Medical Image Analysis 13 (2009) 297-311

journal homepage: www.elsevier.com/locate/media

Contents lists available at ScienceDirect

Medical Image Analysis

Simulation of brain tumors in MR images for evaluation of segmentation efficacy ™

Marcel Prastawa **, Elizabeth Bullitt®, Guido Gerig?

2 Scientific Computing and Imaging Institute, University of Utah, 72 S. Campus Drive, WEB 3750, Salt Lake City, UT 84112, USA
b Department of Surgery, University of North Carolina, Chapel Hill, NC 27599, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 12 March 2008

Received in revised form 6 November 2008
Accepted 20 November 2008

Available online 3 December 2008

Keywords:

Brain MRI

Segmentation validation
Tumor simulation

Simulation of tumor infiltration
Diffusion tensor imaging
Ground truth

Gold standard

Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI)
are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images
presenting pathology, which can both alter tissue appearance through infiltration and cause geometric
distortions. Systems for generating synthetic images with user-defined degradation by noise and inten-
sity inhomogeneity offer the possibility for testing and comparison of segmentation methods. Such sys-
tems do not yet offer simulation of sufficiently realistic looking pathology. This paper presents a system
that combines physical and statistical modeling to generate synthetic multi-modal 3D brain MRI with
tumor and edema, along with the underlying anatomical ground truth, Main emphasis is placed on sim-
ulation of the major effects known for tumor MRI, such as contrast enhancement, local distortion of
healthy tissue, infiltrating edema adjacent to tumors, destruction and deformation of fiber tracts, and
multi-modal MRI contrast of healthy tissue and pathology. The new method synthesizes pathology in
multi-modal MRI and diffusion tensor imaging (DTI) by simulating mass effect, warping and destruction
of white matter fibers, and infiltration of brain tissues by tumor cells. We generate synthetic contrast
enhanced MR images by simulating the accumulation of contrast agent within the brain. The appearance
of the the brain tissue and tumor in MRI is simulated by synthesizing texture images from real MR
images. The proposed method is able to generate synthetic ground truth and synthesized MR images with
tumor and edema that exhibit comparable segmentation challenges to real tumor MRI. Such image data
sets will find use in segmentation reliability studies, comparison and validation of different segmentation
methods, training and teaching, or even in evaluating standards for tumor size like the RECIST criteria
(response evaluation criteria in solid tumors).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

if a rich set of manual segmentations are available, they may not
reflect the ground truth and the true gold standard may need to

The segmentation of brain tumor from magnetic resonance
(MR) images is a vital process for treatment planning, monitoring
of therapy, examining efficacy of radiation and drug treatments,
and studying the differences of healthy subjects and subjects with
tumor. The process of automatically extracting tumors from MR
images is a challenging process. This leads to many different ap-
proaches for automatic tumor segmentation (Clark et al., 1998;
Kaus et al., 2001; Prastawa et al., 2004). The usual standard used
for validating segmentation results of the automatic methods is
the manual segmentation results done by human experts. How-
ever, different investigators are likely to employ different image
acquisition parameters and different manual segmentation tech-
niques. A compounding issue is that any manual segmentation
method suffers from lack of reliability and reproducibility. Even
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be estimated (Warfield et al., 2004). Furthermore, validation is typ-
ically not performed for the segmentations of non-tumor struc-
tures since manual segmentations of edema and the healthy
brain tissue are very challenging tasks and have a high degree of
variability.

Brain MRI exhibiting tumor is difficult to segment due to a com-
bination of the following factors:

e The deformation of brain tissue due to tumor mass effect or vol-
ume expansion.

e The infiltration of brain tissue by tumor and edema (swelling).
Edema appears around tumor mainly in the white matter
regions and may also contain infiltrative tumor cells.

e The gradual transition between tumor, edema, and surrounding
brain tissue. This results in the ambiguity of the structural
boundaries.

e The T1w MRI with contrast enhancement, typically using a gad-
olinium agent, is the standard modality for identifying tumors.
This modality results in active tumor tissue appearing with
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bright intensity. Unfortunately, blood vessels also appear bright
while parts of tumor that are necrotic do not have higher levels
of intensity. Therefore, the information provided by the intensi-
ties in this modality is not always consistent, and it is generally
impossible to segment the tumor by thresholding the intensities
in this image modality.

In order to provide objective assessments of segmentation per-
formance, there is a need for an objective 3D ground truth with
associated MR images that exhibit the same major segmentation
challenges as that of common, realistic scans of a tumor patient.
A database of real brain tumor MR images, along with their seg-
mentations, may provide the means to measure the performance
of an algorithm by comparing the results against the variability
of the expert raters’ judgements. However, an objective evaluation
to systematically compare different methodologies also needs a
ground truth with little or no variability. An example of such a
ground truth is the synthetic brain MRI database provided by the
Montreal Neurological Institute! that is currently considered to be
the common standard for evaluating the segmentations of healthy
brain MR images. For this purpose, we propose a method that gener-
ates realistic looking MR images with the associated ground truth by
approximating the brain tumor generation process.

Rexilius et al. (2004) proposed a framework for generating dig-
ital brain phantoms with tumor. They used a biomechanical linear
elastic finite element model to simulate the tumor mass effect. In
their method, the MRI of a healthy subject is deformed and a tumor
structure from a real subject is inserted into the MRI. Their model
for edema is computed from the distances to the tumor boundary
and the white matter mask. This is insufficient to simulate real
edema infiltration properties since infiltration can occur in regions
away from tumor. Such regions are typically connected through
white matter fibers. The framework of Rexilius et al. only consid-
ered contrast enhancement inside tumors, without contrast
enhancement of blood vessels.

Models for brain tumor expansion and edema have been pro-
posed by Nagashima et al. (1990a), Clatz et al. (2004), Clatz et al.
(2005), Mohamed and Davatzikos (2005), and Mohamed et al.
(2006). More recently, Clatz et al. developed a realistic tumor
growth model that explicitly simulates the main effects of tumor
growth (mass effect and infiltration) using simple computational
models. Clatz et al. used a linearized biomechanical finite element
model to simulate mass effect and they used a reaction-diffusion
process that is modulated by the diffusion tensor field to simulate
the infiltration by tumor cells and edema. The simple computa-
tional models used by Clatz et al. are ideal for generating realistic
tumor models in an efficient manner. We propose a method for
generating new pathological ground truth by applying their mass
effect and infiltration model to a well defined ground truth for nor-
mal brains. Additionally, we propose to extend the Clatz et al.
model by using random pressure directions, and by simulating
the effect of volume expansion on the white matter fibers by warp-
ing the diffusion tensors and making them more isotropic depend-
ing on the magnitude of local deformations.

