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The equilibrium conditions in osmotic pressure experiments have 
been thoroughly investigated both theoretically and experimentally. 
The kinetics of the process, however, has received little attention 
although the general theory is known. The process of osmosis is 
essentially one of diffusion of the solvent into the solution and so 
should follow in general the diffusion laws. In ordinary diffusion 
experiments, however, such as the solution of a solid or the diffusion 
of salt through a vessel of water, the solute is the component which 
moves while in osmosis it is the solvent. In the former case, since 
the number of solute molecules is ordinarily only a small fraction of 
the total number, the total number of molecules remains practically 
constant, while in osmosis, the total number of molecules in the 
solution changes during the experiment. It  might be expected there- 
fore that the equation for osmosis would differ slightly from that of 
diffusion of the solute since the terms containing the total number of 
molecules, i.e. the volume, which are constant in the ordinary diffusion 
formula are now variables. As will be seen this is the case experi- 
mentally. 

The desired relation may be derived in a number of ways, but the 
following derivation, although not mathematically rigorous, appears 
to the writer to be the simplest. 

Assume the solution separated from the solvent by a membrane 
permeable only for the solvent, as shown in Fig. 1. The mole fraction 
of the solute is assumed small and the solution is assumed to obey 
the laws of ideal solutions Solvent will pass through the membrane 
from the pure solvent into the solution. The volume and hence the 
hydrostatic pressure on the solution will be increased and the process 
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will stop when the hydrostatic pressure equals the osmotic pressure. 
I t  is desired to know the quantity of solvent which passes through the 
membrane at any time. 

According to the general law of diffusion (or flow) the rate of flow 
per unit area is proportional to the pressure gradient, or, in this case, 
to the pressure divided by the resistance; or 

dv P 

Solvent 

l~¢mbrane 
FIo. 1. Apparatus for the determination of the rate of osmosis. 

in which v is the volume, t the time, P the pressure, and R the resist- 
ance offered to the flow. 

In order to integrate this equation the variable terms must be 
expressed as functions of v or t. The pressure is evidently equal to the 
osmotic pressure, which tends to force the water in, less the hydro- 
static pressure, which tends to force it out, 

P = O P -  HP.  
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The osmotic pressure is defined by the equation, 1 

R T  
o•  = ~ ( -  tn(I  - x)) 

which for dilute solutions reduces to 
RTx 

OP = - -  (1) 
V,~ 

where R is the gas constant, T the absolute temperature, x the 
mole fraction of the solute, and V~, the molal volume of the solvent 
in the solution. ~ Assume there are g gin. of solute of molecular 
weight M dissolved in V cc. of water. The mole fraction of the 
solute, then, will be the moles of solute divided by the total moles, or 

g 
M 

X 
V g 

Since ~hris -~-  assumed small in comparison to , the equation may be 

g V ,,, 
written x - M V "  Substituting this value of x in (1), 

R T  gV,, 
01" . . . . .  

v,~ M v '  

1 Cf., for instance, Washburn, E. W., Physical chemistry, New York, 1st 
edition, 1915, 155. 

2 Since we are interested only in the amount  of water that  diffuses into the sys- 
tem, i.e., the amount that  passes through the plane at  the outside surface of the 
membrane, it  is not necessary to consider the pressure gradient within the solution. 
The pressure may therefore be assumed proportional to the average pressure, i.e., 
to the pressure that  would exist if the solution were homogeneous. That this is so 
may be seen from the fact that the pressure gradient would depend on the diffusion 
coeificient, which does not affect the form of the equation but only the value of the 
constant. Mathematical proof of this statement may be found in the fact that  if 
the equation is solved according to the general form of Fouriers theorem, which 
takes into account the pressure gradient and gives the amount of water which 
passes through a plane at  any distance y, from the surface of the membrane, and y 
is then made equal to zero, the equation reduces to the same form as the integral 
of (1). Cf. Mellor, J. W., Higher mathematics for students of chemistry and 
physics, New York, 4th edition, 1913, 488. 
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or, since in any one experiment R, T, M and also g are all constant and 
may be combined into one constant P o, 

Po 
oP = v (2) 

The hydrostatic pressure will be equal to the initial pressure, n', plus 
the additional pressure caused by the rise of the solution in the capil- 
lary. If 1 cc, increase in volume causes the liquid to rise K '  ram., 
a n d f  is the relative specific gravity of the liquid compared to mercury, 
then the hydrostatic pressure at any time expressed in ram. of mercury 
will be equal to fn '  + f K '  (v - v o), or H P  = n + K (v - v o), where v 
is the volume at any time and Vo is the initial volume; n is the initial 
pressure expressed as ram. mercury; and K is the increase in pressure 
per cc. increase in volume, expressed also as ram. mercury. 

Evaluation of RI . - -  R1 may be expressed in different ways depending 
on the mechanism assumed for the passage of water through the mem- 
brane. If the water is assumed to dissolve in the membrane and so 
pass by diffusion, R1 is a function of the diffusion coefficient. If the 
water is assumed to flow through capillaries, then R1 is a function of 
the size and number of the capillaries. 

