
Automatic Camera Placement for Image-Based Modeling

Shachar Fleishman Daniel Cohen-Or
Computer Science Department

Tel-Aviv University, Ramat-Aviv 69978, Israel
fshacharf,danielg@math.tau.ac.il

Dani Lischinski
Institute of Computer Science

The Hebrew University, Jerusalem 91904, Israel
danix@cs.huji.ac.il

Abstract

We present an automatic camera placement method for
generating image-based models from scenes with known ge-
ometry. Our method first approximately determines the set
of surfaces visible from a given viewing area and then se-
lects a small set of appropriate camera positions to sample
the scene from. We define a quality measure for a surface as
seen, or covered, from the given viewing area. Along with
each camera position, we store the set of surfaces which
are best covered by this camera. Next, one reference view
is generated from each camera position by rendering the
scene. Pixels in each reference view that do not belong to
the selected set of polygons are masked out.

The image-based model generated by our method, covers
every visible surface only once, associating it with a camera
position from which it is covered with quality that exceeds
a user-specified quality threshold. The result is a compact
non-redundant image-based model with controlled quality.

The problem of covering every visible surface with a
minimum number of cameras (guards) can be regarded as
an extension to the well-known Art Gallery Problem. How-
ever, since the 3D polygonal model is textured, the camera-
polygon visibility relation is not binary; instead, it has a
weight — the quality of the polygon’s coverage.

1. Introduction

Image-based modeling and rendering (IBMR) is a new
paradigm in computer graphics, which has gained consid-
erable popularity and has been the subject of much recent
research in the field. In this paradigm, a 3D scene is mod-
eled as a collection ofreference images, rather than a set of
conventional geometric primitives [2, 12]. Novel views of
a scene can then be synthesized from this collection of im-
ages using a variety of interpolation and re-projection tech-
niques [2, 6, 10, 12, 17]. IBMR possesses several important
advantages over traditional modeling and rendering: (i) the
images can be of real world scenes, thus making the task

of modeling such scenes much easier; (ii) image-based ren-
dering algorithms are typically inexpensive and can be car-
ried out on general purpose computers; (iii) the rendering
time is typically independent of the geometrical and physi-
cal complexity of the scene being rendered. These last two
properties make IBMR extremely useful for rapid rendering
of complex synthetic 3D scenes [2, 10, 11, 14, 15, 16].

In their landmark paper, McMillan and Bishop [12] have
placed image-based rendering in the framework of sampling
and reconstruction of the plenoptic function. Most of the
work since has been done on reconstruction algorithms (ef-
ficient warping, splatting, etc.), but the important problem
of properly sampling the plenoptic function has remained
largely unanswered. To illustrate the problem, consider the
following example. Suppose that we would like to compute
an image-based model of a virtual museum, so that user-
s will be able to walk through it at interactive rates using
image-based rendering. In order to generate a set of refer-
ence images for this scene we must decide where to place
the cameras from which these images will be rendered. Ide-
ally, the camera placement problem must take the following
considerations into account:

1. Every polygon in the scene that might be seen by a
user in the course of a walkthrough must be visible, or
covered, in at least one reference image.

2. Every covered surface should be sampled at a suffi-
ciently high rate (cover sufficiently many pixels in the
reference images). Otherwise, it might appear too blur-
ry in the course of a walkthrough. This is particularly
important for textured polygons, such as the pictures
on the walls of the museum. We refer to the rate at
which a polygon is sampled in an image-based model
as itscoverage quality. (A more precise definition will
be given in Section 3).

