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Abstract. This paper proposes to employ a detailed tumor growth
model to synthesize labelled images which can then be used to train
an efficient data-driven machine learning tumor predictor. Our MR im-
age synthesis step generates images with both healthy tissues as well as
various tumoral tissue types. Subsequently, a discriminative algorithm
based on random regression forests is trained on the simulated ground
truth to predict the continuous latent tumor cell density, and the discrete
tissue class associated with each voxel. The presented method makes use
of a large synthetic dataset of 740 simulated cases for training and evalu-
ation. A quantitative evaluation on 14 real clinical cases diagnosed with
low-grade gliomas demonstrates tissue class accuracy comparable with
state of the art, with added benefit in terms of computational efficiency
and the ability to estimate tumor cell density as a latent variable un-
derlying the multimodal image observations. The idea of synthesizing
training data to train data-driven learning algorithms can be extended
to other applications where expert annotation is lacking or expensive.

1 Introduction

Brain tumors are complex patho-physiological processes representing a series of
pathological changes to brain tissue [1]. Increasing effort is invested in mod-
elling the underlying biological processes involved in brain tumor growth [2, 3].
As brain tumors show a large variety of different appearances in multi-modal
clinical images, the accurate diagnosis and analysis of these images remains a
significant challenge. We show in the example of gliomas, the most frequent
brain tumor [4], how a generative patho-physiological model of tumor growth
can be used in conjunction with a discriminative tumor recognition algorithm,
based on random regression forests. Applied to real data the random forest is
capable of predicting the precise location of the tumor and its substructures.
In addition, our model can also infer the spatial distribution of (unobservable)



latent physiological features such as tumor cell densities, thus avoiding the need
for expensive patho-physiological model inversion [5].

Generative probabilistic segmentation models of spatial tissue distribution
and appearance proved to generalize well to previously unseen images [6–9].
In [6], tumors are modeled as outliers relative to the expected appearance of
healthy tissue following a related approach for MS lesion detection [10]. Other
methods [7, 8] provide explicit models for the tumor class. For instance, [8] builds
a tumor appearance model for channel specific segmentation of the tumor, com-
bining a tissue appearance model with a latent tumor class prior from [9]. Tumor
growth models (e.g. reaction-diffusion models) have been used repeatedly to im-
prove image registration [11] and, hence, atlas-based tissue segmentation [12].
Similarly, [13] relies on a bio-mechanical tumor growth model to estimate brain
tissue loss and displacement. Generative approaches require a detailed formal
description of the image generation process and may need considerable modifi-
cations when applied to slightly different tasks. These approaches also tend to
be computationally inefficient.

In contrast, discriminative techniques focus on modeling the difference be-
tween e.g. a lesion and healthy tissues, directly [14–16]. A number of recent
techniques based on decision tree ensembles have shown strong generalization
capabilities and computational efficiency, even when applied to large data sets
[17–19]. In [20], for example, a classification forest is used for segmenting multiple
sclerosis lesions using long-range spatial features. In [15], the authors derived a
constrained minimization problem suitable for min-cut optimization that incor-
porates an observation model provided by a discriminative Probabilistic Boosting
Trees classifier into the process of segmentation. For multi-modal brain lesion
segmentation, [16] propose a hierarchical segmentation framework by weighted
aggregation with generic local image features. Unfortunately, fully supervised
discriminative approaches may require large expert-annotated training sets. Ob-
taining such data is often prohibitive in many clinical applications.

This paper proposes a new way of combining the best of the generative and
discriminative world. We use a generative model of glioma [21] to synthesize
a large set of heterogeneous MR images complete with their ground truth an-
notations. Such images are then used to train a multi-variate regression forest
tumor predictor [20, 22]. Thus given a previously unseen image the forest can
perform an efficient, per-voxel estimation of both tumor infiltration density and
tissue type. The general idea of training a discriminative predictor (a classifier
or a regressor) on a large collection of synthetic training data is inspired by the
recent success of the Microsoft Kinect for XBox 360 system [23]. This approach
has great potential in different domains and especially for medical applications
where obtaining extensive expert-labelled is nearly impossible.



2 Learning to estimate tissue cell density from synthetic
training data

This section describes the two basic steps of our algorithm: i) synthesizing het-
erogeneous MR images showing tumors, and ii) training a tumor detector which
works on real patient images.

2.1 Generative tumor simulation model

The automatic generation of our synthetic training dataset relies on the publicly
available brain tumor simulator presented in [21]. It builds on an anisotropic
glioma growth model [24] with extensions to model the induced mass-effect and
the accumulation of the contrast agents in both blood vessels and active tumor
regions. Then, multi-sequence MR images are synthesized using characteristic
image textures for healthy and pathological tissue classes (Fig. ??).