We develop a method for generating realistic-appearing con-
trast enhanced T1 weighted MR images (a standard modality for
diagnosis) by simulating the accumulation of contrast agents in
the brain. The corresponding multi-modal MR images (contrast en-
hanced Tilw, T1w, and T2) are generated from the simulated
ground truth and from textures that are synthesized using samples
of real tumor MRI data. Fig. 1 shows an overview of the proposed
method. Our method is capable of generating 3D whole brain
ground truth that exhibits the primary effects of tumor on normal

1 BrainWeb: http://www.bic.mni.mcgill.ca/brainweb.
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Fig. 1. Overview of the generation of validation data. A well defined ground truth
for normal brains is modified following a tumor and edema generation model that
includes deformation and infiltration of normal tissue. The normal brain ground
truth contains the probabilities for white matter, gray matter, and csf drawn from
the BrainWeb data. The healthy tissue probabilities are modified to take into
account mass effect and infiltration and new pathological probabilities are added
(tumor and edema). The modified ground truth is then used to create the synthetic
multi-modal MR images. The pathological simulation is described in Fig. 2 and the
MRI simulation is described in Fig. 5.

brains, along with simulated multi-modal MR images that are chal-
lenging to segment.

The proposed method does not attempt to simulate the com-
plete process of real tumor growth and the true MR image gener-
ation process. Instead, our aim is to generate a database of
synthetic brain tumor MR images that have similar challenges for
segmentation as in real tumors, along with the associated anatom-
ical ground truth. The simulated brain tumor MR images can func-
tion as test data for any segmentation method and the ground
truth can provide the means for objective assessment of segmenta-
tion performance. We do not aim to create a database of simulated
brain tumor MR images that are indistinguishable from real brain
tumor MR images. Such an effort requires the faithful modeling
of the anatomical, chemical, and vascular changes in the brain
due to tumor. It would also require the exact formulation of what
neuroradiologists and neurosurgeons define as tumor. Currently,
this definition involves a large degree of intuition and cannot be
formulated algorithmically. Our simulated data provides a stan-
dard benchmark for different tumor segmentation methods that
is currently not available to the community.

2. Generation of pathological ground truth

Tumor and edema growth involves many concurrently occur-
ring processes. As proposed by Wasserman et al. (1996), the
growth model may involve biomechanics, nutrient distribution,
and metabolic processes. Since our goal is not to model tumor
growth per se, we have chosen to simplify the model and use three
separate sequential processes for efficiency, as shown in Fig. 2.
First, we simulate the deformation that is due to tumor mass effect
using a biomechanical model. It is then followed by the simulation
of the infiltration process using reaction-diffusion. Finally, we
compute the deformation that is due to tumor infiltration of brain
tissue and the mass effect of edema. The BrainWeb dataset (Coco-
sco et al., 1997), which contains multi-modal MR images along
with spatial probabilities of normal brain structures, is used as
the healthy brain ground truth that is transformed into a patholog-
ical ground truth. Fig. 3 shows subject 04 from a collection of 20
normals from the BrainWeb datasets (Aubert-Broche et al., 2006),
which is used as the initial anatomical model for generating the re-
sults shown in this paper. The dataset of subject 04 includes spatial
probabilities for each voxel being white matter, gray matter, cere-
brospinal fluid, and blood vessel.
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Fig. 2. Overview of the simplified tumor and edema growth model. The model is
composed of four sequential processes, where we simulate the deformation due to
tumor expansion, the modification of DT-MRI due to the deformation, the
infiltration of brain tissue by tumor cells and edema, and the displacements due
to the infiltrating cells.

2.1. Mass effect

The effect of tumor volume expansion on surrounding tissues is
modeled using continuum mechanics (Gurtin, 1981). The initial tu-
mor region is defined manually and then deformed to simulate
mass effect. This initialization can also be done automatically given
some prior knowledge of the spatial distribution, configuration,
and image intensity characteristics of various brain tumor types.
Meningiomas, for example, tend to be uniformly enhancing, to pos-
ses smooth borders, and to originate from meningothelial cells
associated with the arachnoid and dura mater. Glioblastomas, on
the other hand, tend to be ring enhancing with irregular borders
and almost always arise within the white matter. Metastatic le-
sions tend to be solidly or ring enhancing, are often relatively
spherical, and can appear in any location. The current work de-
scribed in this paper provides examples of tumors that might likely
represent metastatic lesions or small glioblastomas, but the ap-
proach is generalizable to any tumor type.

In the initial tumor region, the tumor probabilities are set to
one, Pymor(X) = 1, and tissue or fluid probabilities are set to zero.
The set of spatial probabilities for healthy tissue, along with the
new tumor probabilities, are deformed according to the biome-
chanical model of brain tissue.

Brain deformation is modeled using the classic linear elasticity
model. The constitutive equation that relates stress and strain is

o =Ee (1)

and the corresponding linear strain-displacement equation is
1 T
€= (v +V >u 2)

where ¢ denotes the stress tensor, E denotes the elasticity tensor, €
denotes strain, and u denotes the displacement. Following Clatz
et al.(2005), we use the linearized homogeneous version of the con-
stitutive equation proposed by Miller (2002) where brain tissue

(white and gray matter) is assigned the value of 694 Pa for the
Young modulus and 0.4 for the Poisson ratio. The falx cerebri, the
fold of dura matter that divides the left and right bran hemispheres,
is considered to be a stiff material with the value of 200,000 Pa for
the Young modulus and 0.4 for the Poisson ratio. The skull is consid-
ered fixed and we assume brain tissue slides along contact with it.