To our knowledge, there is currently no method for au-
tomatic placement of reference views in a general 3D scene
in a manner that would provide adequate coverage: i.e., ev-
ery surface of interest is covered, with some lower bound

on the coverage quality. For lack of a better alternative,ad
hoccamera placement methods are typically employed. For
example, in McMillan’s plenoptic modeling system [12],
cylindrical reference views are placed on a regular grid in
the scene. Such naive placement of reference views can-
not guarantee that all surfaces of interest are adequately
covered. Additionally, the resulting image-based model is
highly redundant, as the same surface might be represented
in many (perhaps even all) reference views. One attemp-
t to address the camera placement problem is described by
Stürzlinger [18]. However, his method does not address the
important issue of coverage quality. In another work, Gross-
manet al. [7] propose to compute 32 orthographic projec-
tions of an object, and then use an iterative greedy algorith-
m to find a set of blocks that provides adequate sampling
of the object. Grossman’s approach is object-centered —
the goal is to cover an object, in contrast to our approach
that is view-centered — the goal is to provide a coverage of
an entire scene from a set of views. Furthermore, using 32
predetermined orthographic views may still miss important
features.

This paper describes a first attempt to provide a practical
solution to automatic camera placement with adequate cov-
erage. At this point, we should note that adequate coverage
is only possible if the space from which a user may view the
scene is restricted and empty of scene objects. Otherwise,
the user is able to approach a surface in the scene arbitrarily
close, and noa priori sampling rate can guarantee a lower
bound on the coverage quality. Thus, we assume that the
viewpoint may move only inside a predefined emptyview-
ing areaor walking zone. We define the walking zone by
a set of boundary polygons. Figure 1, illustrates a scene
and a walking zone. We also assume an upper bound on
the resolution at which images of the scene are to be gen-
erated. These two assumptions define an upper bound for
the sampling rate of each surface in the scene. Finally, we
assume that the scene consists of ideal diffuse (Lambertian)
surfaces with texture.

The contribution of this paper is a practical method for
generating image-based models of synthetic 3D scenes. The
generated model covers most (and in many cases all) of the
surfaces that may be visible from the walking zone. Every
covered surface is represented exactly once, and the cover-
age quality exceeds a user-specified threshold.

Our method determines a small, though not necessarily
minimal, set of cameras (the termcamerarefers to all of the
relevant viewing parameters, such as position, orientation,
field of view, resolution, etc.) With each camera we asso-
ciate an exclusive set of surfaces covered in the correspond-
ing view. To generate an image-based model, we traverse
this set of cameras, and render the corresponding reference
images. In each image we mask out pixels which do not
belong to surfaces covered in this view. Figure 2 shows the

Figure 1. A general view of a test scene. The
walking zone is the semi-transparent box in
the middle of the room.

masked reference images produced by our algorithm for a
simple test scene.

The resulting set ofmasked reference imagesconstitutes
an image-based model of the scene. Taking our method to
an extreme, we could have as many masked reference im-
ages as visible polygons — for each polygon we could find
the best location in the walking zone to view it from. In
practice, our solution does not strive to go that far. On the
contrary, we would like to minimize the total number of ref-
erence views, in order to increase the image coherence of
our representation, thus allowing warping to be performed
more efficiently.

Our automatic camera placement can be also useful for
placing cameras when capturing real world scenes, provid-
ed that a (possibly approximate) 3D geometric model of the
scene is available. In this case, our method will produce a
small number of camera positions from which photographs
should be taken in order to construct an image-based model
of the scene [6].

The proposed method is also applicable for selecting the
best views along a known walkthrough path. In the syn-
thetic video compression technique of Cohen-Oret al.[5],
a video sequence is reconstructed by rendering the mod-
el with view-dependent texture maps. These texture maps
are extracted from selected precomputed reference views a-
long the walkthrough path. A successful selection of these
reference views will minimize the amortization of the view-
dependent textures along the sequence, thus yielding better
compression.

A simple 3D scene with a walking zone.

(c1) (c2) (c3) (c4)

(c1+c2) (c1+c2+c3) (c1+c2+c3+c4)

Figure 2. Masked reference views. Images c1–c4 show four reference views of a simple 3D scene.
The cyan areas are masked out. The bottom row of images illustrates the cumulative coverage of the
scene by these reference views.