1. The Water Dissolves in the Membrane. 

The thickness of the layer of solution for a cylindrical vessel with 

the membrane at one end will be __v where r is the radius of the cy- ~f2' 

linder. If the thickness of the membrane is h then the total average 
v 

distance the water has to diffuse will be h + 2~rV and the total resist- 

ance offered to its flow per unit of area will be the distance times the 
specific resistance; or if Rm is the resistance offered by unit thickness 
of collodion and Rw the resistance offered by unit thickness of the 

solution, the total resistance R1 = hRm + 2~rr 2 R~. If the membrane 

is of such a nature therefore that the solvent can diffuse through it 
as rapidly or nearly so as through the solution, it is evident that the 
resistance offered by the membrane may be neglected, since the 
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distance passed through in the membrane is very small compared 
v 

to the total distance, and R = ~ R~. In the case of collodion mem- 

branes and most other artificial membranes the resistance offered by 
the membrane is enormously greater than that offered by the solution, 
so that the term representing the resistance of the solution maybeneg-  
lected and 22 = hR,~. Since the diffusion coefficient is the reciprocal 

h 
of the specific resistance, R = ~ where C is the diffusion coefficient 

of the solvent in the membrane. 

2. The Water Flows through Capillaries in the Membrane. 

In the evaluation of the resistance given above the solvent was 
assumed to diffuse through the membrane in the same way as through 
the solution and the increase in resistance was ascribed to the differ- 
ence in the rate of diffusion of the solvent molecules in the membrane 
and in the solution. There is some reason to believe, however, that 
collodion membranes at any rate may be considered as consisting of 
pores in a solid and that the water passes only through the pores. 
From this point of view the resistance offered by the membrane will 
be determined by Poiseuille's lawY The resistance offered by the solu- 
tion can again be neglected. If there are p pores of radius rl per unit 
of surface, and they are assumed to be the same length as the thickness 
of the membrane, the quantity of water that will pass under unit 

pressure according to PoiseuiUe's law will be proportional to pr~4 
h~-,~ 

being the viscosity, and the resistance offered to the passage of the 

hn Since for any one solvent water will be the reciprocal of this or pr---q4. 

h 
and membrane 7, P and r~ are constant the resistance will be ~ as 

before. 
In either case, then, the total amount of water passing through will 

be proportional to ~ where S is the total surface of the membrane. 
/ ' b  

3 Cf. Hitchcock, D. I., J. Gen. Physiol., 1925-27, viii, 71. 
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Substituting these values of R and P, equation (1) becomes 

dv c s 

C is the quantity of solvent that will pass through a unit area of 
membrane of unit thickness in unit time under unit pressure. Changes 
in the value of C are due then either to changes in the rate of diffusion 
in the membrane or to changes in the pore size or number, or the 
viscosity of the solvent, depending on which mechanism is assumed 
for the passage of the solvent through the membrane. 

If there is no hydrostatic pressure on the solution at the beginning 
of the experiment the equation in this form predicts that the quantity 
of solvent passing through the membrane in the first few minutes will 
be proportional to the osmotic pressure of the solution. This relation 
has been shown to be true by a number of workers and has been used 
to measure the pressure in cases where the equilibrium value could 
not be obtained. 4 

At equilibrium no solvent passes through the membrane, i.e. 
dv 
d-t-= 0, so that 

Po 
- -  = n + K ( v ,  - -  v o ) ,  (4) 

o r  
Po 

K v o  = n + K v ,  - -  - - ,  
Ve 

where v~ is the volume of solution at equilibrium. 
Equation (3) may be integrated in a number of forms depending on 

which constants are used. Mathematically the simplest expression 
is obtained in terms of Po, ve and K. In order to obtain the equation 
in these terms the value of Kvo, from equation (4), is substituted in 
equation (3). Collecting terms and simplifying, the equation becomes 

Kv~ dv CSPo (1 + by) (re - v) where b = which, on integration, 
d t -  hr~ v ' P ~ '  

gives 

2.3 hv~ [ ve-Vo 1 b 1 +bye;  
c = (1 + b~,,)s.Pot k, ~° Xog ~ _ . . . . . .  ~ log t + t,,,o} (~) 

4 Cf. Findlay, A v Osmotic pressure, London and New York, 2nd edition, 1919. 
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or  if K = 0, t h a t  is w h e n  the  e x p e r i m e n t  is so a r r a n g e d  t h a t  t h e  

hydros ta t i c -p ressure~ i s  c o n s t a n t ,  

C = ~ o t  vo -- v q- 2.3v, logVL----v-° . (6) 
Ve - -  V /  

TABLE I. 

Rate  of  Osmosis  30°C. 

E x p e r i m e n t  1. 

Po = 52.5 K = 2.28 n = 1.1 v, = 6.2 b = .27 Vo = 3 . 0  
S = 10 sq. cm. 

C T v Km X 104 ~- X 10' 

hrs. 

0 
24 
48 
96 

192 

gc. 