The volume expansion due to tumor mass effect is simulated by
using a homogeneous pressure that is applied to tissues surround-
ing tumor (Kyriacou et al., 1999; Mohamed and Davatzikos, 2005;
Wasserman et al., 1996). The displacement field solution satisfies
the static equilibrium equation

div(0) + fexe =0 3)

with fey being the external forces applied to the model. The external
forces that act on the tumor surface is formulated as follows

fext =P AV MTF (n,K) (4)

where P is the constant pressure (in Pa), A is the surface area, and
Y MF(n,K) is a direction drawn randomly from the von Mises-
Fisher distribution with mean direction n and concentration param-
eter xk (Mardia and Jupp, 2000). The von Mises-Fisher distribution
can be considered as the directional analogue to the multivariate
normal distribution, where we use the surface normal n as the mean
direction and we use k as the parameter that is inversely propor-
tional to the spread or variability of the directions. The use of ran-
domly generated directions increases the variability of the
generated tumor shape and thus presents more challenges in seg-
menting the brain tumor. With regard to the displacements u, the
following boundary conditions are applied:

(1) Sliding boundary condition in the regions where brain tissue
contacts the skull,

u-n=0

where n is the normal direction for the element boundary
(Miga et al., 1999Db).

(2) The pressure inside the ventricular system is considered
negligible relative to the pressure induced by tumor on the
brain tissue, so the ventricular nodes are allowed to move
freely.

The biomechanical problem is discretized using the finite ele-
ment method, similar to the approaches used by Ferrant et al.
(2001) for interoperative registration and Kyriacou et al. (1999)
for tumor mass effect simulation. We use the method proposed
by Persson and Strang (2004) to generate the tetrahedral mesh.
The tetrahedral mesh generation is described in Appendix A. The
displacement solution for the linear elastic model is computed by
minimizing the potential energy

E— /Q %Tr[eTa}dXJr /Q T udx 5)

details are available in Clatz et al. (2005); Hughes (2000). The dis-
placement solutions are computed by taking into account the

Fig. 3. Axial views of subject 04 from the BrainWeb dataset of twenty normals, which provides a standard for validation of normal brain MRI segmentation. From left to right:
the T1w image and the spatial probabilities for white matter, gray matter, csf, and blood vessels.
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boundary conditions (Axelsson and Barker, 1984). The linearized
growth process tends to result in slow deformations so the model
solution is computed iteratively and integrated until the volume
of the expanded tumor exceeds a particular threshold.

2.2. Modification of diffusion tensors

Tumor infiltration and edema generally occurs along white
matter fibers, where diffusion is more likely. The properties of
the white matter fiber within the brain is reflected in diffusion ten-
sor MR images (DT-MRI). Since the BrainWeb data (Cocosco et al.,
1997; Aubert-Broche et al., 2006) does not contain average diffu-
sion tensor images, we generate the average tensors from 5 normal
subjects. The subjects are drawn at random from a dataset that
contains 100 subjects, designed to study differences across age
groups (Mortamet et al., 2005) (age range is 18-74 years). We reg-
istered the 5 DT-MR images to the T2w image provided by Brain-
Web by matching the associated mean diffusivity (MD) images to
the T2w image using affine transformation and mutual information
(Maes et al., 1997). The tensors are mapped and reoriented follow-
ing the finite strain reorientation strategy proposed by Alexander
et al. (2001). The average tensors at each voxel are computed using
the efficient log-Euclidean tensor framework proposed by Arsigny
et al. (2005). Given image coordinate x, the average diffusion tensor
is

N
D) = Exp (Z ,LLog(D,-o«))) 6)

where Exp is the matrix exponential function and Log is the matrix
logarithm function. The Log function linearizes the space allowing
us to use efficient linear operations to manipulate the tensors.
The Exp function maps the result of the linear operations back to
the original space of diffusion tensors.

We have found that registration and reorientation of DT-MRI
may not be sufficient to generate edema that appears realistic.
White matter fibers around a tumor tend to be displaced, and as ob-
served by Lu et al. (2003) in regions near the tumor the mean diffu-
sivity (MD) tends to be increased while the fractional anisotropy
(FA) tends to be decreased. This observations can be attributed to
the destruction of white matter fibers due to tumor growth, which
makes tensors more isotropic. Therefore, it was desirable to reflect
this destruction in the simulator. To the best of our knowledge, the
interactions between tumor growth and diffusion tensors are not
fully understood, so we make the following assumptions:

(1) Local volume expansion reduces tensor coherence and
results in more isotropic tensors. Tumor tend to destroy
white matter fibers so water is no longer restricted to flow
in specific directions.

(2) Local volume compression or shrinking does not modify ten-
sor information. We have observed that in real tumor DT-
MRI some fibers can appear condensed without being
destroyed.

The influence of tumor mass effect on DT-MRI is modeled using
a combination of image warping and nonlinear interpolation. The
displacement of white matter fibers is simulated by warping the
DT-MRI following the strategy described in Alexander et al.
(2001), where a rigid rotation is applied to each individual tensor.
The rigid rotation is computed based on the local warping prop-
erty. Given the displacement field u, we compute the local affine
transform F = I5,3 + Vu. This transform is decomposed into a rigid
rotation component R and a linear deformation component W,
F=RW. The reoriented tensor D is obtained using the following
equation:

D = RDoR' (7)

where D is the resampled original tensor. The destruction of tensor
information is modeled as a nonlinear interpolation between the
original tensor and an isotropic version of the tensor. The isotropic
version of a given tensor D is formulated as the identity matrix mul-
tiplied by the scaled determinant value of the original tensor:

Diso = (2|D])*l3.3 (8)

A scale factor of 2 is used to increase the determinant of the ten-
sor. This value is found through repeated experiments to find suf-
ficiently realistic looking MD images with tumor. The transformed
diffusion tensor is computed as follows (see Arsigny et al., 2005 for
details):

D'(x) = Exp(aLog(D(x)) + (1 — 2)Log(Diso ())) 9)

The interpolation weight « is inversely proportional to the amount
of volume expansion

a(x) = exp ( [max(1, [J(x)]) — 1]2> "

2
25,

where J is the Jacobian matrix of coordinate mapping function and s;
reflects the amount of expansion that results in significant destruc-
tion of fibers. In regions with high amount of volume expansion
(low values of «), the tensors become homogenized and no longer
have preferred directions for diffusion. In regions with local volume
compression, the determinant of the Jacobian is less than one and
the original tensor is maintained since « = 1. This behavior is chosen
to simulate destruction of white matter fibers due to expansive
mass effect while ignoring compression effects. An example appli-
cation of this model to a registered DT-MRI is shown in Fig. 4.

