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Construction of population atlases is a key issue in medical image

analysis, and particularly in brain mapping. Large sets of images are

mapped into a common coordinate system to study intra-population

variability and inter-population differences, to provide voxel-wise

mapping of functional sites, and help tissue and object segmentation

via registration of anatomical labels. Common techniques often include

the choice of a template image, which inherently introduces a bias. This

paper describes a new method for unbiased construction of atlases in

the large deformation diffeomorphic setting.

A child neuroimaging autism study serves as a driving application.

There is lack of normative data that explains average brain shape and

variability at this early stage of development. We present work in

progress toward constructing an unbiased MRI atlas of 2 years of

children and the building of a probabilistic atlas of anatomical

structures, here the caudate nucleus. Further, we demonstrate the

segmentation of new subjects via atlas mapping. Validation of the

methodology is performed by comparing the deformed probabilistic

atlas with existing manual segmentations.
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Introduction

Since Broadman 1909, the construction of brain atlases has

been central to the understanding of the variabilities of brain

anatomy. More recently, since the advent of modern computing

and digital imaging techniques intense research has been directed

toward the development of digital three-dimensional atlases of the

brain. Most digital brain atlases so far are based on a single

subject’s anatomy (Ho et al., 2002; Warfield et al., 2002).

Although these atlases provide a standard coordinate system, they
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are limited because a single anatomy cannot faithfully represent

the complex structural variability between individuals. A major

focus of computational anatomy has been the development of

image mapping algorithms (Gee et al., 1993; Miller and Younes,

2001; Rohlfing et al., 2003b; Thompson and Toga, 2002) that can

map and transform a single brain atlas on to a population. In this

paradigm, the atlas serves as a deformable template (Grenander,

1994). The deformable template can project detailed atlas data

such as structural, biochemical, functional as well as vascular

information on to the individual or an entire population of brain

images. The transformations encode the variability of the

population under study. A statistical analysis of the trans-

formations can also be used to characterize different populations

(Csernansky et al., 1998; Hohne et al., 1992; Talairach et al.,

1988). For a detailed review of deformable atlas mapping and the

general framework for computational anatomy, see Grenander and

Miller (1998) and Thompson and Toga (1997). One of the

fundamental limitations of using a single anatomy as a template

is the introduction of a bias based on the arbitrary choice of the

template anatomy.

Thompson and Toga (1997) very elegantly address this bias in

their work by mapping a new data set on to every scan in a brain

image database. This approach addresses the bias by in effect

forgoing the formal construction of a representative template

image. Although this framework is mathematically elegant and

powerful, it results in a computationally prohibitive approach in

which each new scan has to be mapped independently to all the

data sets in a database. This is analogous to comparing each subject

under study to every previously analyzed image. As brain image

databases grow the analysis problem grows combinatorially.

In more recent and related work, Avants and Gee (2004)

developed an algorithm in the large deformation diffeomorphic

setting for template estimation by averaging velocity fields.

Most other previous work (Bhatia et al., 2004) in atlas

formation has focused on the small deformation setting in which

arithmetic averaging of displacement fields is well defined.

Guimond et al. (2000) develop an iterative averaging algorithm

to reduce the bias. In the latest work of Bhatia et al. (2004), explicit
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constraints requiring that the sum of the displacement fields add to

zero is enforced in the proposed atlas construction methodology.

These small deformation approaches are based on the assumption

that a transformations of the form h(x) = x + u(x), parameterized

via a displacement field, u(x), are close enough to the identity

transformation such that composition of two transformations can

be approximated via the addition of their displacement fields:

h1 B h2 xð Þ ˜̃̃ xþ u1 xð Þ þ u2 xð Þ: ð1Þ

The focus of this paper is a development of a methodology that

simultaneously estimates the transformations and an unbiased

template, in the large deformation setting. The method developed

herein does not assume the above approximation of Eq. (1) and

build atlases of populations with large geometric variability.
Methods

Given a collection of anatomical images, a natural problem is the

construction of a statistical representative of the population. If the

data associated with the population under study can be easily

parameterized by a flat Euclidean space, classical statistical methods

of simple averaging can be applied to generate such a representative.

