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Abstract: We present a physically based method for visualizing deformation in
particle simulations, such as those describing structural mechanics simulations.
The method uses the deformation gradient tensor to transform carefully chosen
glyphs representing each particle. The visualization approximates how simulated
objects responding to applied forces might look in reality, allowing for a better
understanding of material deformation, an important indicator of, for example, ma-
terial failure. It can also help highlight possible errors and numerical deficiencies in
the simulation itself, suggesting how simulations might be changed to yield more
accurate results.
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1 Introduction and Background

Particle methods [Belytschko, Krongauz, Organ, Fleming, and Krysl (1996)] are
numerical simulation methods in which materials are modeled by collections of
discrete computational particles, which can move about the computational domain
as indicated by the model equations. Generally speaking, these methods produce
output in which each particle is identified by its location and additional data values.
The values can be of any type, and methods producing scalar, vector, and tensor
values are common. Compared to the well-known finite element method (FEM)
[Bathe (1996)], particle methods have the major advantage that they are well-suited
to handling large deformations, such as might be found in simulations leading to
material failure, for example. When dealing with such deformations, FEM can
suffer from entangled, inverted, or otherwise ill-conditioned meshes; remeshing
can alleviate these problems but only at heavy cost, both in terms of performance
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and accuracy. For simulations in which large deformations are expected, as in
biomechanics, or where typical engineering materials will experience failure, such
as explosions, particle methods, which are not affected by these concerns, can be a
suitable alternative.

Because the particles “carry” data values, a glyph-based approach to visualiztion
that places geometry at the position of each particle is suitable. Scalar data val-
ues can be displayed by varying free parameters, such as glyph size and color.
However, it is not clear how to visualize deformation within this framework, an im-
portant quantity in structural mechanics that conveys information about the strains
and resulting stresses experienced by an object of study.

Deformation is an important physical response to loading, and an independent vari-
able in models of material failure [Maloney and Lemaître (2004); Meakin (1991)];
as such it is an important consideration in simulations involving large deforma-
tions, such as for penetrative tissue damage [Ionescu, Guilkey, Berzins, Kirby, and
Weiss (2006)], high-temperature damage in pipes [Hall and Hayhurst (1991)], and
explosion in containers of high-energy materials [Guilkey, Harman, and Banerjee
(2007)]. Because deformation is directly observable by humans in physical ob-
jects, it should be included in visualization of such simulations, at the very least as
an indirect way to validate simulation data. Leaving deformation out of the process
produces at best a deficient visualization, and at worst, a misleading one.

In their common usage, glyph-based visualization approaches force users to infer
deformation from the relative motion of the glyphs, and for many arrangements,
the actual deformation can be difficult to discern. This paper presents a particular
approach to glyph-based visualization for particle data that uses carefully chosen
glyphs and the deformation gradient to clearly display deformation, both at local
and global scales. We demonstrate how the method improves on current techniques,
allowing scientists a better understanding of their simulations.

1.1 Particle Methods

Particle methods form a subset of the mesh free [Liu (2003)] or meshless [Be-
lytschko, Krongauz, Organ, Fleming, and Krysl (1996); Atluri, Liu, and Han (1998)]
methods, which differ from FEM (and other fully meshed methods such as finite
differences, etc.) in that no object geometry is represented by a mesh. Particle
methods represent objects by discretizing them into collections of particles, each
of which is a Lagrangian representation of some part of the object either directly
as a small continuum of matter, or a sampling point. Particles are, in principle, free
to move independently about the domain, but they are usually restricted to realistic
behavior by material models and other physical constraints.
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Examples of particle methods include smoothed particle hydrodynamics (SPH)
[Monaghan (2005)], the related smooth particle applied mechanics [Hoover (2006)],
and the particle-in-cell (PIC) family of methods [Harlow (1964); Brackbill and
Ruppel (1986)], in which a stationary, background mesh is used to compute gradi-
ents and the particles move through the grid cells as the simulation proceeds. The
material point method (MPM) [Sulsky, Chen, and Shreyer (1994); Sulsky, Zhou,
and Schreyer (1995)] (along with its successor, the generalized interpolation ma-
terial point method (GIMP) [Bardenhagen and Kober (2004)]) is a PIC method
explicitly designed for performing structural mechanics simulations. MPM rep-
resents geometry by discretizing objects into particles, or material points. Each
material point in such a particle model represents a small piece of material from
the object and obeys the laws of continuum mechanics. Each material point carries
several physical parameters, such as mass, volume, stress, etc. In the simulation, the
particles move as the object responds to loads placed on it, resulting in an overall
deformation of the object. In the process of updating particle volumes, the MPM al-
gorithm may compute a tensor quantity known as the deformation gradient, which
acts as a local measure of distortion affecting each particle. This value may be used
as input to the material constitutive model, which relates stress to strain; however
our method takes advantage of the deformation gradient to visualize deformation.