Before Modification

After Modification

A3
MD FA

Fig. 4. Visualization of diffusion tensor MRI by axial views of 3D Mean Diffusivity
(MD) and Fractional Anisotropy (FA) scalar images. The modified DT-MRI has
higher MD and lower FA in the regions surrounding tumor, which models the
destruction of the fibers. The MD image shows that the ventricle near the tumor is
slightly deformed. The FA image shows that the white matter fibers near the tumor
region are pushed away.
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2.3. Tumor infiltration

In order to simulate the growth and spreading of tumor cells
following the preferred diffusion directions in the brain, the spatial
probability that a particular location is infiltrated by pathological
cells or fluid (edema) is evolved using a reaction-diffusion model
guided by the modified DT-MRI (Clatz et al., 2005). More precisely,
the change for pigiraed = ¢ in time is governed by

% = div(caD' V) + Crp (11)

where ¢, is the diffusion rate, D' is the diffusion tensor that has been
modified using the method described in Section 2.2, and c; is the
reaction rate. The diffusion rate c, depends on the local tissue type.
White matter is more likely to be infiltrated than gray matter, while
csf is not likely to be infiltrated at all. The reaction rate or growth
term ¢, is a constant. The diffusion tensors D' are normalized so that
the trace of the tensors is within the range of [0, 1]. The initial prob-
ability of tissue being infiltrated with tumor is chosen to be the
probability of tumor after mass effect deformation: ¢(x,t =0) =
Dmass efiecct(X). This probability is obtained by applying Gaussian
smoothing to the manually defined tumor seed region after defor-
mation, which simulates the margin of uncertainty for the tumor
boundaries. The evolution is stopped when the volume of infiltrated
brain regions exceeds a predefined fraction of the brain tissue
volume.

The infiltrating tumor cells and edema also tend to displace
nearby tissue. This results in a secondary mass effect that is cou-
pled with the infiltration process. The effect of the infiltrating tu-
mor cells is modeled using the equilibrium equation (Clatz et al.,
2005)

diV(O' — l[3x3d)) +fext =0 (12)

where / is the coupling factor that describes the contribution of an
infiltrating tumor to the internal forces. The equilibrium equation
can be interpreted as the application of body forces —iV¢ to the
classic linear elastic model, which models the outward forces pro-
portional to the concentration of tumor cells.

Brain tissue can be infiltrated by edema (swelling) and/or tumor
cells. Since edema regions can also contain tumor cells, it is diffi-
cult to classify or separate the infiltrating component into distinct
tumor and edema regions. We approximate the distinction of non-
enhancing edema by assigning the regions formed early in the
infiltration process as tumor and assigning the regions formed later
in the infiltration process as edema-like regions. This approxima-
tion is chosen since the concentration of tumor cells typically goes
lower at locations further away from the main tumor bodys, and
regions marked by clinicians as edema typically have low tumor
cell count. Using this approach, we use the following spatial prob-
ability functions for the tumor and edema:

Dtumor (x) = Drmass effect (%) (13)
+ [¢(X, tearty) X Dyissue ()]
pedema(x) = [f/’(xa tfinal) - d)(X7 tearly)] X ptissue(x)

where p,.« efiect 1S the deformed initial tumor probability according
to the mass effect model, p;,. iS the probability of brain tissue
(white matter or gray matter), tgn, is the time where the infiltration
process is stopped, and t..qy is a fraction of the total time that indi-
cates when we expect concentration of tumor cells would drop and
infiltration would be dominated by fluid. The probability for infil-
trated tissue is modeled as the probability that a location is both
infiltrated and part of brain tissue. The choice for the value of
teariy depends on the type of tumor being modeled. For example,
an appropriate model for gliomas would typically have a large
teariy since the active tumor cells in gliomas tend to infiltrate large

regions. Alternatively, an appropriate model for menigiomas with
large surrounding edema would involve a small value for t.,q, since
most of the infiltrating regions should be attributed as edema. The
proposed approach does not model edema in the strict biological
sense. However, this distinction is necessary to determine regions
with significant tumor presence against regions with mostly fluid
as these two types of regions have very different appearances.

In summary, the creation of a new pathological ground truth
that contain brain tumor and edema is performed through the fol-
lowing steps:

(1) Manual definition of an initial tumor seed region in the
space of a healthy ground truth data (e.g., the BrainWeb
data).

(2) Simulation of deformation of brain tissue due to tumor mass
effect, given the anatomical description (the BrainWeb clas-
sification), the initial seed region, and the constant pressure
value P at the tumor surface. The deformation is modeled as
a linear biomechanical equation and computed iteratively to
mimic the possible nonlinear deformations.

~

]
]
]
I
]
Contrast i
Enhanced T1w :

:
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Fig. 5. Generation of a synthetic contrast enhanced T1w image. The modified
ground truth (the probabilities for white matter, gray matter, csf, tumor, and
edema) is first used to determine where contrast agent is likely to accumulate. This
is then followed by a combination of synthesized textures modulated by the spatial
probabilities. In this figure we only show the probabilities and textures for white
matter, non-highlighted tumor, and highlighted tumor and blood vessel regions. For
generating the Tlw and T2w modalities without contrast enhancement, the
contrast agent accumulation is not simulated and the texture combination is done
directly using the simulated ground truth.
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(3) Warping the average diffusion tensor MR images using the
tumor mass effect displacements. Destruction of white mat-
ter fibers due to tumor is simulated by making tensors more
isotropic depending on the magnitude of deformation.

(4) Simulation of tissue infiltration using the DT-MRI guided
reaction-diffusion equation (Eq. (11)) to account for infiltra-
tion of tissue by tumor cells and edema.

(5) Simulation of deformation of brain tissue due to edema mass
effect, given the infiltration probabilities and the value of /.
for Eq. (12).

3. Generation of MR images

For the purpose of validating segmentation methods, we need a
set of synthetic MR images that appear reasonably realistic and
that correspond to the 3D pathological ground truth. These images
serve as test data for the evaluation of segmentation methods. The
generation of synthetic tumor MRI involves the simulation of two
processes: contrast enhancement in Tlw MRI due to the use of
contrast agents (the standard modality for tumor diagnosis), and
generation of intensity patterns similar to those observed in real
MRI. These processes are detailed in the following two subsections.
Contrast enhancement is simulated using a model of the accumu-
lation of contrast agent in the brain, while the generation of realis-
tic MRI intensity patterns is accomplished using texture synthesis.
A conceptual view of the combination of the two processes for gen-
erating a synthetic contrast enhanced T1w image is shown in Fig. 5.