The imaging data under the Gaussian assumption can be easily

represented as member of a flat space. The image can be represented

as a member of very large dimensional Euclidean space (RN, where

N is the number of voxels in the image). Alternatively, using

appropriate interpolation assumptions, the image can be assumed to

be a square integrable function, that is, a member of the (flat) Hilbert

space L2 (X), whereX is the underlaying coordinate space, usually a

compact subset of R3.

The geometric variability of the anatomy itself usually cannot

be represented by elements of a flat space. If the geometry of the

underlying anatomy can be adequately represented by a finite

number of landmarks, representative template landmark config-

uration can be estimated using the Procrustes method pioneered by

Kendall (1984) and championed by Bookstein (1991). The study of

anatomical shape is inherently related to the construction of

transformations of the underlying coordinate space that map one

anatomy to another. Various transformation groups of R3 have been

studied for understanding anatomical geometry. These groups vary

in dimensionality from simple global translations (R3) and rigid

rotations (SO(3)) to the infinite dimensional group of diffeo-

morphisms (H) (Miller et al., 2002). In this paper, we address the

problem of anatomical template construction as the joint estimation

of the most representative image and the associated anatomical

geometry given a database of brain images.

Averages in metric spaces

In this paper, the problem of building an anatomical template is

posed as a statistical estimation problem. For anatomical represen-

tations in which the underlying geometry is parameterized as a

Euclidean vector space, training data can be represented as a set of

vectors x1,: : :, xN in a vector space V.

In the small deformation elastic image mapping setting this is

assumed to be true, as the deformations are assumed to be close

enough to the identity mapping. Under this assumption the

displacement vector fields parameterizing the transformations can

be assumed to be elements of the Hilbert space of square integrable

functions L2(X).
In a vector space, with addition and scalar multiplication well

defined, an average representation of the training set can be

computed as the linear average

l ¼ 1

N

XN
i ¼1

xi:

Linear averaging cannot be directly applied to the large

deformation setting as under the large deformation model the space

of transformations is not a vector space but rather the infinite

dimensional group H of diffeomorphisms of the underlying

coordinate system X.

In the group of diffeomorphisms, the addition of two diffeo-

morphisms is not generally a diffeomorphism and, hence, a

template based on linear averaging of transformations is not well

defined. In this paper, we extend the notion of averaging to general

metric spaces first proposed by Frechet (1948). For a general

metric space M, with a distance d: M � M Y R, the intrinsic mean

for a collection of data points xi can be defined as the minimizer of

the sum-of-squared distances to each of the data points. That is

l ¼ argmin
x a M

XN
i ¼1

d x; xið Þ2:

In our previous work (Fletcher et al., 2003a,b), we have used

these concepts to extend first and second order statistical analysis

to finite dimensional Riemannian Manifolds for statistical analysis

of medial representations of objects.

In this paper, we apply this approach to the construction of large

deformation diffeomorphic templates. This work builds heavily on

the mathematical metric theory of diffeomorphisms developed by

Miller and Younes (2001).

Rigid template estimation

To exemplify the template estimation problem first, consider a

collection of N images Ii(x) of the same anatomy acquired with

unknown rigid registration. For such a collection of images, the

variability is the noise introduced by the imaging modality and the

rigid pose of the anatomy parameterized by rigid translations and

rotations ((Ti, Si) a R3 � SO(3)). The optimal template is one that

requires the dminimum amount of transformationT to each of the

anatomical images and which is most likely given the imaging

modality noise model. If the imaging modality is MRI than we can

assume an additive Gaussian noise. The template estimation

problem can then be stated as the quadratic minimization problem

ÎI xð Þ ¼ argmin
I xð Þ; Ti;Sið Þ

XN
i ¼1

Z
X

Ii Sixþ TiÞ � I xð Þð Þð 2
dx

þ
XN
i ¼1

D Ti; Sið Þ2; ð2Þ

where D(Ti, Si) is the metric on the space of rigid transformations

from the identity transformation given by

D2 Ti; Sið Þ ¼ jjTijj2 þ jjlog Sið Þjj2:

In the above expression, the log is the matrix log which for a

rotation matrix can be easily calculated using the Rodriguez

formula. A straightforward extension of the well known Procrustes

method minimizes Eq. (2) above (Toga, 1999).
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Although the above methodology has been extensively studied

for rigid transformations, the concept can be readily extended to

general transformations. Given a metric on a group of trans-

formations, the template construction problem can be stated as that

of estimating an image Î that requires the minimum amount of

deformation to transform into every population image Ii. More

precisely, given a transformation group S with associated metric D:

S � S Y R, along with an image dissimilarity metric E(I1, I2), we

wish to find the image Î such that

ĥhi; ÎI
� �

¼ argmin
hi a S;I

XN
i ¼1

E Ii B hi; Ið Þ2 þ D e; hið Þ2 ð3Þ

where e is the identity transformation.