1.2 Overview of MPM/GIMP

Numerous flavors exist of both standard MPM and GIMP. Particular choices of
grid and particle basis functions [Steffen, Wallstedt, Guilkey, Kirby, and Berzins
(2008)], whether or not to lump the mass matrix [Love and Sulsky (2006)], and
what time-stepping algorithm to use (implicit, explicit, etc.) [Guilkey and Weiss
(2003); Wallstedt and Guilkey (2008)] will have large impacts on implementation
details as well as expected algorithm performance. Here, we present a very brief
overview of a single timestep in the Update Stress Last (USL) explicit method. We
do this to illustrate the role that the deformation gradient plays in the method. For
full implementation details, we suggest referring to Wallstedt and Guilkey (2008).

The simulation begins with a collection of particles approximating the geometry
of the objects of interest (Figure 1). Each particle is assigned various initial quan-
tities: mass (mp), position (x0

p), velocity (v0
p), deformation gradient (F0

p), volume
(V 0

p ), as well as other quantities pertaining to the particular constitutive model used
(temperature, plasticity states, etc.). To advance the simulation from time tk to time
tk+1 = tk + ∆t, a Galerkin projection of particle momenta to a (usually Cartesian)
grid is first carried out, allowing grid velocity to be calculated. This projection is
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Figure 1: A particle model of a disc is created. (a) The gray area represents the
disc, laid on top of the MPM background grid. (b) The grid cells are subdivided
into subcells, and the subcell centroids are sampled. (c) The circled samples fall
inside the disc and become particles in the model. (d) The particles are shaped like
the subcells they were sampled from, so the final model has unavoidably jagged
edges.

approximated in MPM as:

mi = ∑
p

φi(xp)mp, (1)

vk
i =

∑p φi(xk
p)vk

pmp

mi
, (2)

where mi, vi, φi are the grid mass, grid velocity, and grid basis functions, respec-
tively. Next, the internal force is computed at the nodes as an approximated volume
integral of the divergence of particle stress:

fint
i =−∑

p
∇φi(xk

p) ·σσσ k
pV k

p . (3)

External forces (body forces and tractions) are specified on the grid (or projected
from particles to the grid), and grid acceleration is computed as:

ai =
fint
i + fext

i
mi

. (4)

An updated grid velocity is found with a Forward Euler scheme:

v∗i = vn
i +ai∆t. (5)

Next, particle positions and velocities are updated by evaluating the resulting grid
velocity and acceleration fields at the particle locations:

xk+1
p = xk

p +∑
i

φi(xk
p)v
∗
i ∆t, (6)
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vk+1
p = xk

p +∑
i

φi(xk
p)ai∆t. (7)

Evaluation of the gradient of the grid velocity function provides a velocity gradient
at particle positions.

∇vp = ∑
i

∇φi(xk+1
p )v∗i . (8)

This velocity gradient is used in updating particle deformation gradient, which is
in turn used in calculating particle stress and particle volume:

Fk+1
p = (I+∇vp∆t)Fk

p, (9)

σσσ
k+1
p = σσσ(Fk+1

p ), (10)

V k+1
p = V 0

p det(Fk+1
p ), (11)

where the constitutive model relating deformation to stress is represented by the
general function σσσ . Note that while Equation 10 has a dependence only on de-
formation gradient, implying a hyperelastic material model, the methodology de-
scribed here is completely general with respect to constitutive model. In other
words, while it is necessary to compute a value for Fp as given in Equation 9, any
constitutive model (e.g., a hypoelastic model with rate dependent plasticity) may
be used. Even if the deformation gradient is not used to advance the solution, ad-
vancing it in time is of low cost, and, as the examples below will show, high value.
In addition, of course, the deformation gradient is valuable in that it can be used to
compute numerous measures of strain.

