the object can be appreciated from the visualization of the
mean curvature in the second row. The model has 17K vertices, and it was denoised in
three iterations, taking 1.8 seconds. In Figure 4.5 we show the denoising of a CAD object.
Observe that the sharp features are preserved, but vertices with larger error are treated
as outliers and thus are not smoothed out. For the Max Planck model (Figure4.2) (100k
vertices), the timing for a single iteration is 5.75 seconds, and the total number of iterations
was four.

Independently, Jones et al. [2003] present a similar algorithm that uses bilateral filtering
for smoothing surfaces. The main difference between the two methods is in the surface pre-
dictor. More specifically, Jones et al. take the distance between the point and its projection
onto the plane of a neighboring triangle, whereas our approach takes the distance between
a neighboring point and the tangent plane. While we perform several filtering iterations,

1Implementation courtesy of Y. Ohtake
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Jones et al. smooth a surface in a single pass. Figure 4.4 and 4.6 compare the results for
two different types of models.

Volume preservation is a global operation, whereas denoising is a local operation. In
Figure 4.2, we visualize the local change of volume by adding severe synthetic noise (of
zero mean and variance of 0.05% of the diagonal of the bounding box of the model) to
the clean model of Max Planck, and then denoised the model. On the right, we zoom on
a feature of the model, superimposing the original mesh on top of the smoothed model,
showing that the change in shape and volume is minimal.

4.4 Summary

We presented a mesh-denoising algorithm that modifies vertices in the normal direction.
The bilateral filtering algorithm that we use is practical, clear and simple. The proposed
method deals with irregular meshes and does not perform any reparameterization. In addi-
tion, the only property of the mesh that we use is the topological information, and therefore,
the algorithm can be adapted to point-based representations.



Chapter 5

Conclusions and future work

This work describes a point-based surface representation that is smooth, local and resilient
to sampling error (noise). The surface definition combines the usability of point-based
modeling with a consistent surface definition. The heart of the surface definition is a pro-
jection operator from a point near the surface to the surface.

In this work, we focused on the introduction of the projection operator and computing
it. We have also used it for surface resampling and rendering, as well as a progressive
surface representation and noise removal. These are only a small number of applications
for the presented surface definition. We believe that it will foster future research in point-
based surface representation and applications; a number of researchers have already used
our surface definition [Adamson and Alexa 2003a; Adamson and Alexa 2003b; Igarashi
and Hughes 2003; Mederos et al. 2003; Pauly et al. 2002; Pauly et al. 2003; Wang and
Oliveira 2003].

5.1 Point set surfaces

In differential geometry, a smooth surface is characterized by the existence of smooth local
maps at any point. In this work we use this as a framework to approximate a smooth surface
defined by a set of points and we introduced new techniques to resample the surface to
generate an adequate representation of the surface.

To render such surfaces, the surface is covered by a finite number, as small as possible,
of non-conforming, overlapping, polynomial patches. We showed that the error of these
approximations is bounded and dependent on the spacing among points. Thus, it is possible
to provide a point set representation that conforms with a specified tolerance.

Our paradigm for representing surfaces advocates the use of a point set (without con-
nectivity) as a representation of shapes. This representation is universal in the sense that it

59
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is used from the beginning (i.e. acquisition) to the end (i.e. rendering) of a graphical repre-
sentation’s life cycle. Moreover, we believe that this work is a step towards rendering with
higher order polynomials. Note that we have used simple primitives (points) to achieve this
goal. This admits to the current trend of integrating high quality rendering features into
graphics hardware.

It would be interesting to integrate our approach with combinatorial methods such as
the one of Amenta et al. [1998]. This would combine topological guarantees with the
additional precision of higher order approximations and the possibility of smoothing out
noise or small features.

Using different values forh, it is easy to generate more smooth or more detailed ver-
sions of a surface from one point set (see, for example, Figure 2.4). A set of different
versions could be used as a smooth-to-detailed hierarchy and would allow for multiresolu-
tion modeling [Kobbelt et al. 2000]. Of course,h is not necessarily a global parameter and
could be adapted to the local feature size. Varyingh has several implications and utility in
handling point sets (see [Lee 2000] for a nice introduction to the issues in two dimensions),
such as properly accounting for differences in sampling rate and levels of noise during the
acquisition process. Also, non radial functions might be necessary to properly account for
sharp features in the models.

5.2 Progressive point set surfaces

Our technique has several unique features. First of all, it works directly on points, avoid-
ing the need to triangulate the source point set, and the costly remeshing of the surface
into subdivision connectivity. This is especially important for large and detailed datasets.
Another important property of our technique is its locality. This leads to a numerically
stable computation, linear time and space complexity and small memory footprint, which
may lead to the development of out of core algorithms. Furthermore, progressive point set
representations lead to a compression scheme, where the range of the error decreases with
each level in the hierarchy. As shown above, at each level it is possible to upsample the
surface from the sparse representation.