Large deformation diffeomorphic template estimation

Now consider a collection of N MRI images of different

anatomies acquired by the same imaging modality in rigid

registration. For such a collection of images, the variability is a

result of not only of the noise of the imaging modality but also

the inherent biological variability of the geometry of the

underlying anatomy. In sharp contrast to the above setting, to

study the geometry of the underlying anatomy, the finite

dimensional matrix group of rigid transformations must be

replaced by the infinite dimensional analogue, the group of

diffeomorphisms H.

Let X o R3 be the underlying coordinate system of the

template image. Let Xi o R3, i = 1,: : :,N be the coordinate

systems of the images Ii. The problem of estimating the most

representative template image can be stated as the estimation of

an image Î, an associated independent coordinate system, which

requires the least deformation represented by diffeomorphisms

hi(x), to best match each of the input images. This framework is

depicted in Fig. 2.

We apply the theory of large deformation diffeomorphisms

(Dupuis et al., 1997; Joshi et al., 2003; Miller and Younes, 2001) to

generate deformations hi aH that are solutions to the Lagrangian

ODEs d
dt
hi x; tð Þ = vi(hi(x, t), t), t a [0, 1]. The transformations hi

are generated by integrating velocity fields vi forward in time.

Inverse transformations hi
�1 are generated by integrating the

negative velocity fields ṽi backward in time. The relationship

between vi and ṽi is simply given by vi(S, t) = �ṽi, (1� t). For a

single transformation, h, this relationship is shown in Fig. 1. The

location y = h(x, 1) is described in terms of the forward integration

of the velocity field v starting from the location x. Similarly, x can

be described in terms of integrating the negative velocity field ṽ

backward in time starting at y.

We induce a metric on the space of diffeomorphisms by using a

Sobolev norm via a partial differential operator L on the velocity
Fig. 1. Velocity field integration.
field v. Let h be a diffeomorphism isotopic to the identity

transformation e. We define the squared distance D2(e, h) as

D2 e; hð Þ ¼ min
v

Z 1

0

Z
X
jjLv x; tð Þjj2dxdt

subject to

h xð Þ ¼ xt

Z 1

0

v h x; tð Þ; tð Þdt:

The distance between any two diffeomorphisms is defined by

D h1; h2ð Þ ¼ D e; h�1
1 B h2

� �
:

This distance satisfies all of the properties of a metric (Lorenzen

and Joshi, 2003). Namely it is nonnegative, symmetric, and

satisfies the triangle inequality. D is trivially nonnegative.

Symmetry follows from the fact that h�1 is generated by

integrating backward in time the negative of the velocity field that

generates h. Hence the minimizer is the same for both h and h�1,

implying that D(e, h) = D(e, h�1). Miller et al. (2002) give a

detailed discussion of D and show that it satisfies the triangle

inequality.

Having defined a metric on the space of diffeomorphisms, the

minimum energy template estimation problem (Eq. (3)) is

formulated as

ĥhi; ÎI
� �

¼ argmin
hi;I

XN
i ¼1

E Ii B hi; Ið Þ2 þ
Z 1

0

Z
X
jjLvi x; tð Þjj2dxdt

subject tos : hi xð Þ ¼
Z 1

0

vi hi x; tð Þ; tð Þdt:

ð4Þ

The above problem of estimating a template image Î that is

the best representative for a population of N anatomical images

{Ii}i = 1
N is depicted in Fig. 2.

