

- The tissue: myocardial structure, propagation
  - · The heart: conduction system, extracellular electrograms
- ECG and the volume conductor: the heart in the thorax



## Proteins and the Membrane















Cellular Electrophysiology







#### Forces

Diffusive Force 
$$J = -D\nabla c \qquad \frac{\partial c}{\partial t} = D\nabla^2 c$$

**Chemical Potential** 

$$\mu = \mu_0 + RT \ln(c)$$

**Electrical Force** 

$$F_e = k_e \frac{q_1 q_2}{r^2}$$

#### **Electrical Potential**

$$\phi = zF\Phi$$

Cellular Electrophysiology





Cellular Electrophysiology

# **Example Nernst Potentials**

| $E = \frac{23}{z} \log_e \frac{[X]_1}{[X]_2}$ $E = \frac{58}{z} \log_{10} \frac{[X]_1}{[X]_2}$ |          | lon              | External | Internal | Nernst<br>Potential<br>(mV) |
|------------------------------------------------------------------------------------------------|----------|------------------|----------|----------|-----------------------------|
|                                                                                                | Frog     | К                | 2.25     | 124      | -101                        |
|                                                                                                | muscie   | Na               | 109      | 10.4     | +59                         |
|                                                                                                |          | CI               | 77.5     | 1.5      | -99                         |
|                                                                                                | Squid    | К                | 20       | 400      | -75                         |
|                                                                                                | anun     | Na               | 440      | 50       | +55                         |
|                                                                                                |          | CI               | 560      | 108      | -41                         |
|                                                                                                | Cellular | Electrophysiolog | v        | Ε        | Noengineering 6000 CV Phys  |





# **Cardiac Action Potentials**



Cellular Electrophysiology

















## Summary: Cardiac Action Potential

- Resting potential depends almost entirely on [K+].
- Na channels require time at potentials more negative than -65 mV in order to recovery. Without it, they will remain inactive.
- Slow (Ca++) channels have a threshold of -35 mV
- The plateau represents balance between Ca++ and K+ currents.
- Some cardiac cells depolarize spontaneously; most do not.



Nature Cell Biology 6, 1039 - 1047 (2004) Thomas J. Jentsch, Christian A. Hübner & Jens C. Fuhrmann

Cellular Electrophysiology





















# Hodgkin-Huxley Formalism

- · Qualitative concepts
- Quantitative formulation and simulation (see next lecture)
- Sir Alan Hodgkin

   1914-1988
- Sir Andrew Huxley
  - 1917-2012
  - brother of Aldous Huxley
- Nobel Prize: 1963







Bioengineering 6000 CV Physiology



Cellular Electrophysiology





