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Abstract. Traditionally, image blurring by diffusion is done in Eu-
clidean space, in an image-based coordinate system. This will blur edges
at object boundaries, making segmentation difficult. Geometry-driven
diffusion [1] uses a geometric model to steer the blurring, so as to blur
along the boundary (to overcome noise) but edge-detect across the ob-
ject boundary. In this paper, we present a scale-space on image profiles
taken about the object boundary, in an object-intrinsic coordinate sys-
tem. The profiles are sampled from the image in the fashion of Active
Shape Models [2], and a scale-space is constructed on the profiles, where
diffusion is run only in directions tangent to the boundary. Features from
the scale-space are then used to build a statistical model of the image
structure about the boundary, trained on a population of images with
corresponding geometric models. This statistical image match model can
be used in an image segmentation framework. Results are shown in 2D
on synthetic and real-world objects; the methods can also be extended
to 3D.

1 Introduction

Features in images exist at scale, hence scale-spaces of images are useful for
characterizing them. In image segmentation, we wish to localize the boundary
of an object within the image. The traditional linear scale space can blur the
boundary, complicating segmentation. Early on, Canny’s [3] edge-detection work
motivated a scheme which blurs along the boundary, but edge-detects across the
boundary. Variable-conductance diffusion [4] and geometry-driven diffusion [1]
aim to achieve this, by using the geometry of the image intensity field to orient
and modulate the diffusion locally.

In deformable model-based segmentation, the deformable model has geome-
try of its own. In this paper, we develop an implementation of a geometry-driven
scale-space which uses the geometry of a deformable model instead of the ge-
ometry of the image intensity field to drive the diffusion. This scale-space in an
object-intrinsic coordinate system is then used to construct a statistical model
of image structure about the object boundary, as trained on a population of seg-
mented images. The statistical model forms the image-match likelihood, which
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Fig. 1. Sagittal slice of the hippocampus in MRI, showing complex boundary appear-
ance. The hippocampus is outlined in red. The tail of the hippocampus is to the right;
the head is to the left. The hippocampus is a 3D object; this image only shows a
cross-section.

when coupled with a prior on the shape of the deformable model, forms a com-
plete segmentation framework.

Objects in images, particularly medical images, often exhibit complex bound-
ary profiles, which can not be represented by simple step edges. Hence the image
gradient magnitude map alone is not sufficient to drive segmentation of these
objects. Frequently an object in a medical image will have different image pro-
files at different locations around the boundary. For instance, the hippocampus
in T1-weighted MRI shows a sharp step edge at the tail from grey inside the
hippocampus to black outside (Figure 1). However, parts of the bottom of the
hippocampus might be characterized by a bar-like edge, and at the head of the
hippocampus, the transition zone to the adjacent amygdala is not always visible,
resulting in no edge at all in the profile at that location. Successful segmenta-
tion of these real-world objects in real-world images that have noise and large
variability necessitates the development of an image model which can represent
these complex boundary profiles; one that is local, statistical, and multiscale.

2 Related Work

2.1 Geometry-Driven Diffusion
Viewing an image as an embedding map between Riemannian manifolds, e.g.
viewing the intensity field as a height field, provides the framework to apply
principles from Riemannian differential geometry to image analysis. Much work
has been done on geometry-driven diffusion [1], where the geometry which drives
the diffusion is taken from the image itself. Mean curvature flow and anisotropic
diffusion [4] are well-known examples. The Beltrami flow [5] smooths the im-
age while preserving edges by using the Laplace-Beltrami diffusion operator on
the manifold given by the intensity field. The Laplace-Beltrami operator is the
generalization of the Laplacian from Euclidean space to arbitrary manifolds,
incorporating the Riemannian metric tensors of the manifold.