Equations (1 - 11) outline a single timestep of MPM. GIMP follows the same out-
line, but the terms φi(xp) are replaced by a different function φ ip, calculated as a
convolution of the grid basis function φi and a particle characteristic function χp

(for more details about GIMP and particle characteristic functions, see Barden-
hagen and Kober (2004)).

In the remainder of this paper, we will be working with GIMP simulations, though
the method we present works with traditional MPM. It will also work with any
particle method that treats particles as subvolumes of a continua (as opposed to
sampling points) that is capable of computing a deformation gradient, whether or
not it is used to advance the solution.

2 Related Work

Bigler, Guilkey, Gribble, Hansen, and Parker (2006) present an overview of their
methods for visualizing MPM data produced by the Center for the Simulation of
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Accidental Fires and Explosions project (C-SAFE) [Henderson, McMurtry, Smith,
Voth, Wight, and Pershing (2000)]. They use the SCIRun Problem Solving En-
vironment [Parker and Johnson (1995)] to view smaller data sets using standard
graphics hardware, and a high-performance ray tracer [Bigler, Stephens, and Parker
(2006)] to handle the millions of primitives in larger data sets. In both systems,
each particle is represented by a sphere of a specific color and radius, both chosen
to represent physical parameters in the data set. Generally, in such visualizations
deformation is understood on a global scale, allowing the particle positions to re-
lay an idea of deformation across the whole model, without any indication of the
shapes of individual particles. For understanding smaller structures at closer scales,
lighting and non-photorealistic rendering techniques are employed. Shadowing and
ambient occlusion give visual cues about relative positions of ambiguously oriented
particles, while silhouette edges help to bring attention to medium-scale structures
by highlighting closely bound groups of particles.

Gribble, Stephens, Guilkey, and Parker (2006) developed a visualization system
that takes advantage of the symmetry of spheres. They use programmable graphics
hardware to accelerate particle rendering by using a texture mapped billboard of
a single sphere to represent each particle, instead of rendering actual geometry.
By reducing the number of triangles needed to just two per billboard, the system
achieves interactive rates on desktop machines for order-of-million-particle data
sets. The standard method of simply rasterizing millions of triangle-tessellated
spheres quickly overwhelms current graphics hardware; this approach is, therefore,
notable for its high performance. However, as it displays the same prerendered
sphere geometry for every particle, it cannot handle deformation data via glyph-
based tensor visualization as discussed above.

In summary, state-of-the-art particle data visualization treats each particle simply
as a position associated with data. This simple approach works well for many
purposes, but this paper will argue that we can build on these methods, including
deformation data in a physically correct and visually insightful way.

On the other hand, the graphics community’s treatment of deformation tends to-
ward approximate but credible images rather than numerical accuracy, since such
approximations are computationally cheaper to achieve. Such methods are used in
settings where accuracy is secondary to visual effect, such as in movies and video
games. Typical methods are based on simulation of continuum and fracture me-
chanics through finite elements for both brittle [O’Brien and Hodgins (1999)] and
ductile [O’Brien, Bargteil, and Hodgins (2002)] fracture. Irving, Teran, and Fed-
kiw (2004) have developed invertible finite elements as an extension to standard
finite elements which behaves robustly enough to handle physical situations with
extreme mesh deformations and even inverted mesh elements, but at a significant
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cost in the accuracy of the results. These methods are valuable mainly for visual
results and not scientific accuracy. These and other related methods in graphics can
be traced back to methods dealing both with elasticity [Terzopoulos, Platt, Barr,
and Fleischer (1987)] and inelasticity (i.e. viscoelasticity, plasticity, and fracture)
[Terzopoulos and Fleischer (1988)] in graphical models.

3 Visualizing Particle Deformation

Glyph-based particle visualization methods can be summarized as follows: For
each particle p situated at location xp, select a set of points Gp (representing some
glyph geometry) centered at the origin, a deformation operator Dp, and a color Cp.
Render the deformed geometry Dp(Gp) translated to location xp with color Cp.