Throughout this paper, we use the squared error dissimilarity

metric but other metrics such as the Kullback–Leibler divergence

can also be used (Kendall, 1984). Under the squared error

dissimilarity measure, the template estimation problem becomes

ĥhi; ÎI
� �

¼ argmin
hi;I

XN
i ¼1

Z
X

Ii hi xð Þð Þ � I xð Þð Þ2dx

þ
Z 1

0

Z
X
jjLvi x; tð Þjj2dxdt: ð5Þ

This minimization problem can be simplified by noticing that

for fixed transformations hi, the Î that minimizes Eq. (5) is given

by

ÎI xð Þ ¼ 1

N

XN
i ¼1

Ii hi xð Þð Þ: ð6Þ

That is, Î is the voxel-wise arithmetic mean of the deformed

images Ii (hi (x)). Note that the method for computing Î from

{Ii} is determined by the image dissimilarity metric used. Other

image dissimilarity metrics would imply different methods for

computing Î.

Combining Eqs. (5) and (6) results in

ð7Þ

ĥhi ¼ argmin
hi

XN
i ¼1

Z
X

Ii hi xð Þð Þ � 1

N

XN
j ¼ 1

Ij hi xð Þð Þ
 !2

dx

þ
Z 1 Z

jjLvi x; tð Þjj2dxdt:

0 X

Note that the solution to this minimization problem is

independent of the ordering of the N images.



Fig. 2. Template construction framework.
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This template construction framework produces transformations

ĥi such that ĥi :Vi Y V. Since each ĥi is a diffeomorphism, its

inverse ĥi
�1 :Vi Y V exists and can be calculated by integrating the

negative velocity fields backward in time (Fig. 1). Image to image

correspondences can be computed from these transformations

using the composition rule

ĥhi;j ¼ ĥhj B ĥh�1
i : Xi Y Xj: ð8Þ

Inverse consistent image registration

When the template construction framework presented in the

previous section is applied to two images the result is an inherently

inverse consistent image registration algorithm—no correction

penalty for consistency is required.

A registration framework is inverse consistent if image

ordering does not affect the registration result. Many image

registration algorithms are not inverse consistent because their

image dissimilarity metrics are computed in the coordinate system

of one of the images being registered. The choice of such a

reference image can bias the result of the registration. Inverse

consistent registration is desired when there is no a priori reason

to choose one image over another as a reference image. Previous

work (Guimond et al., 2000; Magnotta et al., 2003) has introduced

methods for computing approximate inverse consistent registra-

tions by applying inverse consistency constraints on intermediate

incremental transformations.

For two images I1 and I2, Eq. (7) reduces to

fĥh1; ĥh2g ¼ argmin
h1h2

1

2

Z
X

I1 h1 xð Þð Þ � I2 h2 xð Þð Þð Þ2dx

þ
Z 1

0

Z
X
jjLv1 x; tð Þjj2dxdt þ

Z 1

0

Z
X
jjLv2 x; tð Þjj2dxdt:

The transformations h1 and h2 map X to X1 and X2,

respectively. Using the composition rule (Eq. (8)), we define the

transformations h1,2: X1Y X2 = h2 B h1�1 and h2,1: V2 Y V2 = h1 B
h2
�1. In other words, h1,2 is a transformation from I1 to I2 and h2,1

is a transformation from I2 to I1. This method is inverse consistent

since h1,2 B h2,1 = h2,1 B h1,2 = e, the identity transformation.
Implementation

In this paper, we present results based on a greedy fluid flow

algorithm and are currently working on implementing the full

space time optimization based on the Euler–Lagrange equations

derived by Lorenzen and Joshi (2003). Following the greedy fluid

algorithm of propagating templates described in Miller and Younes

(2001), we approximate the solution to the minimization problem

in Eq. (7) using an iterative greedy method. At each iteration k, the

updated transformation hi
k + 1, for each image Ii, is computed using

the update rule hi
k + 1 = hi

k(x + qvi
k(x)). hi

k and vi
k are the current

estimated transformation and velocity for the ith image, and e is the
step size. In other words, each final transformation hi is built up

from the composition of k transformations.

The velocity vi
k for each iteration k is computed as follows.

First, compute the updated template estimate

ÎI k xð Þ ¼ 1

N

XN
i ¼ 1

I ki xð Þ;

where Ii
k = Ii(hi

k (x)) is the ith image deformed by hi
k. Next, define

force functions

Fk
i xð Þ ¼ � I ki xð Þ � ÎI ki xð Þ

	
qIki xð Þ:



This is the variation of the image dissimilarity term in Eq. (7)

with respect to hi. The velocity field vi
k is computed at each

iteration by applying the inverse of the differential operator L to the

force function, that is, vi
k(x) = L�1Fi

k(x), where L = aj2 + hjj +

g is the Navier–Stokes operator. This computation is carried out in

the Fourier domain (Joshi et al., 1997).