Sapiro et al [6] apply Laplace-Beltrami diffusion to directional data defined
on a flat planar domain, although the theory they develop is applicable to maps
between arbitrary manifolds.
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Chung et al [7] use the Laplace-Beltrami operator to perform diffusion on
a manifold given by a triangulation of the brain cortical surface, to perform
diffusion smoothing of a scalar field (e.g. mean curvature) defined on the manifold
of the cortex. With this method, the geometry which drives the diffusion is no
longer an image intensity field, but rather externally provided geometry, in the
form of a triangle mesh outlining the cortical surface. The “image” is a map
from the manifold of the cortical surface to the 1D range of mean curvatures;
i.e. a texture map on a triangulated mesh.

2.2 Profile Model

Cootes and Taylor’s seminal Active Shape Model work [2] samples the image
along 1D profiles around boundary points, normal to the boundary, using cor-
respondence given by the Point Distribution Model of geometry. Profiles are
extracted at corresponding locations in a population of segmented training im-
ages. At each location along the boundary, a probability distribution is trained
on the image-derived features in the 1D profile, and these probability distribu-
tions form the image-match model for segmentation.

The “hedgehog” model in the 3D spherical harmonic segmentation frame-
work [8] can be seen as a variant of ASMs, and uses a training population linked
with correspondence from the geometric model. It can be extended with a coarse-
to-fine sampling of the object boundary in order to improve robustness in the
face of image noise and jitter in correspondence.

2.3 Active Appearance Models

Perhaps the most well-developed work on modeling intensity variation in objects
is the Active Appearance Model [9], which uses the point correspondences given
by an ASM to warp images into a common coordinate system, within a region
of interest across the whole object, given by a triangulation of the PDM. A
global Principal Components Analysis is performed on the intensities across the
whole object (the size of the feature space is the number of pixels in the region
of interest). The use of a global PCA is particularly well-suited for capturing
global illumination changes, for instance in Cootes and Taylor’s face recognition
applications.

It should be noted that both ASMs and AAMs have multiresolution exten-
sions, which help to speed the optimization process of segmentation, and avoid
local minima. However, the image pyramids used in the multiresolution exten-
sions are created using isotropic diffusion in the original Euclidean image space,
hence the object boundary will also be smoothed.

3 Method: Profile Scale-Space Model

We propose sampling intensities around the object boundary in an intrinsic
coordinate system derived from the geometric model, which preserves the local
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Fig. 2. (a) A sample from the toy example training population. (b) The corresponding
gradient magnitude image at σ = 4 pixels, for reference. The contour from which
profiles will be taken is shown in red. Each of the 30 images in the population have
different additive noise, as well as multiplicative shading (linear ramp) in different
directions.

orientation relative to the object boundary: i.e. which direction is across (normal
to) the boundary and which directions are along (tangential to) the boundary.
We want to look for edges across the boundary, but smooth away noise along
the boundary. To accomplish this, we construct a scale-space in a non-Euclidean
object-intrinsic coordinate system which preserves the along-boundary versus
across-boundary distinction.

3.1 Toy Example

Throughout the discussion of our method, a toy example population of images
will be used for ease of explanation, where the object shape is very simple (a
circle in 2D), but the greyscale intensities are complex and have variability.
Section 4 shows some results on real-world objects with shape variability. We
use 2D Fourier coefficients [10] as a parameterized shape representation; the
parameter space is the unit circle. The toy example images all have the same
underlying structure, with sine waves of varying frequency at different sectors of
the boundary, and boundary profiles more complex than a simple step edge. In
addition, each image in the population has some global multiplicative shading in
a different direction, and some uniform additive noise. The images are 256x256
pixels, and 30 sample images were created.

Figure 2 shows a sample from this toy population, as well as its gradient
magnitude image at scale σ = 4 pixels. Note that a simple gradient magnitude
search would not yield an appropriate image match model in this case, e.g. in
the top right quadrant of the circle.