Common particle visualization techniques typically use a unit sphere for Gp, a
scaling operation for Dp with a magnitude chosen to reflect a scalar data value on
particle p (or alternatively, simply no scaling at all), and a scalar color map applied
to another value from p to specify Cp. These choices yield spheres whose radii
possibly reflect one scalar value (commonly a volume or mass), and whose colors
reflect another (such as equivalent stress, velocity magnitude, temperature, etc.).

In order to visualize deformation, we instead use Fp, the deformation gradient of
particle p, for the deformation operator by applying it as a linear transformation to
the points making up the origin-centered glyph. This transformation illustrates the
local deformation by applying it directly to the piece of the object on which it acts.

The key is to select a glyph geometry that communicates information about the
deformation gradient. For example, spheres do not work for the simple reason that
they cannot indicate pure rotation. Suppose GS is a unit sphere centered at the
origin, and F is a deformation gradient with polar decomposition [Strang (1988)]
F = RS (in which R is orthonormal, representing a rotation, and S is symmetric
and positive-definite, representing non-uniform but orthogonal scaling). Because
S is symmetric and positive-definite, it can be decomposed as S = QΛΛΛQT , where
ΛΛΛ is diagonal and Q is orthonormal. Because rotational transforms do not affect
a sphere, we also have UGS = GS for any orthonormal U.1 Finally, concatenating
rotation transforms (represented by products of orthonormal matrices) yields a ro-
tation transform; i.e. RQ can be written as U for orthonormal R and Q, and some

1 We have adopted the notation FS for the notion of a tensor F acting on a set of points S, which we
define as follows: FS≡ {Fx|x ∈ S}.
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orthonomal U:

FGS = RSGS

= RQΛΛΛQT GS

= RQΛΛΛQT RT GS

= UΛΛΛUT GS

= S′GS.

The general transform F is aliased by some symmetric positive-definite transform
S′. In other words, with respect to spheres, every linear transformation is a scal-
ing transformation. If the tensors used for deforming the glyphs are symmetric
and positive-definite (such as stress), then they lack a rotational component and
spheres (or other glyphs [Kindlmann (2004)]) can be used illustrate the tensors’
eigenspaces. For purposes of studying deformation, however, capturing rotation is
necessary, so a more suitable glyph geometry is required.

In addition to properly handling rotation, the glyph geometry should also repre-
sent the initial discretization behind the structural mechanics simulation. Often
spheres are used to visualize particle data because particles often represent geo-
metric points. The word “point” in “material point method” emphasizes this sim-
plifying idea. However, MPM models continuum mechanics, and so rather than
being dimensionless points, MPM particles represent computational volumes that
initially partition a continuous object.

The common choice of sphere geometry therefore has geometric and representa-
tional deficiencies. By examining how MPM often initializes the particles in a
particle model, we conclude that cuboid glyphs produce meaningful and insight-
ful visualizations. Furthermore, we take advantage of the generality inherent in
MPM’s modeling algorithm to create hexahedral particle models that do not suffer
from the axis-alignment constraint placed upon cuboid particle models.

3.1 Cuboid Glyphs

When initializing a particle model, GIMP requires that each particle have a position
and a volume (which is used to normalize integrals over other particle values).
GIMP has an implicit notion of the shapes of particles (as described below, and in
Figure 1), and we argue it is useful for visualization, in addition to computation.

A standard way to create an MPM model regularly divides the background grid
cells into subcells (Figure 1). If the centroid of a subcell falls inside the boundary
of the object being modeled, then a particle is initialized at the centroid location,
with volume equal to the volume of the subcell. Because the initial volume is
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derived from the subcell’s shape, the modeling process further implies that each
particle actually looks like a cuboid with the same dimensions as the subcell. In
other words, a cuboid glyph geometry is suitable for visualizing this model. Using
cuboids in this case produces a visually continuous model occupying exactly the
volume the modeling process dictates. The particles now look like the continua of
matter they represent, connected at the faces in such a way that the particle glyphs
reflect visually the manner in which the object is partitioned numerically.