3.1. Contrast agent accumulation

One of the particular challenges in segmenting brain tumor MRI
are inconsistencies in the contrast enhanced T1w image, which can
be attributed to biological processes such as tumor formation,
blood flow, and cell death. The contrast agent is generally accumu-

lated in regions other than the active tumor regions. Particularly,
the blood vessels within the brain are almost always enhanced.
Brain tissue may also appear enhanced if there is leakage of con-
trast agent due to the breakdown of the blood-brain barrier. Con-
versely, the contrast agent does not accumulate in the necrotic
parts of the tumor at all, which are generally found in the core tu-
mor regions.

We explicitly model the accumulation of the contrast agent in
active tumor tissue and blood vessel regions in order to generate
inconsistent contrast enhanced T1w images that are more chal-
lenging to segment. The spatial probability for the accumulation
of contrast agent, p,...m = 7> i evolved using a reaction-diffusion
equation that models the spread of contrast agent within blood
vessel and tumor regions while excluding necrotic regions:

% = le(adV"/) + asourcel{x S Xsource}y - asinkl{x S Xsink}y- (14)
Here, each I is an indicator function, a4 is the diffusion rate for the
contrast agent, dsouce 1S the source coefficient, and agy is the sink
coefficient. The value of a; depends on the structure type at location
x. We assign higher values of a, in blood vessel regions, moderate val-
ues of a, in tumor tissue, and very low values of g, in healthy tissue.
The selection of the values of a, for each class models the fact that
contrast agent is more likely to spread in blood vessel regions than
in tumor tissue and is not likely to spread to healthy tissue at all. This
corresponds to the actual biological process, where contrast agent is
injected intravenously and then transported to the active tumor re-
gions through the brain arteries. Healthy brain tissue generally does
not accumulate contrast agent due to the blood-brain barrier. Con-
versely, there tends to be a higher accumulation of the contrast agent
within and around tumor structures due to increased tumor metab-
olism and possible leakage of the blood-brain barrier.

Xsource aNd Xsini in Eq. (14) are sets of points that act as sources
or sinks, respectively. The source points Xsouce are chosen at ran-
dom from a probability function that indicates likely blood vessel

Fig. 6. Example probabilities generated for simulating contrast enhancement (axial view). Left: probability for highlighted blood vessel or tumor. Center: probability for non-
highlighted tumor. Right: probability for white matter, included for anatomical context. Tumor periphery and blood vessel regions are the regions most likely to appear

highlighted in the contrast enhanced T1w modality.

Fig. 7. Sagittal view of the contrast enhanced T1w MRI for a real tumor (left) and a synthetic tumor (right) generated using the new method described in this paper. Both
images show contrast enhancement in the superior sagittal sinus and the anterior cerebral artery. The tumor is located in the right posterior region and is not visible in this

sagittal view.
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regions or likely tumor regions that are close to the tumor bound-
ary. These source regions correspond to regions that likely accu-
mulate contrast agent and thus appear enhanced. This provides
an approximation of the accumulation of contrast agent through
blood flow. The sink points X, are chosen at random from a prob-
ability function that indicates likely tumor regions that are close to
the tumor core. The internal tumor regions are typically necrotic

and thus do not accumulate contrast agent. The probability that
a location is at the boundary or the core regions is computed using
the distance maps and expressed as half-normal distributions. For
example, when drawing points that are at the tumor border the fol-
lowing probability function is used:

Drumor border(x) = ptumor(x) X 'W'A/(l//tumor(x)7 CL)) (15)

Fig. 8. Axial views of real MR images with varying brain tumor appearances. From top to bottom: Tumor020, Tumor031, Tumor049, Tumor087, and Tumor033. From left to

right: contrast enhanced T1w, T1w, and T2w images.
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where - (X) indicates the distance from a location x to the near-
est tumor boundary point. #./"(z, w) denotes the half-normal dis-
tribution with parameter w, which is defined as follows:

0 ifz<0

29 exp G%) if z> 0. (16)

HN(Z,0) = {

For a parameter value w, #.4"(z,w) is a distribution with mean 1
and variance Z=2. The border extent of the active tumor region or
the standard deviation for # A (Y mer(X), @) is a user-specified
parameter value that is inversely proportional to w. Tumors with
nearly uniform enhancement can be simulated by drawing source
points from a uniform distribution (within tumor), as opposed to
a half-normal distribution, while non-enhancing tumors can be
simulated by replacing the tumor source points with an empty
set.

We initialize y so that tumor and blood vessel regions have ran-
dom probability of accumulating contrast agent: y(x,t =0) =
%(0,1) X (Prumor(X) 4 Dyesset (X))- The initialization using the random
variables #(0,1) drawn from the uniform probability in [0, 1]
ensures that the reaction-diffusion process is capable of generat-
ing complex patterns of enhancement. The probability that a loca-

tion x would appear highlighted in the contrast enhanced T1w
image is the probability that the structure in that location is either
tumor or blood vessel and that it has accumulated contrast agent

Denhanced (X) = Paccum (X) X [pvessel (X) + Pumor (X)] (1 7)

Fig. 6 shows an example of the generated contrast enhancement
probabilities, while Fig. 7 provides a comparison between real and
synthetic contrast enhanced T1w MRI. The enhancement probabil-
ities are generated using the method discussed in this subsection,
and the synthetic MRI is generated using the method covered in
the next subsection. The proposed contrast agent model accounts
for the fact that blood vessel and active tumor regions are high-
lighted and that the necrotic regions are not highlighted. However,
the model only accounts for the deformation of healthy blood ves-
sels and does not account for the fact that new blood vessels can be
formed inside and around the tumor regions (angiogenesis). The
model does not explicitly model the ingrowth of new vessels into
the tumor, however it uses reaction-diffusion to model the
enhancing tumor regions. The proposed method only generates
enhancement patterns inside the tumor and existing blood vessels
without an explicit angiogenesis model for the formation of new
blood vessels outside of the tumor.
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Fig. 9. Coronal views of real MR images with varying brain tumor appearances. From top to bottom: Tumor020, Tumor031, Tumor049, Tumor087, and Tumor033. From left to

right: contrast enhanced T1w, T1w, and T2w images.
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3.2. Texture synthesis

Deterministic simulation of the image generation process in MR
is difficult, particularly with fuzzy tissue probabilities, so we have
chosen to use a stochastic image generation model where images
are drawn from a probability distribution. We use a database of

texture samples (intensities within a neighborhood) from real tu-
mor MR images to generate the intensity patterns for the different
anatomical structures following the texture synthesis algorithm
proposed by Wei and Levoy (2000). This approach only relies on
samples from actual tumor MRI scans and does not make restric-
tive assumptions on the intensity distributions. The algorithm