To illustrate the different edge structure at different locations around the
boundary, profiles at three locations are shown in Figure 3. The locations from
which the profiles are taken are shown overlaid on Figure 2(a) in yellow. The
profile from the lower left quadrant of the circle shows a descending step edge
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Fig. 3. Profiles from the training population, at the three boundary locations indi-
cated in yellow in Figure 2 (counter-clockwise from lower left), showing: (a) negative
step edge, (b) positive step edge, and (c) complex line-like edge. The x-axis indicates
distance normal to the boundary (left is outside, right is inside the object). Object
boundary is shown as red vertical line. The y-axis is image intensity.

from outside to inside the boundary; the profile at the bottom of the circle
shows an ascending step edge, and the profile at the top right of the circle shows
a complex structure with a line-like edge at the boundary and additional step
edges further inside the object. Also shown in Figure 3 is the large variability
in the training population, such that the step edge at places is overwhelmed by
the image noise and variability.

3.2 Scale-Space in Object-Intrinsic Coordinates

Our object shape representation (2D Fourier harmonics) provides a mapping
from a standardized parameter space to the object boundary in each image in
the population. In the case of our toy example, the unit circle parameter space
always maps to the same circle in each of the training images, but in a real-
world population, the object shapes will differ within the training population.
If we were to build a linear scale space in the original (x, y) image coordinates,
edge structure across the boundary would also be blurred away. In the spirit
of geometry-driven diffusion, we wish to blur along the boundary (to deal with
noise), but detect edges across the boundary.

An elegant solution for diffusion along the object boundary is to map the
blurring kernel from the parameter space onto the object. The image intensi-
ties sampled at the object boundary form a texture map on the surface of the
object. The Laplace-Beltrami operator can then be used to blur this texture
map. Extending the blurring to a collar of thickness about the boundary can
be done by using the original object boundary to define a family of surfaces at
different distances away from the object, e.g. a wavefront propagation using the
distance transform on the boundary. Our implementation is an approximation
to the Laplace-Beltrami diffusion.

In our implementation, we sample the image along 1D profiles normal to
the boundary, unrolling the profiles into a flat rectangular grid. The “across-
boundary” and “along-boundary” directions then become the x and y axes of
the unrolled profile image, and we can construct a standard linear scale-space
in one direction of the unrolled profiles, leaving the across-boundary direction
unfiltered. The convolution in the along-boundary direction is cyclic, since the
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Fig. 4. The Gaussian scale-space constructed from one case in the toy example training
population. Levels of the scale-space are (a)–(f), fine-scale to coarse-scale. Each row
within a plot represents a boundary profile at that scale. The object boundary runs
vertically through the center of each plot; left is exterior of the object and right is
interior.

parameter space is the unit circle. We sample scale-space at σ = 2, 4, 8, 16, 32, 64.
As a global brightness/contrast normalization pre-processing step, the profile
images are scaled to have zero mean and unit variance, before the scale-space is
constructed.

We build the Laplacian scale-space (∂/∂σ) on the profile image, representing
each level of the scale-space as a residual from the next coarser level (Figure 5).
This sets up a Markov chain in scale-space, as will be discussed in Section 3.3.
One could also calculate local differences in space between neighboring profiles
(∂/∂σ · ∂/∂u) to set up slightly different Markov neighborhood relations. So
that the features are complete (we can reconstruct the original profiles from the
features), we leave the coarsest level of the Gaussian scale-space (Figure 4(f))
alone in the Laplacian scale-space.

3.3 Local Statistical Model

The Laplacian scale-space is constructed on profiles taken from all images in the
training population. We treat each profile at every location and scale level in
the Laplacian scale-space as an independent feature vector, with its own PCA
and (assumed Gaussian) distribution. Let I(σ, u, τ, i) be the normalized image
intensity (a scalar), where:

– σ is the scale level in the Laplacian scale-space,
– u is the location of the profile around the boundary,
– τ is the position along the profile (in/out from the boundary),
– i is the index of the image in the training population.
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Fig. 5. The corresponding Laplacian scale-space. Levels of scale-space are shown fine-
to-coarse, as in Figure 4. The coarsest level is duplicated from the Gaussian scale-space.

With our toy example, each profile is 13 samples long, there are six scale levels,
with 128 profiles around the boundary, and 30 images in the training population.
The 13 samples along each profile are spaced in units of two pixels. At each
combination of (σ, u) in the scale-space, we have a 13-dimensional feature space
and a cluster of 30 points in it.