Cuboids are used primarily because they reflect the underlying numerical represen-
tation of the material, but they also have desirable graphical properties that enhance
the visualization. Cuboids are bounded by quadrilateral faces, enabling more effec-
tive visualization of deforming surfaces. For instance, the exposed faces of cuboids
on the outer edge of an object represent its surface; as the object deforms, lighting
effects help the viewer visually track the surface as it changes shape. Put another
way, sphere glyphs allow a viewer to track a deforming surface, but only by their
relative positions; cuboids, on the other hand, show relative positions and relevant
lighting cues to give a much stronger sense of a deforming surface. Furthermore,
in a cuboid glyph model, the edges of the cuboids form a kind of grid of junction
lines that is visible in visualizations. As the simulation progresses, these junction
lines change their shape to reflect the changing shape of the particles (Figure 2);
they can also be used to track deformation on a larger scale (Figure 3).

3.2 Hexahedral Glyphs

Because the MPM background mesh is most often a rectilinear grid, the bound-
ary of the particle models produced by the standard modeling algorithm are also
constrained to be rectilinear. Models made to approximate objects with curved
boundaries will have a stairstep or lego-brick quality along these curves (Figure 1).

Figure 2: A cylinder, discretized in CUBIT, is compressed by rigid plates (not
shown) until it buckles, introducing a large deformation.
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Figure 3: Open-celled foam made up of microstruts is compacted by a rigid plate
moving downward (not shown). The struts deform in bearing the load as the total
volume of the foam decreases. The strut in the left of the foreground deforms con-
siderably during the process (detail, right column). This strut is originally vertical
and bends during compression. In the lower right image the rotation associated
with this deformation can be observed by tracking the boundaries between parti-
cles. Along the bottom edge of the strut, where tensile stresses are acting, some
particle separation can be seen, possibly reflecting some numerical inaccuracies in
the simulation.
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Initially, the particle glyphs will be axis-aligned; instead of seeing the surface of a
sphere, for example, we will only see a stairstep approximation to that surface. By
generalizing cuboids to hexahedra, however, we can remove this restriction on the
initial orientation of the particle glyphs.

CUBIT [Sandia National Laboratories (2007)] is a software package that can pro-
duce hexahedral meshes.2 Such meshes have several desirable properties for MPM
particle models: they approximate the interior of some boundary, covering it con-
tinuously with volumetric elements, and the exposed faces of the boundary mesh
elements can be made to approximate a chosen surface. To create a particle model
from a hex mesh, we simply initialize one particle at the geometric centroid of each
mesh element, with its initial volume set to that of the mesh element. This list of
material points is given to the MPM algorithm, which can then carry out a simu-
lation. CUBIT can create meshes to represent cuboids, cylinders, prisms, cones,
polygonal pyramids, spheres, and toruses, and it can compose these primitives into
more complex shapes using constructive solid geometry. It can therefore offer a
very general range of particle models. To perform the visualization, each particle
is represented by a hexahedral glyph with the same shape as the mesh element that
produced it and then transformed about its centroid by the deformation gradient ten-
sor. This approach allows the simulation scientist to create more realistic-looking
models, which may lead to better insight gained from visualization.

4 Examples and Discussion

To test our method, we have run several MPM simulations with different geometry
and physical conditions. Some of the simulations aim to produce specific modes
of deformation for observation, while others are real data produced by the C-SAFE
project [Henderson, McMurtry, Smith, Voth, Wight, and Pershing (2000)]. The
images were all produced by the Manta ray tracer [Bigler, Stephens, and Parker
(2006)], which includes spheres, cuboids, and hexahedra as graphical primitives,
and runs at interactive frame rates on modest desktop hardware. We used a variation
of the standard ray tracing algorithm to also render non-photorealistic intersection,
crease, and silhouette lines [Choudhury and Parker (2009)]; these lines help to show
the spatial relationships of the individual glyphs.

Figure 3 gives an example of our method applied to real data. The simulation shown
involves a small volume of foam, whose microstruts are visible, being crushed by
a downward-moving rigid plate. The geometry for the foam model was created by
obtaining X-ray microtomography data of a real foam sample, then using imaging

2 Of the ten topological classes of hexahedra, this paper uses “hexahedron” to mean “quadrilateral-
faced hexahedra,” the variety topologically equivalent to a cube.
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Figure 4: Bottom of cylinder depicted in Figure 2. Hexahedral glyphs emphasize
the volumetric nature of MPM particles; spheres emphasize their pointwise nature.
In particular, slight particle separation is visible in the left image; such separations
are not apparent in the right image.

techniques on the resulting data volume and initializing particles for voxels surpass-
ing a threshold intensity (indicating the presence of foam in that voxel) [Brydon,
Bardenhagen, Miller, and Seidler (2005)]. As the particles in this case were de-
rived from voxel data, we use cuboid glyphs for visualization. The right column of
Figure 3 shows a close-up of one strut that deforms considerably during the sim-
ulation. This figure and all others in this paper use equivalent stress to colormap
the particles. We also note here that in the interest of focusing on the deformation
rather than scalar values, we have chosen to omit colorscale legends in these figures
as well.