2. Overview

Ideally, given a polygonal 3D scene and a walking zone,
we would like to determine precisely which parts of the
scene are visible from at least one viewpoint inside the
walking zone, and then select the minimum number of cam-
eras covering every visible part. The first task requires com-
puting the antipenumbra [19] of the walking zone, while
the second is the 3D version of the well-known Art Gallery
Problem, known to be NP-hard [13]. Thus, in order to make
our method practical, we must resort to approximations.
Our method first approximates the set of scene polygons
visible from the viewing zone, and then employs a greedy
algorithm to select a small number of camera positions that
together cover every polygon in the above set. For every
camera, we store a list of polygons whose coverage quality
from that view is above a given threshold. These lists are
disjoint, and their union is the set of all visible polygons.

Our method is based on populating the walking zone
with a large number of camera positions and then select-
ing a small subset of camera positions from the above set.
To reduce the number of camera positions, we place them
only on the boundary of the walking zone. Since the walk-
ing zone is empty, it follows that for every pointp in the
scene that is visible from some pointv inside the walking
zone,p can also be seen from the intersection point between
the line(v; p) and the boundary of the walking zone. This
argument can be extended from points to polygons, provid-
ed that they are sufficiently small (otherwise, cases such as
the one shown in Figure 3(a) may arise).

The algorithm performs the following steps:

1. Tessellate the boundary:The boundary of the walk-
ing zone is tessellated into small patches.

2. Subdivide polygons: Scene polygons are subdivided
into smaller ones in order to reduce the likelihood of

B
A C

(a)
BA

C D

A

C

B

D

(b) (c)

Figure 3. Partial visibility problems: (a) Poly-
gon AC has two disjoint visible regions. The
polygon must be subdivided into AB and BC.
(b) Polygon AB is only partially visible from
a nearby position C, but is completely visible
from a farther position D. (c) Polygon AB is
not fully visible from a single viewpoint within
the walking zone, but is fully covered if views
C and D are combined. Polygon AB must be
subdivided.

the visibility problems illustrated in Figure 3.

3. Compute visibility: For each patch, compute the
hemispherical image seen from the center of the patch
(Section 4). The set union of polygons visible in all
these images is our approximation to the set of visible
polygons.

4. Compute best quality: Compute a per polygon value
that measures the best quality a polygon can achieve
from a camera placed within the walking zone (Sec-
tions 3 and 4).

5. Select camera positions: Select a small subset of
camera positions from the above database that meets
our goals for a fully covered scene with adequate cov-
erage quality (Section 5).

3. The coverage quality

In this section, we define a quality measure for a polygon
in an image. We defineV (pi; Ij), thevalueof a given poly-
gonpi with respect to a given cameraCj , as the number of
pixels thatpi contributes toIj , the hemispherical image of
the scene atCj . This value depends on the solid angle of

the polygon, as seen fromCj , the visibility of pi from Cj ,
and the resolution of the imageIj . In fact, it is proportional
to the point-to-polygon form-factor [4] betweenCj andpj .
In our context, a high value means that the texture of the
polygon is sampled at a high rate in imageIj .

Given a walking zone in a polygonal 3D scene, we can
define thebest valueof a polygonp as seen from the zone
asBV (p) = maxj2all camera positions(V (p; Ij)). The best
value of a polygon as seen from the walking zone defines
the sampling rate that is required to sample the polygon
from the walking zone, such that the polygon is neither
oversampled nor undersampled.

Now, we can define thecoverage qualityof a polygon
p in an imageI taken from the zone asQ(p; I) = V (p;I)

BV (p) .
This is a number in the range[0; 1] that measures how well
the polygonp is covered in imageI .