Fig. 10. Axial views of the MR images of the synthetic dataset. From top to bottom: SimTumor001, SimTumor002, SimTumor003, SimTumor004, and SimTumor005 MRI

datasets. From left to right: contrast enhanced T1w, T1w, and T2w images.
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Fig. 11. Coronal views of the MR images of the synthetic dataset. From top to bottom: SimTumor001, SimTumor002, SimTumor003, SimTumor004, and SimTumor005 MRI

datasets. From left to right: contrast enhanced T1w, T1w, and T2w images.

starts with an image that contains random noise (Matsumoto et al.,
1998) and then proceeds to modify the image by finding neighbor-
hood matches in the input texture. The neighborhood search is
done deterministically across scales and is made efficient by clus-
tering the texture neighborhood features. Rather than performing
the search by comparing a random neighborhood with all the data
samples, their method uses the tree structured vector quantization
(TSVQ) technique to efficiently limit the search to the relevant
clusters by constructing and making use of a tree structure that
represents the texture samples.

The synthetic MR images are generated by linearly combining
the texture synthesis results for each structure. To simulate partial
voluming and the ambiguity in the boundary, the textures are
weighed by the soft/fuzzy class probabilities. For a modality k,
the synthetic MR intensity for each location x is

Ne,
I]S(ymh (x) = Z Me P (X)Tc,k (%) + N o6, (18)
c=1

where c indexes the N¢, different classes for the modality k. For the
T1w and T2w modality, the set of brain structure classes is com-
posed of white matter, gray matter, csf, tumor, and edema. For

the contrast enhanced T1w modality, the set of brain structure clas-
ses is composed of white matter, gray matter, non-enhancing tu-
mor, edema, and the class for all contrast enhanced structures.
The contrast between different classes is adjusted via the user-spec-
ified coefficients m.,, which are chosen to generate realistic-
appearing MRI. As an example, a higher value of m; is chosen for
white matter (e.g., 1.2) and a lower value of my is chosen for gray
matter (e.g., 0.7) when generating T1w images with good white-
gray matter difference. The probabilities from the pathological
ground truth are represented by p.. The images T, are generated
using texture synthesis from actual tumor MRI samples. Noise in
the image data is simulated using ./’ ,, which is randomly gener-
ated from a normal distribution with zero mean and standard devi-
ation ¢y that is voxelwise independent.

4. Results

We generated five synthetic MR datasets with varying tumor
location, tumor count, levels of tumor expansion, and extent of
edema. Figs. 8 and 9 show MR images of observed clinical cases
that demonstrate the true variations of tumor appearance. The five
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synthetic brain tumor MRI datasets with similar variations are
shown in Figs. 10 and 11. SimTumor001 shows a tumor with signif-
icant mass effect and large surrounding edema. SimTumor002
shows a tumor that displaces the right ventricle from below and
a moderate extent of edema. SimTumor003 shows a large tumor
that compresses the left ventricle. SimTumor004 shows two tu-
mors that displace the left ventricle from the internal regions. Sim-
Tumor005 shows a small tumor in the anterior region with no
contrast enhancement, which is shown most clearly in the T2w im-
age. In both the real and synthetic MRI there are deformations of
the surrounding healthy tissue due to tumor and there are ambigu-
ities in the definition of the boundaries between tumor and the
surrounding structure (edema or tissue). In all cases, tumor de-
forms other structures and edema infiltrates brain tissue. The con-
trast enhanced T1w images for SimTumor001, SimTumor002, and
SimTumor004 show complex patterns of highlighted intensities;
contrast enhancement occurs mainly at active tumor regions in
the tumor periphery and the blood vessel regions. We also simu-
late other patterns of enhancement for tumor, as shown in SimTu-
mor003 with a nearly uniform pattern of enhancement and in
SimTumor005 with no enhancement. The blood vessels appear hig-
lighted in all simulated cases, similar to images typically observed
in the clinic.

Fig. 12. Axial views of the ground truth for the 3D synthetic brain tumor MRI data sets. From top to bottom: spatial probabilities for SimTumor001, SimTumor002,
SimTumor003, SimTumor004, and SimTumor005 datasets. From left to right: class probabilities for white matter, gray matter, csf, edema, and tumor.

The simulated images for SimTumor001, SimTumor003, SimTu-
mor004, and SimTumor005 are generated using relatively spheri-
cal seed regions with radius ranging from 2-5 mm. The large,
elongated tumor in SimTumor002 is generated using a block seed
with dimensions that are roughly 10 x 10 x 30 mm. For all the
cases, we use pressure values that range from 2-5 kPa for simulat-
ing the mass effect at each iteration.

The associated ground truth for all cases is shown in Figs. 12
and 13. The ground truth is represented as a set of spatial probabil-
ity maps for tissue and pathology. This provides advantage over
binary data or class membership data since this allows the valida-
tion to use probabilistic statistical analysis rather than simple vol-
ume comparison.

Qualitative comparisons between the real tumor MR images
and the simulated MR images demonstrate that the images present
similar segmentation challenges. In order to verify that the syn-
thetic MR images and the synthetic ground truth match human
perception and high level knowledge, we performed a limited
quantitative comparison of the simulated tumor volumes. A hu-
man rater segments the tumor from the simulated tumor MRI
manually via slice-by-slice painting, and a second rater segments
the tumor using a user guided semi-automatic segmentation
method based on level set evolution (Ho et al., 2002; Yushkevich
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Fig. 13. Coronal views of the ground truth for the 3D synthetic brain tumor MRI data sets. From top to bottom: spatial probabilities for SimTumor001, SimTumor002,
SimTumor003, SimTumor004, and SimTumor005 datasets. From left to right: class probabilities for white matter, gray matter, csf, edema, and tumor.