We generate synthetic pathological cases with varying tumor location, tumor
count, levels of tumor expansion and extent of edema. The resulting synthetic
cases successfully reproduce mass-effect, contrast enhancement and infiltration
patterns similar to what observed in the real cases. The synthetic dataset con-
tains 740 synthetic cases. It includes a large variability of brain tumors ranging
from very diffusive tumors, showing a large edema-infiltration pattern without
necrotic core, to bulky tumors with a large necrotic core surrounded by an en-
hanced vascularization pattern. For each case, the simulation provides four MR
sequences (cf. Fig. 1) which offer different views of the same underlying tumor
density distribution.

This synthetic ground truth provides a diverse view of the pathological pro-
cess including mass-effect and infiltration, but also very detailed annotations
for the healthy structures of the brain. The ground truth consists of voxel-wise
annotations on the data that are: white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF), edema, necrotic tumor core, active tumor rim and blood
vessels. Unlike binary annotations which provide a mask for each tissue class,
the ground truth consists of a continuous scalar map for each tissue class. Each
scalar map provides, for every voxel in the volume, the density of every tissue
class.

2.2 Regression forests for estimating tissue cell density

Problem setting We adapt a regression forests similar to the one of [17] to train
an estimator of tissue cell densities from visual cues in the multi-channel MR
images. For each voxel v, the ground truth provides the density Rc(v) ∈ [0, 1]
of each tissue class c ∈ C. The density distribution R is normalized so that it
satisfies

∑
c∈C Rc(v) = 1 in every voxel v.

Feature representation To calculate the local image features – both during train-
ing and for predictions – we sub-sample or interpolate all images to 1 × 1 × 2
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Fig. 1. Synthetic MR images. From left to right: T1, T1+Gad, T2, and FLAIR
MR images. Top row: bulky tumor characterized by a large necrotic and a surround-
ing vascularization pattern. Bottom row: very infiltrating tumor characterized by the
extended of the edema.

mm3 resolution. We perform a skull-stripping and an intensity normalization
[25] so that real MR images match the intensity distribution of synthetic MR
sequences. Then image features are calculated for each voxel v. Features include
local multi-channel intensity (T1, T1+Gad, T2, Flair) as well as long-range dis-
placed box features such as in [20]. In addition we also incorporate symmetry
features, calculated after estimating the mid-sagittal plane [26]. In total, every
voxel is associated with a 213−long vector of feature responses.

Regression forest training The forest consists of T trees indexed by t. During
training observations of all voxels v are pushed through each of the trees. Each
internal node p applies a binary test tp = τlow ≤ θ(v) < τup implementing a
double thresholding (τlow, τup) of the visual feature θ(v) evaluated at voxel v.
The voxel v is then sent to one of the two child nodes based on the outcome of
this test. As a result, each node p receives a partition of the input training data
Tp = {v, R(v)}p, composed of a voxel v and a vector R(v) ∈ [0, 1]|C| storing
the cell density value for each tissue class. We model the resulting distribution
via a multi-variate Gaussian Np(µp, Γp) where µp and Γp are the mean and co-
variance matrix of all R(v) ∈ Tp, respectively. During training, the parameters
(τlow, τup) of the node test function and the employed visual feature θ are opti-
mized to maximize the information gain. We define the information gain IG(tp)



to measure the quality of the test function tp which splits Tp into T leftp and
T rightp . The information gain is defined as IG(tp) = −

∑
k∈{left,right} ωklogρk

with ω = |T kp |/|Tp| and ρk = max|eig(Γk)| where eig denotes all matrix eigen-
values. In contrast to the more conventional information gain used in [17], our
formulation gives a robust estimate of the dispersion. Indeed, the information
gain presented in [17] models the dispersions as |Γk| which evaluates to 0 in the
case a tissue class is missing from the input partition Tp. Our definition of the
information gain focuses on the direction showing maximum dispersion, i.e. ρk,
and ignores the missing information on tissue classes.

At each node p, the optimal test t∗p = arg maxΛ IG(tp) is found by exhaustive
search over a random subset of the feature space Λ = {τlow, τup, θ}. Maximizing
the information gain encourages minimizing ρp, thus decreasing the prediction
error when approximating Tp with Np. The trees are grown to a maximum depth
D, as long as |Tp| > 100.

After training, the random forest embeds a hierarchical piece-wise Gaussian
model which captures the multi-modality of the training data. In fact, each leaf
node lt of every tree t stores the Gaussian distribution Nlt associated with the
partition of the training data arrived at that leaf Tlt .

The employed random regression forest approximates the multi-variate dis-
tribution R by a piece-wise Gaussian distribution R̂.

Regression forest prediction When applied to a previously unseen test volume
Ttest = {v}, each voxel v is propagated through all the trained trees by successive
application of the relevant binary tests. When reaching the leaf node lt in all trees
t ∈ [1..T ], estimated cell densities rt(v) = µlt are averaged together to compute
the forest tissue cell density estimation r(v) = (

∑
t∈[1..T ] rt(v))/T . Note that in

each leaf lt we maintain an estimate of the confidence Γlt associated to the cell
density estimation µlt .