The quality measure defined above was developed with
fully visible polygons in mind, and it is not well suited for
ranking the coverage of partially occluded polygons. For
example, a polygon may have a higher coverage quality in
a partially occluded view than in a more distant view from
which it is completely visible (Figure 3(b)). Some poly-
gons may be fully covered only by a combination of more
than one view (Figure 3(c)), so picking a single best view
for such a polygon will lead to a visibility gap in the result-
ing image-based model. These problems are more common
when scene polygons are large with respect to their distance
from the walking zone, and tend to disappear if the polygons
are sufficiently small. Thus, subdividing the input polygons
before processing them alleviates most of the partial visibil-
ity problems. However, one must take care not to subdivide
polygons too much, since polygons covering only a small
number of pixels in the reference images are more prone to
discretization errors.

Another limitation of the quality measure is related to
our assumption that the scene is ideal Lambertian: cover-
age quality only refers to diffusely shaded texture, without
accounting for view-dependent shading.

4. Computing visibility

In order to place cameras, we need to find the subset of
polygons in the scene that can be seen from the walking
zone. For each visible polygon, we need to find the areas
inside the walking zone from which that polygon is visible
and to compute the best value of every visible polygon.

We approximate the above computation using the fol-
lowing approach. The shell of the walking zone is tessellat-
ed into small patches, and the center of each patch is cho-
sen as a potential camera position. From each position, we
compute a hemispherical image of the scene. Each pixel
in this image contains the unique ID of the scene polygon

visible through that pixel. By counting the number of pix-
els covered by the projection of each polygon in each of
these images, we obtain the valueV (pi; Ij) of every poly-
gonpi in each imageIj . Polygons whose value is0 in all
images are considered invisible from the walking zone. The
approximate set of visible polygons is the union of visible
polygons in all of the imagesIj . We approximate the best
value of a polygon as the maximum value of the polygon
over all images.

In practice, we use 3D rendering hardware to speed up
the process of visibility computation. Rather than project-
ing the scene onto the hemisphere around each camera po-
sition, we render(180fov)

2 planar images that approximate the

hemisphere (fov is a user-specified field-of-view). Every
camera position is saved along with a list of polygons visi-
ble from it and their corresponding values.

The algorithm is stated in detail below:

1. Assign a unique ID for each polygon in the scene.

2. For every polygon with ID= i, letBV (pi) = 0.

3. Letcamera database = ;

4. For each walking zone shell patchj do:

(a) Divide the hemisphere directed outside of the
shell toK = (180fov)

2 sections.

(b) For each section[1::K] do:

i. Set a camera at the center of patchj pointing
at the center of the current section.

ii. Render the scene into an item buffer IB.
iii. Traverse IB and calculate the values of poly-

gons that are visible in this view.
iv. Update the value of every visible polygoni:

BV (pi) = max(BV (pi); V (pi; IB))
v. Insert(camera position; visible polygons)

to cameras database

There are cases where a polygon has a higher value in
a partially occluded viewCj than in another viewCk from
which it is completely visible (Figure 3(b)). In such a case
Ck should be preferred overCj in order to avoid visibility
gaps in the coverage of the scene. Thus, the algorithm above
can be improved by adding the following phase:

5. For every polygonpi that is visible fromCj

(a) If (partially visible(pi,Cj) and (pi is fully visible
from some other viewpoint))

i. removepi of the list of polygons visible
fromCj .

ii. UpdateBV (pi) to reflect the removal ofpi
fromCj .

5. Selecting camera positions

At this stage, for each polygon in the scene, we can tell
the optimal rate (up to our approximation error) that is re-
quired to sample the polygon for viewing it from anywhere
inside the walking zone. We also know which camera po-
sition samples the polygon at the optimal rate. From this
information we can generate an image-based model sim-
ply by sampling each polygon individually from the camera
which covers it the best. Such an approach would result in
a very large number of reference images, and hence suffers
from two drawbacks: (i) if we apply this algorithm to se-
lect camera locations for taking pictures of a real scene, we
would end up with a tremendous amount of pictures to take;
(ii) we cannot take advantage of the speed of incremental
image warping when rendering the image-based model, be-
cause each reference image will contain too few pixels.