For each iteration the dominating computation is the Fast

Fourier Transform. Thus, the order of the algorithm is MNn log n

where M is the number of iterations, N is the number of images to

be registered, and n is the number of voxels in each image. The

complexity increases only linearly as images are added, making

the algorithm extremely scalable. Satisfactory correspondence is

typically achieved after 200 iterations. In practice, we use a multi

scale approach that initializes the fine (voxel) scale registration

with the up-sampled correspondence computed at a coarser scale

level. The finer scale levels only need to account for residue from

coarser scale levels and thus require far fewer iterations to

converge.
Driving application: autism neuroimaging study

In the following, we describe the application of the unbiased atlas

construction to an ongoing infant autism study directed by Joseph

Piven at UNC Chapel Hill. From the partnership with our Psychiatry

department, we have access to amorphologicMRI studywith a large

set of autistic children (N = 50), developmentally delayed subjects

(N = 25), and control subjects (N = 25), scanned at age two with

follow-up at age four. This project employs structural (MRI) and

functional (fMRI) neuroimaging techniques to examine the neural

basis of social cognitive, affective, and executive functioning
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deficits in autism. The combined use of neuroimaging and neuro-

psychological data should further our understanding of the causes of

autism, thus assisting identification, prevention, and potentially

treatment of this disorder.

This study of early development imposes several significant

challenges to image analysis. Cross-sectional comparison between

healthy and autistic subjects at ages two and four and the study of

brain growth over the 2-year follow-up period require adequate

image analysis methods. Normative imaging data of healthy and

patient populations in this age range are not available, suggesting the

development of atlases that describe the mean and the statistical

variability in early development. We plan to build population atlases

that help us to study differences between groups and differences in

growth patterns. Methods have to cope with the relatively large

variability of head size and shape in these age groups and with

significant longitudinal changes due to growth.

Gray-level MRI data for atlas-building

The atlas building described here uses high-resolution T1-

weighted MRI with voxel size 0.781252 � 1.5 mm3. The standard
Fig. 3. Template Construction shown for five of the eight initial images. (a) Set of

between the initial images and the initial template estimate. Notice the structure of

and the final template estimate. These errors are normalized to the maximum inte

structure in the residue after the deformation. (e) Sum of squared errors as a func
segmentation pipeline of the UNC autism image analysis group

rigidly aligns the raw MR images to a Talairach coordinate space

by specifying anterior and posterior commissure (AC–PC) and the

interhemispheric plane. The transformation also interpolates the

images to a standard isotropic voxel-size of 1 � 1 � 1 mm3. We

randomly selected eight images from the total of currently over 80

cases in our database. The images were cropped for efficiency

reasons.

Construction of unbiased gray-level atlas

To evaluate the performance of this method we applied our

algorithm to a set of intensity adjusted 3D MR brain images taken

from eight different subjects. As a preprocessing step, these images

were aligned using an affine transformation. Axial slices from five

of these eight initial images are shown in the first column of Fig. 3.

There is noticeable large deformation variation between these

anatomies, especially around the ventricles. The second column of

Fig. 3 shows the deformed (3D) images after 500 iterations of our

algorithm. The deformed images look very similar, as they have

been deformed into the common coordinate space of the evolving
initial images. (b) Deformed images after 500 iterations. (c) Absolute error

the residual error around the ventricles and the cortex, the deformed images,

nsity range to show the locations of the residual errors. Notice the lack of

tion of the number of iterations.



Fig. 4. Estimated templates initially and after 500 iterations. The figure shows an axial slice through the ventricles and basal ganglia. Atlas construction is based

on eight infant MRI.
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template X. Column 3 of Fig. 3 shows the absolute error between

each input image and the initial template estimate. After applying

our algorithm the deformed neuroanatomies are very close,

resulting in a sharp final template estimate. Column 4 of Fig. 3

shows the absolute error between each deformed image and the

final template estimate. This image is amplified to a maximum

range to show the residual error. The squared error as a function of

the number of iterations is displayed in column 5 of Fig. 3. The

plots demonstrate the monotonous decrease of the error with

increasing number of iterations.