et al., 2006). Following standard practice, the segmentations were
primarily driven by the contrast enhanced T1w images. An exception
is the segmentation for the small non-enhancing tumor in SimTu-
mor005, which is done by outlining the tumor boundary in the
T2w image. The segmented tumor volumes from both human raters
are then compared against the computed ground truth for each case.
The measures used for comparison are the volume overlap metric
and the average surface distances, generated using the VALMET val-
idation tool (Gerig et al., 2001). The volume overlap metric we use is
the Dice similarity coefficient (DSC) (Dice, 1945). For a given pair of
segmentation volumes A and B, the measured overlap is
2(ANB)/(|A] + |B|). The volumetric values for tumor and edema are
shown in Table 1. Volumes are measured as the integral of the spa-
tial probabilities of the relevant structure. Table 2 shows the quanti-
tative comparison results between the synthetic ground truth and
the manually drawn segmentations, while Table 3 shows the quan-
titative comparison results between the synthetic ground truth and
the semi automated segmentations. The inter-rater variability for
the human raters are shown in Table 4. The surface distances typi-
cally differ less than 1 mm, for both the comparison against the man-
ual drawings and against the semi-automatic method. Manual
segmentation of the small non-enhancing tumor in SimTumor005
has the worst performance, which is expected since segmentation
of small structures require fine details that are difficult to obtain
using slice-by-slice painting. The difference between the user guided
segmentation results and the synthetic ground truth is mainly in the
definition of the extent of tumor boundaries. The definition of tumor
extent is generally ambiguous due to surrounding edema. Compared
to the manual segmentation results, the semi-automatic segmenta-
tion results more closely resemble the simulated ground truth as
the level set evolution generates more detailed tumor contours in

2 ITK-SNAP: http://www.itksnap.org.

Table 1
Volumes of the tumor and edema structures in the synthetic datasets.

Dataset Tumor volume (mm?>) Edema volume (mm?)
SimTumor001 32015.514 121811.878
SimTumor002 98575.875 28258.482
SimTumor003 18806.871 42037.153
SimTumor004 101698.173 124429.275
SimTumor005 15578.792 490.047

Table 2
Comparison of the synthetic ground truth to the segmentations drawn by a human
expert for the simulated brain tumor MRI datasets.

Dataset DSC (%) Average surface distance (mm)
SimTumor001 0.922 0.691

SimTumor002 0.940 0.717

SimTumor003 0.908 0.661

SimTumor004 0.915 0.824

SimTumor005 0.776 1.460

Table 3

Comparison of the synthetic ground truth to semi-automatic segmentations for the
simulated brain tumor MRI datasets.

Dataset DSC (%) Average surface distance (mm)
SimTumor001 0.965 0.324
SimTumor002 0.956 0.623
SimTumor003 0.929 0.573
SimTumor004 0.933 0.823
SimTumor005 0.876 0.941

full 3D. The comparisons of the human segmentations show that
the computed ground truth matches the definition of tumors per-
ceived by the human raters.
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Table 4

Comparison of the semi-automatic segmentations to the segmentations drawn
manually by a human expert for the simulated brain tumor MRI datasets, indicating
the inter-rater variability.

Dataset DSC (%) Average surface distance (mm)
SimTumor001 0917 0.738
SimTumor002 0.928 0.873
SimTumor003 0.886 0.815
SimTumor004 0.906 0.957
SimTumor005 0.820 1.151

5. Discussion and conclusions

We presented a new method for generating modified ground
truth with tumor and edema from a normal brain ground truth,
along with a method for generating synthetic multi-modal MR
images that present similar segmentation challenges as real tumor
MRI The process for generating a synthetic brain tumor dataset is
summarized in Fig. 14. Our proposed simulation scheme intro-
duces a tensor model for the warping and destruction of white
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matter fibers (demyelination). The scheme also introduces a con-
trast enhancement simulation using vascular information that
can simulate different patterns of enhancement that are typically
observed in real tumor MRI (ring enhancement, uniform enhance-
ment, and no enhancement).

We have performed a limited validation by comparing the syn-
thetic ground truth with the tumor segmentations done by human
raters. The results verify that there is a satisfactory level of agree-
ment between the tumors perceived within the synthetic MRI and
the synthetic ground truth. The synthetic brain tumor MRI along
with the associated ground truth provide the means for performing
objective validation of different brain tumor MRI segmentation
frameworks. Objective evaluation of different segmentation meth-
ods can be done by using a set of synthetic images with variations
of tumor size, location, extent of surrounding edema, and contrast
enhanced regions. Given a segmentation framework for brain tu-
mor MRI, it can be tested using the synthetic multi-modal brain tu-
mor MRI as input images. A user can then measure its performance
by comparing the segmentation results and the synthetic ground
truth. Compared to validation against manual segmentations, this
approach has the advantage of having consistent, known ground

Intensity Samples

Synthetic Tumor Ground
Truth

Healthy Ground Initial Tumor from Real Tumor
Truth Seed MRI
Texture
' Synthesis
Mass Effect
Contrast Agent
* Accumulation
DTI Warping :
!
3 Linear
Infiltration Combination

Synthetic
Tumor MRI

Fig. 14. Summary of the generation of synthetic brain tumor ground truth together with the associated brain tumor MRI (here only the contrast enhanced T1 image is

shown).



310 M. Prastawa et al. / Medical Image Analysis 13 (2009) 297-311

truth for the whole brain, which includes white matter, gray mat-
ter, csf, and edema. This capability is novel as most validations
done so far were focused on tumor only and not performed on
the infiltrated and deformed healthy tissue.

It is important to note that our goal is to generate sufficiently
realistic MR images that are challenging to segment. The accurate
modeling of tumor growth and MR image synthesis are beyond the
scope of our current work. Accurate tumor modeling would require
the formulation of the complex interactions between the deforma-
tion process, the infiltration process, the nutrient and chemical
interactions, along with blood vessel formations. For example,
Zheng et al. (2005) proposed a more detailed model for 2D data.
However, a full 3D implementation of their model for the whole
brain would be a significant challenge. The generation of MR
images involves complex modeling of MR pulse sequences and nu-
clear magnetic resonance properties of different structures. These
are significant challenges as healthy tissue, tumor, and edema
are modeled as fuzzy probabilistic quantities that can have intri-
cate interactions. In this paper, we focus on the generation of test
images that empirically exhibits pathology seen in real images,
with the main purpose to use the simulated images and ground
truth for validation and cross-comparison of different image seg-
mentation methods. Our synthetic brain tumor MR images are
not designed to deceive neuroradiologists and neurosurgeons,
and we do not claim that improved segmentation procedures
resulting from such simulations would finally result in improved
outcome of tumor treatment. These images are designed to be used
as a standard benchmark for a variety of tumor segmentation
methods, similar to the way the BrainWeb data are used for com-
paring healthy brain segmentations. While the BrainWeb images
and our simulated brain tumor images do not appear completely
realistic, we believe that they can function as good performance
benchmarks because they provide practical segmentation chal-
lenges. To our knowledge, a public database for segmentation
benchmarks is currently not available for brain tumor MR images.