The lack of connectivity in the representation could also be the source of shortcomings.
As shown in [Amenta et al. 1998], there are limits on surface samplings which can be
proven to define a given surface. That is, our approach might need a relatively dense base
set to resolve possible ambiguities in the modelling of certain complex surfaces. Moreover,
it is considerably easier to handle discontinuities by triangulated models.

A considerable amount of research has been devoted to developing and optimizing the
“mesh-based world”. Many advanced methods require a local parameterization and local
differential properties. The MLS projection procedure inherently has these qualities; for
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example, texture synthesis techniques may be applied on surfaces using surface marching
similar to [Turk 1992; Turk 2001]. We believe that the importance of point set representa-
tion and of MLS surfaces in particular is likely to play an increasing role in 3D geometric
modelling.

5.3 Bilateral mesh denoising

Choosing the tangent plane as an approximation ofSv is an important component of our
algorithm. Positioning the plane at the average of the offsets of neighboring points would
improve our approximation of the smooth surface. However, this would nullify the effect of
the similarity term of the bilateral filter. We expect that computing the offsets over a higher
order function such as a polynomial of low degree will reduce the shrinkage problem.
Finding a high-order, feature-preserving function for the noise-free surface is a difficult
problem. In the future, we would like to investigate this possibility, by combining the
bilateral filter with a rational function.

(a) (b) (c)

Figure 5.1: Denoising with discontinuities in normals: (a) the result that was presented in
Chapter 4; (b) the result of clustering normals, observe that the sharp edge with varying
angle on the left of the figure is smoothed out toward the bottom; (c) the result of denoising
using representative normals in all directions.

The key points of our algorithm are the choice of tangent plane and moving vertices
along the normal direction. However this change in vertex position may lead to self-
intersection of the denoised mesh. During the application of our algorithm to vertices
on two sides of the edge, each vertex moves inwards; for sharp edges this will cause self-
intersection after a number of iterations that is proportional to the angle of the edge.

The algorithm that we present assumes that the mesh is sampled regularly. This as-
sumption is made when we fix the values ofσc. Highly irregular meshes are uncommon in
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scanned data-sets. To handle irregular data-sets, the parameters must be adjusted locally.
We use a single normal to a vertex, however, for edges there are two normals, one from

the “left” and one from the “right”; a corner of a cube has three normals etc. It is possible to
cluster normals pointing in a similar direction, trying to identify edges and corners, however
this solution requires threshold, which is always hard to set, as can be seen in Figure 5.1 b.
In preliminary experiments we have made, we used normals in all directions, or put in other
words set the threshold to zero. Using this last idea, we get promising results as can be seen
in Figure 5.1 c.

Acknowledgements

We would like to thank the many people who have made their models avaialble. The Isis,
Igea and Dinosaur are courtesy of Cyberware, the Budha, Bunny and Dragon models are
courtesy of the Stanford 3D scanning repository , The scanned face is courtesy of Alexander
Belyaev, The Max Planck-Institut für Informatik for the model of Max Planck, Mathieu
Desbrun for the noisy face model, Jean-Yves Bouguet for the female face model, and Peter
Neugebauer at Fraunhofer IGD in Darmstadt for the angel model.

This work would not be possible without the many people who made their software
available: Fausto Bernardini for his implementation of the Ball-Pivoting Algorithm; Igor
Guskov, Andrei Khodakovsky, Peter Schroeder, and Wim Sweldens for their remeshing and
compression code; Craig Gotsman and Virtue Ltd for “Optimizer”, The Visual Computing
Group of CNR-Pisa for Metro, Y. Ohtake for his implementation of “MeshEditor”.



REFERENCES 63

References
ADAMS, B., AND DUTR?, P. 2003. Interactive boolean operations on surfel-bounded solids.ACM Transac-

tions on Graphics (TOG) 22, 3, 651–656.

ADAMSON, A., AND ALEXA , M. 2003. Approximating and intersecting surfaces from points. InEuro-
graphics Symposium on Geometry Processing.

ADAMSON, A., AND ALEXA , M. 2003. Ray tracing point set surfaces. InShape Modeling International.

ALEXA , M., BEHR, J., COHEN-OR, D., FLEISHMAN , S., LEVIN , D., AND SILVA , C. T. 2001. Point set
surfaces. InIEEE Visualization 2001, 21–28. ISBN 0-7803-7200-x.

ALEXA , M., BEHR, J., COHEN-OR, D., FLEISHMAN , S., LEVIN , D., AND SILVA , C. T. 2003. Comput-
ing and rendering point set surfaces.IEEE Transactions on Visualization and Computer Graphics 9, 1
(January), 3–15.