Fig. 4 shows the initial and final estimate of the template. The

initial template estimate is blurry since it is an average of the

varying individual neuroanatomies. Ghosting is evident around the

lateral ventricles and near the boundary of the brain. The final

template estimate Fig. 4 right is close to each individual final

results (column 2 Fig. 3). The sharpening of the resulting atlas in

comparison to the initial estimate is also shown in Fig. 5. Whereas

the initial template obtained by affine deformation and averaging

does not show any details in cortical regions, these regions appear

much sharper in the final template.

Annotated atlas: example caudate nucleus

Atlases might also carry anatomical labels, which can be used

to explain location and variability of anatomical structures if

transformed to the atlas space. Also, they find use in the

segmentation of new subjects by atlas deformation. Rohlfing et

al. (2003a) deformed a set of labeled atlas images to a new image
Fig. 5. Estimated templates initially (left) and after 500 iterations (middle). The ri

final template (dotted).
and showed that the combination of these independent classifiers

was substantially better than an individual classifier (Miller et al.,

1999). Combination of the deformed label images was done using

an extension of the STAPLE (Shen and Davatzikos, 2002; Woods

et al., 1998) algorithm. This classification method requires multiple

high-dimensional deformations to be applied to each new

individual, which poses a computational problem if applied to

large clinical studies.

The caudate study allows us to perform similar experiments.

Each infant MRI is segmented into brain tissue, fluid, ventricles,

and subcortical structures. Here, we will use the left and right

caudate nucleus. In the following, we will describe the construction

of a probabilistic caudate atlas which, similarly to Rohlfing’s work,

is built by deformation of a set of segmented images into a

template. We will further show how this caudate atlas can be

applied to segment new subject’s images.

Caudate nucleus segmentations

A specific structure of interest in autism research is the caudate

nucleus, as this structure is associated with controlling motor

function and indirectly with the repetitive behavior as observed in

autistic children. On a first sight, the caudate seems easy to

segment since the largest fraction of its boundary is bounded by the

lateral ventricles and white matter. Portions of the boundary of the

caudate can be localized with standard edge detection (provided

the appropriate scales are chosen). However, the caudate is also

adjacent to the nucleus accumbens and the putamen where there

are no visible boundaries in the MRI (see Fig. 6). The caudate and
ght graph illustrates a profile along the dashed line for the initial (line) and



Fig. 6. Two and three-dimensional views of the caudate nucleus. Coronal slice of the caudate: original T1-weighted MRI (left), and overlay of

segmented structures (middle). Right and left caudate are shown shaded in green and red; left and right putamen are sketched in yellow, laterally exterior

to the caudates. The nucleus accumbens is sketched in red outline. Note the lack of contrast at the boundary between the caudate and the nucleus

accumbens, and the fine-scale cell bridges between the caudate and the putamen. At right is a 3D view of the caudate and putamen relative to the lateral

ventricles.
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nucleus accumbens are distinguishable on histological slides, but

not on MRI of this resolution. Another btroublespotQ for the

caudate is where it borders the putamen; there are bfingersQ of cell
bridges, which span the gap between the two. We have developed a

highly reliable manually assisted caudate segmentation using

SNAP, a tool based on 3D geodesic snakes (He Jianchun and

Christensen, 2003). This tool reduced segmentation from about 2 h

to approximately 10 min, still including manual experts’ definition

of nucleus accumbens and putamen boundaries.

Here, we used the caudate segmentations of the eight cases

selected for atlas building to construct a probabilistic caudate atlas.

Further, we selected five new cases from our database which are

not part of these eight images for testing caudate segmentation by

atlas deformation. These five cases were taken from the reliability

test series, with the advantage that we have six manual

segmentations (two raters with three segmentations each) for each

case, which represent a probabilistic gold standard.

Probabilistic caudate template using voxel voting

The caudate segmentations of the eight atlas images were

transformed into the atlas space by applying the individual

deformations obtained during atlas building. The set of deformed

caudate segmentations can be used to build a probabilistic caudate

atlas. The segmentations were combined by a voxel-wise voting

scheme counting the number of segmentations at each voxel.

Normalization by the number of images finally results in a

probabilistic caudate template. This segmentation template can be

seen as a level set within the range [0: : :1] where the level 0.5 defines
the average shape. Fig. 7 left illustrates a sagittal cut and the

corresponding 3D surface of the average shape.