4.1 Physical Basis

The primary feature of our visualizations is that they are physically based, deter-
mining glyph shape from the modeling process, and then deforming the glyphs in
accordance with deformation data generated during the simulation. In particular,
the method provides a volumetric view of the particles, showing how they would
appear under the assumption that the entire particle voxel deforms with a constant
deformation gradient, as computed at the particle’s nominal position. Figure 4
shows the bottom surface of a cylinder that is being being crushed longitudinally
by two rigid plates (as shown in Figure 2). The particles in this part of the cylin-
der are experiencing loads that tend to flatten them out. The hexahedral glyphs in
Figure 4, left, are therefore flat and thin, so that they occupy more screen space
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Figure 5: A sphere is compressed by rigid plates (not shown) until it is flat in
the middle. Some material oozes out from between the plates, spreading out in
such a way that the particles become separated. Because the material model did
not include a failure model in this simulation, the particle separation indicates the
approximate nature of the simulation. The larger separations in the rightmost image
suggest possible error as well.

than their spherical counterparts in the right image. On the other hand, in Figure 4,
right, one can actually see past the spheres into the interior of the model, consti-
tuting a computational view of the particles that emphasizes their pointwise nature,
as they exist during computation by the MPM algorithm. By using small, volume-
independent spherical glyphs, we can observe the relative positions of particles
throughout the volume of a simulated body (for this purpose, global illumination
can also help [Gribble, Stephens, Guilkey, and Parker (2006); Gribble and Parker
(2006); Tarini, Cignoni, and Montani (2006)]).

The major strength of hexahedral glyphs is that they give a good physical picture of
what the simulated object might look like in reality, which also has other implica-
tions. For example, MPM simulates continuum bodies, which means that material
separation does not occur unless a material failure model is included. The parti-
cles in MPM are not connected as in a finite element mesh, thus, the degree to
which edges of cuboid particles remain connected visually is a reflection that the
method is accurately capturing the deformation that an object experiences. How-
ever, as the simulation is necessarily an approximation to the true behavior, we may
observe separation between particles in the resulting visualization. Such visual sep-
aration reflects both the approximate nature of the simulation results, as well as the
visualization assumption that the whole particle deforms according to a constant
per-particle value of F (Figure 4, left). However, large, localized separations can
indicate error in the simulation (Figure 5).

Such separations are not apparent when using spherical glyphs because spheres do



130 Copyright © 2010 Tech Science Press CMES, vol.63, no.2, pp.117-136, 2010

Figure 6: Extreme deformation is induced by very high compressive stresses in the
center of a Taylor-impacted cylinder. By changing their shape to be flat and wide,
cuboid glyphs are able to illustrate the deformation; by comparison, the sphere
glyphs become impacted, hiding each other from view, and imply that the columns
of particles are becoming separated.

not properly model the material continuum. This is a case of the visualization draw-
ing attention to errors in the simulation, providing hints to the simulation scientist
about how the simulation quality might be improved. In Figure 5, right, the sepa-
ration is quite large and may, for example, indicate the need to run the simulation
again for higher accuracy, using a discretization with a larger number of smaller
particles in that area.

Several of the simulations demonstrate the usefulness of using a volumetric view.
Figure 6 shows the results of a Taylor impact [Taylor (1948)] simulation, in which
a metal cylinder is shot onto a rigid surface and deforms. Because this setup is
radially symmetric about the cylinder’s axis, the simulation uses only one quarter
of the cylinder with appropriate boundary conditions. Looking at the internal corner
of the model actually shows what is happening in the center of the cylinder. The
extremely high compressive stress in this region induces the particles to become
very wide and thin. In the visualization, the particles remain continuous, suggesting
the numerical stability of the simulation.