AMENTA , N., AND BERN, M. 1999. Surface reconstruction by voronoi filtering.Discrete and Computational
Geometry 22, 481–504.

AMENTA , N., BERN, M., AND KAMVYSSELIS, M. 1998. A new voronoi-based surface reconstruction al-
gorithm.Proceedings of SIGGRAPH 98(July), 415–422. ISBN 0-89791-999-8. Held in Orlando, Florida.

ARAVIND , AND VARSHNEY, A. 2003. Modeling and rendering of points with local geometry.IEEE
Transactions on Visualization and Computer Graphics 9, 1 (January), 30–42.

BAJAJ, C. L., AND XU, G. 2003. Anisotropic diffusion of subdivision surfaces and functions on surfaces.
ACM Transactions on Graphics (TOG) 22, 1, 4–32.

BAJAJ, C. L., BERNARDINI, F., AND XU, G. 1995. Automatic reconstruction of surfaces and scalar fields
from 3D scans.Computer Graphics 29, Annual Conference Series (Nov.), 109–118.

BARASH, D. 2002. A fundamental relationship between bilateral filtering, adaptive smoothing and the
nonlinear diffusion equation.IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 6.

BARNES, J. E.,AND HUT, P. 1986. A hierarchicalO(N log N) force-calculation algorithm.Nature 324,
6270, 446–449.

BEATSON, R. K., AND NEWSAM, G. N. 1992. Fast evaluation of radial basis functions.Computers and
Mathematics with Applications 24, 12, 7–19.

BERNARDINI, F., MITTLEMAN , J., RUSHMEIER, H., SILVA , C., AND TAUBIN , G. 1999. The ball-pivoting
algorithm for surface reconstruction.IEEE Transactions on Visualization and Computer Graphics 5, 4
(October - December), 349–359. ISSN 1077-2626.

BESL, P. J.,AND MCKAY, N. D. 1992. A method for registration of 3-D shapes.IEEE Transactions on
Pattern Analysis and machine Intelligence 14, 2 (Feb.), 239–258.
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xivwz

ef zecewp zveaw .agxna zecewp sqe`n akxend ghynl bevii x`zp ef dceara
ote`a xvepd seb ly ghyd ipt xe`iz e` cnin zlz wxeq ly inlebd hltd zeidl dleki
bevii mle` ,agxna zecewp i''r miteb bviil rved dpy mixyr iptl xak .iaihw`xhpi`
gke zicnn zlzd dwixqd megza miyecig .dpexg`l cr agxp yeniya did `l df
aex .zecewp i''r miteb bevii ly megzd z` eigd miipxcen miaygn ly lcbd aeygnd
i''r seb ly ghyd ipt z` mix`zn miteb beviil zecewpa miynzyn mda minzixebl`d
oepiq rval jxev yi ,ef dxeva mix`eznd miteb ddeab zeki`a bivdl icka .zeiwqc sqe`
mihwtq`a zcwnzn ef dcear .dpenzd agxna e` hwiiae`d agxna zecewpd sqe` ly

.zecewpn miakxend miteb ly ixhne`ib bevii ly mipeyd
''zecewp sqe` ighyn'' mipkn ep` eze` ,zecewp sqe`n mitebl ycg bevii mix`zn ep`
z` alyn df bevii .inewn ote`a ayegne ilaelb ote`a wlg `ed lawznd ghynd .(PSS)
zeixhne`ib zepekz lra ihnzn qiqa mr lcen mr zecewpn miakxend milcend zepexzi

.zewlge zetivx ly

zecewp sqe` ighyn
-xwa z`vnpd dcewp ozpida .dlhd xehxte` i''r mixcben ''zecewp sqe` ighyn''
zecewpd sqe` i''r xcben ghynd ;ghynd l` dze` fifn dlhdd xehxte` ,ghynd za
miffend mizegtd mireaixd ghiy lr qqazn dlhdd xehxte` .onvr z` zelhend
mighyn ly ixhnxt beviil cebipa .dcewpe dcewp lkl divwpet zn`zen eay (MLS)
ziipa i''r zbyen zetivxe ,sebd ly ghyd ipt lr xef` xear divwpet zn`zen mday
dcewpa zn`zend divwpetd (MLS)-d zhiya ,dtya dievxd zetivxd zelra zeivwpet
ipya rvazn dlhdd xehxte` aeyig .zewlg zeivwpet ly zeix`ipil divpianew `id
.milihn dze` dcewpl zepkyd zecewpd zveawl xeyin m`zen oey`x alya :mialy
ghyn `id d`vezd .dkenp dbxcn mepilet zepkyd zecewpd zveawl m`zen ,ipy alya
-xte` aeyig ,zenezq zeivwpet zxfra miteb beviil cebipa .ilaelb ote`a C∞ zewlg lra
,zeil`icx qiqa zeivwpet zxfra divletxhpi`l cebipae ,cala inewn `ed dlhdd xeh