3.0 
3.70 
4.20 
4.85 
5.60 

47.5 
44.0 
38.0 
36.0 

2.27 
2.19 
1.96 
1.98 

E x p e r i m e n t  2 

3,2 cc. a "soluble" gelatin in thistle tube closed with collodion membrane. 
vo = 3.2 Po = 288 K = 0 n = 50 ve = 5.85 S = 4.5sq. em. 

c T ~ Km X 10~ ~-" X 104 

hrs. 

0 
24 
48 
96 

192 
300 

co. 

3.2 
3.75 
4.15 
4.72 
5.22 
5.85 

42.5 
40.0 
38.7 
32.0 

1.53 
1.53 
1.62 
1.51 

T h i s  cond i t i on  w o u l d  also be  t rue  if the  so lven t  ou t s ide  the  m e m -  

b rane  were  r ep laced  b y  a large  v o l u m e  of so lu t ion  h a v i n g  a lower  

o s m o t i c  p ressure  t h a n  t h a t  of the  so lu t ion  inside.  T h e  o s m o t i c  pres-  

sure  of the  ou t s ide  so lu t ion  w o u l d  en te r  in to  the  e q u a t i o n  in the  same 

w a y  as does  the  in i t i a l  h y d r o s t a t i c  pressure ,  n, in e q u a t i o n  (3). 
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A number of experiments were performed to test the accuracy of 
these equations, and they were found to hold within the experimental 
error. 

Table I and Fig. 2 give the results of two such experiments. In 
the first experiment solutions of egg albumin in M(NH,)~$O4 were 
placed in a rocking osmometer, 5 with the same concentration of am- 
monium sulfate outside, and left until equilibrium was established. 

Vc~ &~Oj 

~ Vo-~Z 

/ 
1.00 / /  

0 48 96 "144. 192 240 ~88 3~6 ~384. 4~g 4r=g 
Hrs.  

FIG. 2. The rate of osmosis of protein solutions in collodion membranes. 

3 cc. of the solution was then placed in a tube closed with a mem- 
brane, the upper part of the tube filled with oil and the membrane 
immersed in the solution of ammonium sulfate with which the albumin 
solution had previously been in equilibrium. The pressure in the 
manometer was set at the equilibrium value and the system left for 
2 days so that the permeability of the membrane might become 
constant. The manometer level was then lowered and the rise of the 

5Northrop, J. H., and Kunitz, M., J. Gen. Physiol., 1925-26, ix, 351; also 
1926-27, x, 161. 
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oil in the manometer noted. The experiment was carried on in a water 
bath at 30°C. In the presence of this concentration of ammonium 
sulfate the osmotic pressure of albumin is nearly proportional to its 
concentration, so that it may be assumed to obey the ideal solution 
law. The ammonium sulfate also prevents bacterial growth. The 
second experiment was done in the same way except that a solution 
of "soluble" gelatin 5 was used. In this case the manometer tube was 
bent so as to be horizontal. There was therefore no change in pressure 
during the experiment and equation (6) should fit. The table shows 
in both cases that the monomolecular constant K~ given for compari- 
son shows a regular decrease while the constants calculated by equa- 
tions (5) and (6) do not vary outside of the experimental error. This 
was found to be the case in all of the experiments made. The mono- 
molecular constant dropped slowly in every case. 

In the first experiment the value of C was found to be 2 × 10 -4. 

If the derivation given is correct this should be the cc. of water that 
will flow through 1 sq. cm. of the membrane in 1 hour under 1 ram. 
mercury pressure. At the end of the experiment the membrane was 
washed, filled with water and the rate of flow of water through it deter- 
mined under 10 cm. mercury pressure. A value for the rate of flow of 
1.5 X 10-4 cc. per hour per mm. mercury pressure was obtained, which 
agrees as well as could be expected with the figure calculated from the 
osmotic pressure experiment. 

In this experiment the surface of the membrane is constant. In 
experiments with cells such as those of McCutcheon and Lucke ~ the 
surface increases during the experiment. If the water is assumed to 
diffuse through the membrane, the thickness of the membrane being 
constant, then S ~ v~; or if the volume of the membrane remains 

S 4 
constant ~ ~ w,. If the water is supposed to flow through pores in 

the membrane and the increase in surface is due to enlarging the size 
of the pores, the thickness remaining constant, then r ~ ~ S ~ v'~ and 
r 4 ~ v~. According to the first assumption the velocity should be 
very slightly slower than that predicted by the monomolecular formula 
and according to the second or third assumption it should be very 

s McCutcheon, M., and Lucke, B., J. Gen. Physiol., 1925-26, ix, 697. 
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slightly faster. In either case the deviation from the monomolecular 
formula would be noticed only in very accurate experiments. 

SUMMARY. 

It is shown that by combining the osmotic pressure and rate of 
diffusion laws an equation can be derived for the kinetics of osmosis. 

The equation has been found to agree with experiments on the rate 
of osmosis for egg albumin and gelatin solutions with collodion 
membranes. 