Brain tumor growth is a very complex process and it is extre-
mely challenging to account for all the variables that govern the
process. One possible extension to the method proposed in this pa-
per is the simulation of the formation of new blood vessels (angi-
ogenesis). Tumor cells are known to generate biological signals
that induce formation of blood vessels to supply additional energy
for the increased metabolism. Bullitt et al.(2003) also observed that
vessels in and around the tumor tend to have larger variability in
the curve angles and become more tortuous. Simulating blood ves-
sel formation and shape changes will allow for the generation of
more realistic mass effect and infiltration models and improve
the appearance of the synthetic contrast enhanced T1w image.
The simulation of the deformation due to tumor mass effect could
be improved by using more complex computational model such as
the biphasic models proposed by Miga et al. (1999a,b) and
Nagashima et al. (1990b). Another possible extension is a more
detailed modeling of the changes in csf volume and flow. If the
intracranial pressure is high, there tends to be a loss of csf volume
(which may not be restricted to the ventricles). If brain tumor
blocks ventricular outflow, the csf volume can increase.

The method described in this paper can also be extended to
other cases that deviate from normal adult MRI. One direct exten-
sion is in the simulation of lesions in cases of vascular strokes and
multiple sclerosis. These cases typically present multiple regions
with tissue infiltration and small scale deformation that can be
generated using our method. Other possible extensions are devel-
opments of new growth models for the validation of segmentations
in age related studies, where there is a lack of well defined ground
truth in the very young (newborn infants) and the elderly age
groups (older than 70 years). In both age groups, there is very
low differentiation between white matter and gray matter. In the

case of newborn infants, the white matter undergoes a growth pro-
cess called myelination which is mainly an infiltrative process. The
lack of reliable ground truth for this age group makes validation
difficult, and a typical solution is to restrict the validation to only
a part of the 3D volume (Prastawa et al., 2005). In elderly subjects,
the ventricles are typically enlarged. However, the increase of ven-
tricular volume may be governed by the loss of tissue integrity (i.e.,
a change in tissue elasticity) and not by an increased ventricular
pressure, so a biomechanical model with expansion due to ventric-
ular pressure similar to the one described in this paper may not be
appropriate.

The methodology for generating synthesized tumor MRI could
be further developed into web-accessible system where a user
could interactively select locality, size, shape, and type of tumors
by setting some variables (similar to the BrainWeb interface Coco-
sco et al., 1997). Image datasets generated by the tool might find
use in validation of segmentation methods, comparison of different
segmentation and registration strategies, and training and teach-
ing. For example, the effect of voxel size and slice thickness on tu-
mor volume estimates might be studied systematically. Moreover,
a series of images with embedded tumors of various size and shape
might be used to evaluate well-established standards for tumor
size measurements like the one-dimensional response evaluation
criteria in solid tumors (RECIST) (Therasse et al., 1999) criterion,
which uses the maximum diameter of the structure measured only
in axial cross-sections. Systematic studies and evaluations would
eventually lead to improved assessment metrics.

The simulation software for generating synthetic brain tumor
MR images and example datasets are available for download at
http://www.ucnia.org under “Software and Data”. We are aiming
to make available a range of real clinical brain tumor MR images,
with annotated tumor regions, available on the web in the near fu-
ture. A database of real brain tumor images would be complemen-
tary to our proposed method. However, this database has some
limitations compared to the synthetic database. The segmentations
were done primarily by one human expert and lack objective
ground truth, and they are limited to the tumor regions. Thus,
any analysis performed using this database of real brain tumor
MR images, as opposed to the synthetic database, will be biased
and subjective. A range of healthy brain MR images that was ac-
quired in a similar fashion is already publically available at
http://hdl.handle.net/1926/594.
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Appendix A. Mesh generation

The tetrahedral mesh is generated using the method proposed
by Persson and Strang(2004). The advantage of this method is that
the implementation is relatively simple and can be generalized to
any number of dimensions, provided a corresponding Delaunay
tessellation implementation. The results presented in this paper
uses the Qhull software package (Barber et al., 1996). The mesh
generation process is composed of three steps: selection of points,
tessellation of the points, and adjustment of the point locations.
After the tessellation process, the points are adjusted so that edge
lengths are optimal and that edge lengths do not cross the external
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boundary or the internal structural boundaries. The edge lengths in
the 3D tetrahedral mesh are optimal when they match a distribu-
tion function. For an edge that connects two points x and y, the
ideal edge length is proportional to the distribution function eval-
uated at the edge midpoint z = %Y. We have chosen to use the fol-
lowing function:

fragel2) = {1 if Y(2) > 1

¥(z) otherwise (A1)

where V/(z) is the distance from z to the closest structural boundary.
Assuming that the distance functions v, for each structural class c is
defined to be positive inside the relevant structure and zero other-
wise, y(z) = miny(z). Using this function results in smaller tetra-
hedra near structural boundaries and larger tetrahedra in the
internal regions. This behavior is desirable since brain structures
typically have complex and detailed shapes at the boundaries that
can be better interpolated using small-sized tetrahedra. In order
to avoid mesh distortions when computing the deformations, we
recompute the Delaunay triangulation for the mesh at each defor-
mation iteration.

Appendix B. Inversion of displacement fields

In order to generate realistic tumor MRI, we simulate the
expansion process. However, the inverse of the expansive deforma-
tion is required to resample the probability images and the average
DT image. A true inverse may not exist since the expansive defor-
mation may not be smooth and invertible, so we estimate inverse
of the deformation field using an iterative process. Given a dis-
placement field u that maps x to y, y = x + u(x), we compute u~!
where x =y +u~'(y). This is done by estimating the inverse map-
ping for y, denoted by X. The vector X must minimize the residual
difference

d(x,y) = [I(x + u(x)) -yl (B:2)

which expresses the distance between the forward map of the in-
verse estimate and the current location. The ideal value of X is com-
puted by doing iterative minimizations (e.g., by Newton’s method)
at each location y in the target image. For an ideal inverse mapping,
d(x,y) should be close to zero at any given y. The inverse displace-
ment field u~! is obtained directly from the & estimate,

u(y) =X -y.
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