Probabilistic caudate template using STAPLE

Zou et al. (2003) developed an algorithm to calculate the

composite gold standard estimate from multiple manual segmen-
Fig. 7. Probabilistic caudate atlas. The manual segmentations of the eight images

obtained during atlas building. (a) The eight deformed segmentations are superimp

The STAPLE algorithm is applied to represent a probabilistic best estimate (gold

probabilistic images and 3D surfaces of the average structure (probability 0.5).
tations (Shen and Davatzikos, 2002). The Simultaneous Truth and

Performance Level Estimation (STAPLE) method is based on an

expectation maximization (EM) algorithm. Given a set of binary

segmentations of the same object, STAPLE calculates the

maximum likelihood estimate of the composite bgold standardQ
or the best estimate of the unknown gold standard. The algorithm

calculates the specificity and sensitivity of each segmentation in

an iterative way. The major difference over voxel-wise voting is

its ability to assign weights for each individual segmentation

proportional to the performance, that is, segmentations which are

closer to the estimated gold standard get larger weights. The

STAPLE algorithm is applied to the set of eight segmented left

and right caudates after they were deformed to the atlas. It is

important to notice that we limited the STAPLE calculations to

disputed voxels only, so that regions with only background and

agreement within regions were not taken into account. Fig. 7,

right, illustrates a sagittal cut and the corresponding 3D average

object.

Segmentation of new unknown subjects

The combined unbiased MRI and caudate atlases can be

used to segment new subjects by atlas deformation. The use

of the unbiased atlas constructed from a representative set of

images eliminates the need to deform and combine multiple

labeled atlases. The MRI atlas is deformed using fluid

deformation. The same transformation is then applied to the

caudate template to transfer the probabilistic caudate to the

new image. Fig. 8 illustrates manual segmentation and

segmentation by deformation–segmentation. The comparison

demonstrates the potential of this segmentation technique not

only to segment well-visible boundaries but also transition

regions (e.g., like nucleus accumbens) which can only be

segmented in the anatomical context of embedding neighboring

structures.
used for atlas building are deformed using the individual deformation fields

osed by voxel-voting and normalized to form a caudate probability map. (b)

standard) of the true structure. The images show sagittal slices through this



Fig. 8. Coronal and sagittal view of the right caudate segmented manually (left two images) and by nonlinear deformation of the atlas (right two images). Atlas

deformation allows to capture the inferior and lateral boundaries of the caudate with nucleus accumbens and putamen although there are no visible contours in

the MRI image (see also Fig. 6 for anatomical reference).
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Validation

The deformation–segmentation is validated against the gold

standard of human expert segmentation. As discussed earlier, each

of the five new subjects selected for segmentation also comes with

a set of six expert segmentations (three repeated segmentations by

two raters). This allows to compare not only binary segmentations

but also probabilistic segmentations.

We use a previously developed validation package VALMET

(Gerig et al., 2001) that includes a probabilistic overlap measure

between two fuzzy segmentations. This metric is derived from the

normalized L1 distance between two probability distributions

POV A;Bð Þ ¼ 1�
R
j PA � PB j
2
R
PAB

: ð9Þ

PA and PB are the probability distributions representing the two

fuzzy segmentations and PAB is the joint probability distribu-

tion. In this study, PA and PB are calculated by integrating a

set of binary segmentations with subsequent normalization to

the range of [0 : : :1], whereas PAB is calculated by integrating

the set all binary segmentations and appropriate normalization.

The numerator expresses the probabilities of non-intersecting

regions.

Table 1 lists the left and right caudate volumes for manual

segmentation (user assisted geodesic snake) and deformation

segmentation. The results are encouraging but also show the

limitations of high dimensional deformation without using land-

marks. There is one case (5007 right) with very large volumetric

difference, probably due to very thin ventricles creating local large

scale deformation.