Figure 7 shows a rubber sheet with its edges affixed to a wall being struck by a
projectile from underneath. The middle part of the sheet moves upward with the
projectile, and then returns to its original position while an elastic wave travels
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Figure 7: A rubber sheet fixed around its edges to a wall, struck by a projectile
from underneath. An elastic wave travels outward from the point of impact.

out from the point of impact. The graphical qualities of the cuboid glyphs nicely
illustrate the curve of the wave as it travels. The wave travels outward radially, but
the front strikes different parts of the boundary at different times, taking longer to
reach the corners of the sheet than the sides. The reflected waves therefore return at
different times and cause a characteristic interference pattern, as illustrated by the
shading in the rightmost image of Figure 7.

Furthermore, this particular visualization reveals something interesting about the
MPM algorithm itself. It is subtly apparent in Figure 7 that the particles are some-
how organized into “tiles” with similar surface orientation. These are visible from
the changes in shading resulting from the slight change in the angles of the tiles
with respect to each other. The effect results from the use of the background grid
used in MPM, which gathers and then reprojects changes to particle state through
basis functions during the simulated timestep. This is an example of the visual-
ization revealing a quality of the algorithm itself, in much the same way as small
gaps appearing between particles reflect the approximating nature of any simulation
algorithm.

4.2 Visual Cues for Geometric Features

When studying deformation in simulation data, it is important that the visualiza-
tion not misrepresent or obscure important features. Hexahedral glyphs are a way
to eliminate such misrepresentations, as demonstrated in the bottom corner of the
cylinder (Figure 8). In the sphere scene, the cylinder’s corner seems to occur along
the row of green particles three layers above the blue ones, but the hex scene
demonstrates that this is not the case. In fact, the corner appears in the row of
blue particles, as evidenced by the two faces visible in that row. What looks like
the corner in the sphere scene is in fact a bulge that occurs just above the plane of
contact with the rigid plate. The shading and orientation of the hex faces shows this
phenomenon quite clearly.

When viewing a dataset at close ranges to investigate small-scale features, global
indicators of structure and deformation are missing. The inside of the buckle feature



132 Copyright © 2010 Tech Science Press CMES, vol.63, no.2, pp.117-136, 2010

Figure 8: The spheres falsely imply that the corner of the cylinder lies along the
green particles, while the hexahedra show that actually, the corner occurs in the
blue particles, and the green particles show a slight bulge just above it.

in the crushed cylinder (Figure 9) demonstrates this problem. A sphere’s surface
normal varies continuously across its surface; many spheres packed close together
in a visualization will therefore look very similar. For this reason, in the left image
of Figure 9 it is very difficult to infer the actual distribution of the glyphs. It is
not clear if the curved bands of connected spheres lie in the same plane, or if they
recede from the viewpoint. The structure is much easier to see in the right image,
because the exposed faces of the hexahedral glyphs have one normal vector each,
and thus can serve as area elements making up a surface, even at close viewing
distances.

5 Conclusions and Future Work

We have demonstrated an extension to glyph-based particle visualization meth-
ods that includes the deformation gradient and therefore visualizes deformation
directly. Our major strategy has been to understand a given particle method’s ap-
proach to modeling the geometry of an individual particle, and then adopt that ge-
ometry as the visualization glyph. This strategy moves particle visualization away
from arbitrary choices, such as spheres, that seem to be appropriate, but turn out to
be deficient upon close inspection.

By visualizing the particles as the hexahedral regions they represent rather than
abstract points in space, scientists can get a clearer and more direct understanding
of how a simulation affects the material being modeled. This directness is espe-
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Figure 9: Hexahedra show the geometry of high curvature areas more clearly than
spheres can through shading cues that suggest surfaces directly.

cially important when deformation is the central object of interest, as in the study
of material failure during a catastrophic explosion, or stress testing of structures.
Furthermore, including deformation data directly in the visualization allows simu-
lation scientists to detect errors in their simulations earlier, as when the visualiza-
tion shows deformations that clearly do not reflect reality.

In future work we wish to integrate other common visualization techniques. For
instance, it has been demonstrated that using ambient occlusion or other approx-
imations to global illumination can enhance user perception of particle datasets
[Gribble and Parker (2006); Tarini, Cignoni, and Montani (2006)]; presumably this
is true when using hexahedra rather than spheres as well.
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