Our approach, instead, is to compromise: rather than in-
sisting that each polygon in the scene is covered with opti-
mal quality, we are willing to allow lower quality coverage
so long as the quality exceeds some user-specified minimum
Q. Our goal now is to select a small set of cameras such that
all visible polygons are covered with quality� Q.

To generate the smaller set of camera positions, we use
a greedy approach. For each camera in the database con-
structed earlier we compute a list of polygons that are ad-
equately covered by that camera. A polygon is considered
adequately covered by a camera, if its quality in the cor-
responding image is larger than the user-specified quality
thresholdQ. Starting with an empty set of camerasC, at
every iteration we add the highest ranked camera from the
database. Therank of a camera is defined as the number
of adequately covered polygons that it adds to those already
covered by previously selected cameras. Cameras are added
to C until all of the visible scene polygons are adequately
covered by the union of the selected cameras.

It often happens that cameraC1, selected earlier by the
greedy algorithm, covers polygonp with lower quality than
some other cameraC2, selected later in the process. In such
a case, when we addC2 to the selected camera setC, we
removep from the set of polygons covered byC1 and add
it to the set ofC2. Such changes have no effect on the re-
sulting number of selected cameras, but they result in better
coverage quality.

The camera selection algorithm described above termi-
nates only when the entire visible set of polygons has been
covered. An alternative problem that sometimes needs to
be solved is selecting thek camera positions that cover as
much of the scene as possible. We could solve this problem
using the same greedy algorithm, and stop whenjCj = k.
Since it is probable that not all polygons can be covered by
k cameras, it makes sense to favor polygons that are most
likely to be seen. For that purpose, we change the rank-

ing of candidate cameras in the following way: for every
polygonp, we count the number of cameras that cover it
jpj. Candidate cameras are ranked according to the sum
�p2covered(C)jpj.

6. Creating an image-based model

The selected set of camera positions and their associat-
ed covered polygon sets serve as a basis for generating an
image-based model of the scene. The set of camera po-
sitions is traversed, and the scene is rendered from each
position using the stored camera parameters to generate an
image. Next, we use the set of polygons covered by each
camera to extract the pixels covered by their projections in
the corresponding image. All of the other pixels in the im-
age are masked out. The remaining unmasked pixels form
an image-based representation of the scene. This represen-
tation is non-redundant and thus it is faster to render or to
transmit over the network. Yet, it guarantees a predefined
coverage quality and no (or very few) visibility gaps.

Our method samples nearby surfaces in a single image
when possible. In practice the results obtained from our
system are a small set of images that are mostly filled and
cover most of the scene and another set of images, each
sampling a small number of the remaining surfaces. This
behavior of the method, leads us to create a model that con-
sists of two parts. The first part is a set of images with depth,
to which incremental 3D warping can be applied in the ren-
dering phase. The second part is a sparse set of pixels that
are stored in a compact data structure.

Other types of image-based models can also be generat-
ed from our representation. For example, our image-based
model is easily converted to a Layered Depth Image (LDI)
representation [17] of the scene by warping all of the un-
masked pixels in our representation to a common view. In
order to maintain the coverage quality the LDI data struc-
ture should support multiple resolutions. An appropriate
data structure is described by Changet al.[1]. In this way,
the LDI representation of the scene is guaranteed to be of
high quality, and no visibility gaps will be created while the
camera position remains inside the walking zone. Yet the
LDI will be free of redundant samples, therefore rendering
will be faster.

7. Results

The algorithms described in this paper were implement-
ed on a Pentium-based PC. The system reads VRML 1.0
files, computes the set of visible polygons, selects a set of
camera positions, and generates an image-based model of
the scene using these camera positions. From the image-
based model, novel views of the scene are rendered by for-

ward warping of the unmasked pixels in the computed ref-
erence views. In order to demonstrate the coverage qual-
ity resulting from our approach, no hole-filling, filtering,
or other anti-aliasing methods are applied to the projected
samples. Figures 4 and 5 show a comparison of an image-
based model that was generated based on our algorithm with
an image-based model that was generated by sampling the
scene with reference views placed on a regular grid. As can
be seen in Figure 4(a) and 5(a), there are some small holes
(in cyan) in the novel view generated from our image-based
model. These holes are due to discretization problems and
they could be easily eliminated by using micro-polygons
[10] or splatting [17]. In contrast, the large holes in Fig-
ure 4(b) and 5(b) are due to visibility gaps, that is, surfaces
not covered by the reference views placed on a regular grid.