3 Experiments

We conducted two main experiments. First, as a proof of concept, we tested
how well the learned forest reproduces the tissue cell densities in the synthetic
model. In a second experiment we applied our method to real, previously unseen,
clinical images and measured accuracy by comparing the detected and ground
truth tumor outlines.

We evaluate the predictions for every test case using two complementary
metrics: a segmentation metric and a robust regression metric. The segmenta-
tion metric compares binary versions of the physiological maps, independently
normalized for each tissue class. The binary masks are obtained by threshold-
ing the prediction and the ground truth at the same value. Then, we evaluate
the true postive rate TPR = TP/(TP + FN), the false positive rate FPR =
TP/(TP+FP ) and the positive predictive value PPV = TP/(TP+FP ), where
TP , FP , and FN are the number of true positives, false positives, and false neg-



atives, respectively. Finally, we compute the area under the ROC and the one
precision-recall curves to measure how well the prediction fits the ground truth.

The robust regression metric evaluates the estimation error between the pre-
dicted continuous map and the ground truth. For every tissue class c, we com-
pute the mean over the voxels v of the estimation error, defined as Ec(v) =
|Rc(v)− rc(v)|. In order to avoid artificial decrease of the mean error, we make
this metric robust by only considering regions of the physiological map showing
at least 10% signal in either the prediction or the ground truth.

In both experiments, we used the same forest containing T = 160 trees
of depth D = 20 trained on 500 synthetic cases. The values of these meta-
parameters were tuned by training and testing on a different synthetic set.

3.1 Experiment 1: Estimating cell density in synthetic cases

We tested the random forest on a previously unseen synthetic dataset with 240
cases. Results (Fig. 2) show a good qualitative match between predicted and
ground truth physiological maps. As a segmentation metric we calculate the true
and false positive rates as well as the positive predictive value for each possible
threshold jointly on r and R and summarize it through ROC and precision-recall
curves. For every tissue class c, we also compute the mean approximation error,
defined as Ec(v) = |Rc(v) − rc(v)| (integrating over voxels with > .001 tumor
cell density for tumor classes). Results in Fig. 3 show excellent results for WM,
GM, CSF. The predicted tumor cell density is in good agreement with ground
truth. A systematic bias leads to a slightly larger variance in the error metric
due to the small size of the tumor classes compared to the healthy tissue classes.

3.2 Experiment 2: Segmenting tumors in clinical images

We tested the same random forest on 14 clinical cases showing low and high
grade glioma (Fig. 5) with T1, T1+Gad, T2 and FLAIR images. None of the
clinical cases was used during training. Training was done exclusively on syn-
thetic images. The manually-obtained ground truth consists of a binary tumor
mask delineating the tumor+edema region. We calculated the same tumor out-
line from the predicted continuous physiological masks as done for the synthetic
model [21]. Segmentation results (Fig. 4) are in excellent agreement with a state-
of-the-art unsupervised multimodal brain tumor segmentation method that also
outperformed standard EM segmentation in an earlier study [8]. Note that the
method presented in [8] significantly outperformed [6]. Interestingly, in a qualita-
tive evaluation (cf. Fig. 5), the tumor cell density map shows smooth transition
between the active rim of the tumor (red) and the edema (green).

4 Conclusions

This paper presented a new generative-discriminative algorithm for the auto-
matic detection of glioma tumors in multi-modal MR brain images. A regression
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Fig. 2. Estimation of tissue cell densities. From left to right: T1+Gadolinium,
FLAIR image, the ground truth provided by the simulator, the estimation of our ran-
dom regression forest. Each voxel of the ground truth maps displays the mixed density
between predefined tissue classes: WM (dark blue), GM (light blue), CSF (cyan), edema
(green), blood vessels (orange), and necrotic core (yellow).

Fig. 3. Evaluation of the predictions on the synthetic dataset for each cell
density map . Each label in the x-axis represents a tissue class: WM, GM, CSF,
edema, necrotic core, blood vessels, respectively. We show from left to right: the area
under the precision-recall curve, the area under the ROC curve, the estimation of the
mean prediction error, and the dice score Each point of the ROC and precision-recall
curves is built by thresholding the prediction and the ground truth at the same value.
The ground truth and the prediction density maps were thresholded at the same value,
i.e. 0.3.

forest model was trained on multiple synthetically-generated labelled images.



Fig. 4. Evaluation of the predictions on the clinical dataset. Box plots of the
area under the ROC curve (left), under the precision-recall curve (right), and the dice
score. Comparison of the proposed method (G-RF) with the method presented in [8].
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Fig. 5. Segmentation and tumor cell distribution. From left to right: prepro-
cessed Flair MR image, FLAIR MR image overlayed with the segmentation of an ex-
pert, the normalized tumor cell density, and the predicted tumor segmentation (thresh-
old at 0.3).

Then the system demonstrated to work accurately on previously unseen syn-
thetic cases. It showed promising results on real patient images which led to
state of the art tumor segmentation results. Our algorithm can estimate contin-
uous tissue cell densities both for healthy tissues (WM, GM, CSF) as well as
tumoral ones.
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