The statistical distributions are local to each scale and location, so that
we can model local variability, such as the high-frequency sine waves in the
northwest quadrant of our toy example. Because we use the Laplacian scale-
space, the local distributions are tied together into one joint distribution through
a Markov model, where we model only how each scale level differs from the next
coarser scale level. The joint distribution over the whole profile image can be
complex and non-Gaussian (Gibbs distribution), but each local distribution can
be assumed to be Gaussian and hence easy to model. Non-parametric estimation
of the local distributions (e.g. Parzen windowing), as in [11], could also be done
instead of the Gaussian estimation.

By treating each profile in the scale-space as a feature vector, we avoid a
model which is tied to a particular type of edge (step edge, bar-like edge, etc.),
and this approach is different from feature selection from an n-jet [12] . The
training population “tells us” what kind of edge to look for locally, including
expected variability.

Figure 6 shows the mean profiles at all locations and scale levels in the scale-
space. What is not shown is the local covariance structure which is also part of
the statistical model. For instance, at the very coarse levels of the scale-space,
the noise has been smoothed away, so that even though the edge structure is
very weak, the variability across the training population is very small. At the
finest scale level, some locations show a clear edge structure in the mean profile,
however the variability due to noise at that scale overwhelms the step edge;
compare with the scale-space of a single case in Figure 5.
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Fig. 6. Training population mean, Laplacian scale-space. Levels of the scale-space are
shown fine-to-coarse, as in Figure 4.

Fig. 7. Midsagittal MRI slice of the brain, showing a corpus callosum from the train-
ing dataset. Overlaid in red is the manual segmentation, represented as a 2D Fourier
contour.

4 Application to the Corpus Callosum

We have built a statistical profile scale-space model on 71 segmented 2D corpus
callosum images, for use in a segmentation framework with a shape represen-
tation of 2D Fourier harmonics [13]. Each of the 71 corpora callosa have been
hand-segmented by experts, and the Fourier harmonics constructed. An exam-
ple from the training population is shown in Figure 7, together with its Fourier
boundary.

Profiles were extracted from the images (128 profiles around the boundary),
and the Laplacian scale-space built for each set of profiles. The large scale edge
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Fig. 8. Population mean of profiles around the corpus callosum; Laplacian scale-space.
Levels of scale-space are shown fine-to-coarse, as in Figure 4.

structure of the corpus callosum can indeed be represented by a single step edge,
which is in the very top level of the Gaussian scale-space, as shown in Figure 8(f).

Figure 8 shows the mean profiles of the Laplacian scale-space. As before
there is also covariance structure behind each profile at each scale level that is
not shown. The lower levels of the Laplacian scale-space show the local variability
where the local edge structure differs from a simple step edge. The bright area
of the fornix can be seen in levels 3 and 4 of the Laplacian scale-space, near
the bottom of the graphs on the left hand side of each graph (exterior to the
boundary). The fornix is a thin white-matter structure extending from the lower
edge of the corpus callosum and not considered part of the corpus callosum; it can
be seen in the MRI slice in Figure 7. Where the fornix joins the corpus callosum,
there is no greylevel step edge at the boundary. The fornix is represented in the
fine scales of the Laplacian pyramid as an inverse step edge (white outside, grey
inside), which is the local residual needed to “cancel out” the global-scale step
edge (dark outside, grey inside) shown in Figure 8(f).

5 Discussion / Conclusion

5.1 Application to Analysis and Discrimination

Our method constructs a statistical scale-space model of image profiles in a
collar about the boundary of a deformable shape model placed in the image.
Given a segmented training population, where each image in the population has
a corresponding deformable shape model placed in it, our profile scale-space
model allows one to understand how the image can be expected to vary along
the object boundary. For example, the profile scale-space model built on the disk
toy example clearly shows the sine waves of different frequency that are expected
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at different locations about the boundary. As mentioned in the introduction, the
hippocampus exhibits different edge profiles at different parts of the boundary.
Our profile scale-space model can be used to quantify these different edge profiles
locally, including natural variability in the population.