.inewn `ed rveand aeyigd
lwyn zivwpet zxfra zepky zecewpl zelwyn zepzip dlhdd xehxte` aeyiga
xear .odly divletxhpi` rval e` zecewpd sqe` z` axwl leki PSS-d ghyn .dwlg

a
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lwyn zivwpet xicbp ,ghynd z` wilgdl oiipern ynzynd m` e` yrx liknd hlw
xicbp miyrx `ll hlw xear .zrvazny dwlgdd zcin lr hley divwpetd agex .zaxwn
PSS-d ly zeiniptd zeixhne`ibd zepekzd z` .divletxhpi` rvazy lwyn zivwpet
m`zedy mepiletd ly zepekzd oze` zxfra axwl ozip zeinenwre lnxep oebk dcewpa

.dcewpl
,jqnd lr seb ddeab zeki`a bivdl icka .PSS-d ly ycgn dnibcl milk mibivn epgp`
ly lnxepde mewind aeyig ick jez ,jqnd zivelefxa PSS-d z` ycgn mebcl ozip

.zecewpd
a dnqxet lpxe'f zqxbe IEEE Visualization 2001a bved dceard ly df wlg
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zecewp sqe` ighyn ly iaiqxbext bevii
zbviind ixhne`ib lecin zhiy `ed PPSSzecewp sqe` ighyn ly iaiqxbext bevii
ly iaiqxbext bevii mipea ep` .mihxt lra sebl wlg sebne oicrl qbdn :hexit zenxa seb
ipy alya .xzei wlg `edy qiqa seb zxivil hlwd seba zecewpd xtqn mevnv i''r PSS
oecird jildz .onewin oewize zeycg zecewp ztqed i''r qiqad seb z` mipcrn epgp`
seb lre qiqad seb lr oze` lihne ,ipevig rcin `ll qiqad seb zaxwa zecewp siqen

.zelhend zecewpd izy oia yxtdl deey didi oewizd xehwe .hlwd
ayegn wiynd wlgd .lnxepd oeeka wlge wiyn wlgl micixtn ip` oewizd xehwe z`
.ccewl yi eze` cigid wlgd `ed lnxepd oeeka wlgde ,oecir illk zxfra ipevig rcin `ll
dcewp lihnd axewn dlhd xehxte`a ynzyp ,aikxn eze` ly liri ceciw xevil icka
xehwe z` ccewl lkep jke ,qiqad sebl ayegy ixhnxtd xeyind zxfra hlwd seb lr

.iaiqxbextd lcend ly qegc bevi `id d`vezd .cigi xtqn zxfra oewizd
.ACM Transactions on Graphicsa mqxtzd dceard ly df wlg

mighynn miyrx zcxedl ilxhlia mzixebl`
zcxedl cebipa .mihxt xnynd mighynn miyrx zcxedl mzixebl` bivp df wxta
-l`a .zepite zeevw oebk miwlg mpi`y mihxt xnyn df mzixebl` ,PSSd zxfra miyrx
mlrzdl oeiqip jez miihqihhq mikxr miaygn zihqaex dwihqihhq ly minzixeb
sebd ly micewcw ipyy jk mitebn miyrx cixep df mzixebl`a .zebixg dnibc zecewpn
lr qqazp .zebixg zenibc l`k ipyd l` cg` eqgiizi (edge)dty ly diciv izyn
.mitebl mini`zn ep` eze`y ,zepenzn miyrx zcxedl ilxhliad xhlitd mzixebl`
-nxt ghyn dpap cewcw lkl :dlhdd xehxte` aeyig jezn oeirx lr zqqean dn`zdd
xyt`n ixhnxtd ghyna yeniyd ;ixhnxt ghyn eze` lr eipky z` lihpe inewn ixh
z` lirtp `ad alya .lnxepd oeeka aikxne wiyn aikxnl daiaqa micewcwd z` wxtl
cewcwl lnxepd oeeka ycg jxr zlawl ,ixhnxtd xeyind lrn ilxhliad mzixebl`d
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.miaygn eze`
ynzynd .iaihw`xhpi` ote`a mzixebl`l mixhnxt xegal cvik mi`xn epgp` ,sqepa
drtyd qeicx xgeae miyrxn iwp zeidl xen`e yrx liknd lcend ly wlga cewcw onqn
.xgapy cewcewd zaiaq jezn ihnehe` ote`a miayegn mixhnxtd x`y .cewcwd ly

ly cgein oeilba mqxet xy` SIGGRAPH 2003a bved df wlg
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