The coverage quality of our image-based model is vi-
sualized in Figure 4(c) and 5(c), where each polygon is
pseudo-colored according to its quality. Colors change from
light green (high coverage quality) to dark green, dark red
and bright red (not covered at all). Note that the quality of
the regularly sampled images in the (d) columns was com-
puted with respect to the best polygon values computed by
our algorithm.

For these models the number of samples/pixels in the
regular grid model is larger by a factor of two than the num-
ber of unmasked pixels in our model. This factor is scene
dependent, however, and as the occlusion complexity of the
scene grows, the factor tends to grow, since the regular sam-
pling must be denser in order to cover the scene properly.
On the other hand, the number of samples in the masked
views is a function of the visible surfaces only.

8. Discussion and future work

We have presented a method for generating image-based
models from textured polygonal scenes. The effectiveness
of the new method is threefold:

� the set of all polygons visible from the walking zone is
well approximated;

� the coverage quality of the image-based model is user-
controlled;

� the representation is compact.

The masked reference views cover each visible surface on-
ly once with a user-defined minimal quality. Since the
masked views are generated by taking pictures from within
the walking zone, the surfaces are neither oversampled nor
undersampled. In particular, faraway surfaces are sampled
at the proper lower resolution. Thus, the result is a compact
image-based model with controlled quality.

To generate the image-based model, we produce a set of
camera positions from a large database of camera positions.

(a) (b)

(c) (d)

Figure 4. A view of a test model. (a) Rendered from the image-based model produced using our ap-
proach. (b) Rendered from an image-based model with regular grid camera placement. (c) Coverage
quality in our image-based model: color varies from green (high quality) to red (not covered at all).
(d) Coverage quality with regular grid camera placement.

The problem of selecting the minimal subset of cameras that
covers every visible polygon is equivalent to the set-cover
problem, where camera positions form one set of vertices,
visible polygons form the second set, and the visibility in-
formation is represented by edges connecting between the
set of camera positions and the polygons. Greedy heuristics
like the one we use to select the set of covering cameras,
produce a solution that is within a factor of1 + log(d) of
the optimal solution, whered is the maximum number of
cameras that sees a single polygon[3, 9].

In this paper we addressed the problem of placing cam-
eras to cover a given 3D model. The problem can be re-
garded as an extension to the 2D visibility problem known
as the Art Gallery Problem [13]. In our case, the 3D polyg-
onal model is textured and the goal is to generate an effec-
tive image-based model, rather than to solve a pure visibili-
ty problem. Assuming the model has no textures and is not
shaded, our method provides an approximate solution to the
3D art gallery problem.

We have assumed that all surfaces in the scene are ideal
diffuse. Thus, a surface can be sampled from any direc-
tion, so long as the coverage quality exceeds the desired
minimum. In order to extend our approach to non-diffuse
reflectors, the material properties of the surface and the di-
rection from which it is viewed should be incorporated in-
to the quality metric. Shiny surfaces may have to be sam-
pled from multiple camera locations. Alternatively, a post-
warping view-dependent shading stage may have to be ap-
plied whenever a novel view is rendered from the image-
based model.

Our current visibility algorithm is fairly naive; we sub-
divide the polygons in the scene to small polygons and let
the user define the density of cameras that are placed on the
boundary of the walking zone. The next logical step would
be to switch to an automatic adaptive refinement strategy,
resembling the hierarchical radiosity algorithm [8].

(a) (b)

(c) (d)

Figure 5. Another view of the same model.

Acknowledgments

This work was supported by a grant from the Israeli Min-
istry of Science.