Another application of the profile scale-space model is in discrimination. Dis-
crimination is often done on shape features to understand differences between
subpopulations, e.g. a diseased patient group vs. a control group. Using local
profile scale-space features, one could, instead of performing PCA, use discrim-
inant analyses like Independent Component Analysis [14] to understand how
the patient group differs from the control group in image features. For exam-
ple, a clinical hypothesis might be that one portion of the hippocampus darkens
slightly relative to the rest of the hippocampus in diseased patients. This (made-
up) hypothesis is an example of what can be tested using discriminant analysis
on the profile scale-space model.

In both analysis and discrmination, the profile scale-space model looks at
image features after the shape variability has been factored away, by use of the
correspondence given by the set of deformed shape models. As mentioned in
Section 2.3, this is similar in spirit to Active Appearance Models [9]. PCA and
discriminant analysis are often performed on shape features; similar analysis
can be done on image features in a shape-normalized space. The image feature
analysis is in complement to the shape analysis.

5.2 Application to Segmentation

Bayesian image segmentation by deformable models optimizes two competing
terms, the image-match likelihood and the shape prior (shape typicality mea-
sure). The statistical model derived from the profile scale-space provides the
image-match likelihood. Integrated with an appropriate shape prior and an op-
timization strategy, this can provide a complete segmentation framework. The
deformable model is initialized in the target image, and the image profiles are
sampled relative to the deformable model. A scale-space is built on the profiles,
and features derived from the scale-space are compared to the scale-space fea-
tures to the statistical model to get a goodness-of-fit of the deformable model into
the target image. In addition to the global goodness-of-fit, local feature selection
from the scale-space can allow a local confidence measure in the goodness-of-fit
to be constructed. This goodness-of-fit is balanced against the shape prior, and
the contour is deformed to optimize the combination. We have such a segmen-
tation framework in 2D using Fourier harmonic shape descriptors; future work
could extend this to 3D using analogous spherical harmonic shape descriptors.

5.3 Extension to 3D/nD Images

Geometry-driven diffusion literature has described generalized images as em-
bedding maps between two manifolds. Chung et al [7] blur what amounts to a
2D texture map on a triangle mesh in 3D. If we let M be the triangle mesh
(a 2D manifold embedded in 3D), then their image can be seen as a function
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I : M → R
+, where R

+ represents the positive reals, the range of intensity val-
ues in the image. Alternately, we can think of the image as a manifold embedded
in the space M × R

+.
Now, to extend this to a collar of thickness about an object boundary (a

volume of the image), the domain of the image can be extended to a 3D space
about the boundary, instead of just the 2D manifold M . If we use the formalism of
image profiles normal to the boundary, we can think of the image as a function
I : M × [−1, 1] → R

+, where [−1, 1] indicates normalized distance from the
object boundary M . Hence, for a fixed d ∈ [−1, 1], the domain {(u, d) : u ∈ M}
represents a “shell” of distance d from the original boundary, according to a
distance transform. For a fixed u ∈ M on the surface, the set {I(u, d) : d ∈
[−1, 1]} is a single image profile across the boundary at that point. Diffusion
using the Laplace-Beltrami operator can then be run on each shell, using the
metric tensor of the manifold M , to construct a scale-space. A non-Euclidean
distance could certainly be used for d, for instance the intrinsic figural coordinate
system in M-reps [15] [16].

5.4 Conclusion

We present a statistically trained scale-space model on image profiles around the
boundary of an object embedded within images. There is a sampling of the image
in a coordinate system relative to the object boundary (image profiles). A scale-
space is constructed on these profiles which preserves the across-boundary fea-
tures, but looks at along-boundary features in a multiscale fashion. The process
is done for a population of images, with correspondence given by the shape mod-
els which have been deformed to fit each image. A statistical model is then built
on the profile scale-space, which can then be incorporated into a full Bayesian
segmentation framework.
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