Table 2 lists overlap measures for pairs of binary segmentations

(top) and pairs of probabilistic segmentations (bottom). Binary
Table 1

Comparison between manual segmentation and automatic segmentation by atlas

Case Manual volume Atlas de

(L) (R) (L)

Case 5003 3583.83 3596.00 3852.13

Case 5004 4054.67 3910.83 3833.88

Case 5007 4045.17 4319.67 3672.25

Case 5011 3933.67 3899.67 4151.13

Case 5020 3997.67 4112.17 3833.88

Average 3922.99 3967.67 3868.65

SD 195.57 269.62 173.97

The table illustrate the volumes for manual segmentation and for segmentation by

percentage differences. Volumes are represented by the average objects at probab
objects are extracted from the probabilistic segmentations by

choosing level 4 close to the middle level. The overlap ratio is

defined as the intersection divided by the average. The probabilistic

overlap uses the probabilistic caudate atlas constructed from eight

cases and the manual experts segmentations (six cases). Overlap

results are in the range 0.85 to 0.90, which is encouraging given the

small size of the objects. Manual raters still have a significantly

better intra- and inter-rater reliability; however, this only comes

after several months of training with several reliability studies.
Conclusions

In this paper, a new concept for unbiased construction of atlases

is presented based on Frechet means in metric spaces. This

approach results in an iterative algorithm of simultaneous

deformation of a population of subject images into a new average

image that evolves iteratively. This technique avoids the systematic

bias introduced by selecting a template but also the combinatorial

problem of deformation of a large number of data sets into each

new subject.

The new techniques produces a population average image

which might serve as a template to represent the population group.

Sharpness of structures indicates the quality of match and residual

biological variability. Local variability of brain structures is

encoded in the set of deformation maps. We plan to explore this

information in our future work.

Results demonstrate the application of the new technique to

eight 3D MRI of children at age 2 years. A visual comparison of

the resulting average atlas with each individual image suggests that

the atlas represents the average while still being sharp. As each

individual deformation is diffeomorphic, we can apply trans-
deformation shown for five cases

formed volume Difference manual vs. deformation

(R) (L) (R)

3638.25 7% 1%

3881.13 5% 1%

3562.25 9% 18%

4089.25 6% 5%

3881.13 4% 6%

3810.40 6.2% 6.2%

211.53

atlas deformation (volumes in mm3). The last two columns list the absolute

ility level 0.5.



Table 2

Comparison between manual segmentation and automatic segmentation by

atlas deformation shown for five cases

Case Mean

level (L)

Mean

level (R)

STAPLE

(L)

STAPLE

(R)

Overlap ratio

Case 5003 0.88 0.86 0.88 0.87

Case 5004 0.91 0.92 0.90 0.91

Case 5007 0.88 0.86 0.88 0.87

Case 5011 0.88 0.85 0.88 0.85

Case 5020 0.90 0.86 0.90 0.86

Average 0.89 0.87 0.89 0.87

Probabilistic overlap

Case 5003 0.84 0.82 0.89 0.86

Case 5004 0.86 0.87 0.90 0.90

Case 5007 0.85 0.84 0.88 0.85

Case 5011 0.84 0.82 0.88 0.85

Case 5020 0.87 0.84 0.90 0.85

Average 0.85 0.84 0.89 0.86

The table illustrates the differences for the probabilistic caudate atlas

templates represented as a probability atlas (fuzzy caudate atlas) and

derived by applying the STAPLE algorithm. Top: overlap ratio between

pairs of binary objects derived as the mean level of the probability atlas

templates. Bottom: probabilistic overlap calculated between pairs of

probabilistic atlas templates.
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formations in both directions from the individual into the atlas and

back. We can also transform images into each other by cascading

their transformation and inverse transformations.

The caudate segmentation study with a set of over 80

segmented images and a reliability study of five subjects with sets

of repeated segmentations by several experts form an excellent

database to test and validate intermediate stages of our develop-

ment. Moreover, the caudate is an excellent example of an

anatomical structure that is not fully delineated by strong contrast

boundaries but can only be segmented in the context of embedding

structures or a geometric model. This supports use of deformable

atlas registration where constraints are provided by a volumetric,

unbiased atlas.

The caudate segmentation experiment clearly demonstrates the

accuracy to be obtained by deformation segmentation without

landmarking. It can be seen from the results that in one of the

validation cases (subject 5007) lume of the right caudate was

substantially underestimated. This was primarily as a result of a local

extrema in the greedy optimization strategy used. We are in the

process of augmenting the current completely automated process

with manual landmarking and a complete space-time optimization

which will greatly improve the accuracy of the segmentations.
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