References

[1] C.-F. Chang, G. Bishop, and A. Lastra. LDI tree: A hi-
erarchical representation for image-based rendering. In
A. Rockwood, editor,Computer GraphicsProceedings, An-
nual Conference Series. ACM SIGGRAPH, Addison Wes-
ley, Aug. 1999.

[2] S. E. Chen and L. Williams. View interpolation for image
synthesis. In J. T. Kajiya, editor,Computer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 279–288, Aug.
1993.

[3] V. Chvátal. A greedy heuristic for the set-covering problem.
Math. Oper. Res., 4:233–235, 1979.

[4] M. F. Cohen and J. R. Wallace.Radiosity and Realistic
Image Synthesis. Academic Press Professional, San Diego,
CA, 1993.

[5] D. Cohen-Or, Y. Mann, and S. Fleishman. Deep com-
pression for streaming texture intensive animation. In

A. Rockwood, editor,Computer GraphicsProceedings, An-
nual Conference Series. ACM SIGGRAPH, Addison Wes-
ley, Aug. 1999.

[6] P. E. Debevec, Y. Yu, and G. D. Borshukov. Efficient view-
dependent image-based rendering with projective texture-
mapping. In G. Drettakis and N. Max, editors,Rendering
Techniques ’98, pages 105–116. Springer-Verlag, 1998.

[7] J. P. Grossman and W. J. Dally. Point sample rendering. In
G. Drettakis and N. Max, editors,Rendering Techniques ’98,
pages 181–192. Springer-Verlag, 1998.

[8] P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierar-
chical radiosity algorithm. In T. W. Sederberg, editor,Com-
puter Graphics (SIGGRAPH ’91 Proceedings), volume 25,
pages 197–206, July 1991.

[9] D. S. Johnson. Approximation algorithms for combinatorial
problems.J. Comput. Syst. Sci., 9:256–278, 1974.

[10] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering
3D warping. In M. Cohen and D. Zeltzer, editors,1997
Symposium on Interactive 3D Graphics, pages 7–16. ACM
SIGGRAPH, Apr. 1997.

[11] N. Max. Hierarchical rendering of trees from precomputed
multi-layer Z-buffers. In X. Pueyo and P. Schr¨oder, editors,
Rendering Techniques ’96, pages 165–174. Springer-Verlag,
1996.

[12] L. McMillan and G. Bishop. Plenoptic modeling: An image-
based rendering system. In R. Cook, editor,SIGGRAPH 95

Conference Proceedings, Annual Conference Series, pages
39–46. ACM SIGGRAPH, Addison Wesley, Aug. 1995.

[13] J. O’Rourke. Art Gallery Theorems and Algorithms. The
International Series of Monographs on Computer Science.
Oxford University Press, New York, NY, 1987.

[14] G. Schaufler. Per-object image warping with layered im-
postors. In G. Drettakis and N. Max, editors,Rendering
Techniques ’98, pages 145–156. Springer-Verlag, 1998.

[15] G. Schaufler and W. St¨urzlinger. A three dimensional im-
age cache for virtual reality.Computer Graphics Forum,
15(3):227–236, Aug. 1996.

[16] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. S-
nyder. Hierarchical image caching for accelerated walk-
throughs of complex environments. In H. Rushmeier, edi-
tor, SIGGRAPH 96 Conference Proceedings, Annual Con-
ference Series, pages 75–82. ACM SIGGRAPH, Addison
Wesley, Aug. 1996.

[17] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered
depth images. In M. Cohen, editor,SIGGRAPH 98 Confer-
ence Proceedings, Annual Conference Series, pages 231–
242. ACM SIGGRAPH, Addison Wesley, July 1998.

[18] W. Stürzlinger. Imaging all visible surfaces. InProceedings
of Graphics Interface ’99, pages 115–122, June 1999.

[19] S. J. Teller. Computing the antipenumbra of an area light
source.Computer Graphics, 26(2):139–148, July 1992.

