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Abstract

This paper describes an automatic tissue segmentation method for newborn brains from magnetic resonance images (MRI). The
analysis and study of newborn brain MRI is of great interest due to its potential for studying early growth patterns and morpho-
logical changes in neurodevelopmental disorders. Automatic segmentation of newborn MRI is a challenging task mainly due to the
low intensity contrast and the growth process of the white matter tissue. Newborn white matter tissue undergoes a rapid myelination
process, where the nerves are covered in myelin sheathes. It is necessary to identify the white matter tissue as myelinated or non-
myelinated regions. The degree of myelination is a fractional voxel property that represents regional changes of white matter as
a function of age. Our method makes use of a registered probabilistic brain atlas. The method first uses robust graph clustering
and parameter estimation to find the initial intensity distributions. The distribution estimates are then used together with the spatial
priors to perform bias correction. Finally, the method refines the segmentation using training sample pruning and non-parametric
kernel density estimation. Our results demonstrate that the method is able to segment the brain tissue and identify myelinated and
non-myelinated white matter regions.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The segmentation of newborn brain structures from
magnetic resonance images (MRI) is crucial for the
study of normal development and comparison to neuro-
developmental disorders at early stages. The develop-
ment of new segmentation methods for this age group
is driven by the increasing use of MRI to study new-
1361-8415/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.media.2005.05.007

q This research is supported by the UNC Schizophrenia Research
Center, an NIMH Conte Center MH064065 (PI J. A. Lieberman and
J.H. Gilmore) and the UNC Neurodevelopmental Disorders Research
Center HD 03110 (PI J. Piven). Marcel Prastawa is supported by NIH-
NIBIB R01 EB000219 (PI E. Bullitt).
* Corresponding author. Tel.: +1 919 962 1836.
E-mail address: prastawa@cs.unc.edu (M. Prastawa).
borns, for example our ongoing study of early brain
development in normal and high risk children (Zhai
et al., 2003; Gilmore et al., 2004) and the lack of appro-
priate segmentation methodology. Manual segmenta-
tion of newborn brains is tedious, time consuming,
and lacks reproducibility. Therefore, it is necessary to
use automatic segmentation methods for clinical studies
with multiple subjects. This task is considerably more
challenging compared to automatic segmentation of
adult brain MRI due to the early development process;
Rutherford (2002) provides an excellent description of
newborn MRI and the dynamic changes seen over the
early development period.

In newborn infant brains, the white matter structure
undergoes myelination, where the fibers are being
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covered in myelin sheathes. At birth, the white matter of
the brain stem and the posterior limbs of the internal
capsule are myelinated and have white to gray matter
contrast similar to that of adults (white matter is bright-
er than gray matter in the T1w image). Other regions of
white matter such as the centrum semi-ovale are not
myelinated and the white to gray matter contrast is in-
verted (white matter is darker than gray matter in the
T1w image). As the child ages from birth to one year,
myelination progresses through the anterior limbs of
the internal capsule, the occipital radiations, and then
to the frontal white matter. As this happens, the MR
relaxation times of these regions change with the new
myelinated fibers consequently changing the MRI sig-
nal. By 1.5 years, the MR image contrast is almost
adult-like. Fig. 1 shows an example of a newborn MR
image with the myelinated and non-myelinated white
matter regions.

Several methods have been developed for automati-
cally segmenting healthy adult brain MRI, mostly vari-
ations of multi-variate statistical classification
techniques. Wells et al. (1996) proposed an Expecta-
tion-Maximization scheme that interleaves segmentation
and intensity bias correction. This method was extended
by Van Leemput et al. (1999b) through the use of a
probabilistic brain atlas. Warfield et al. (2000) described
a k-nearest neighbor classification algorithm that is
combined with template matching. Cocosco et al.
(2003) combines atlas sample selection and robust sam-
ple pruning using minimum spanning trees (MST) for
intensity-based classification. A different class of seg-
mentation techniques uses deformable templates that
transfer the labeling of a template to each new subject.
For example, the work by Collins et al. (1999) which
combines neural network classification with nonlinear
image matching.
Fig. 1. MR images of a newborn brain (subject 0096, coronal view).
Left: T1w image, right: T2w image. The arrows show the white matter
structure. The arrow with the solid line indicates myelinated white
matter, the arrow with the dashed line indicates non-myelinated white
matter. Early myelination in white matter is shown as bright regions in
the T1w image and dark regions in the T2w image.
Automatic segmentation methods for healthy adult
brain MRI typically fail in segmenting all the different
structures apparent in newborn brain MRI, particularly
the myelinated white matter regions. Methods that use
probabilistic brain atlases (Van Leemput et al., 1999b;
Collins et al., 1999) or templates (Warfield et al., 2000)
cannot be directly applied to newborn brain MRI since
the spatial prior information for rapidly changing mye-
lination property would be very difficult to define. War-
field et al. (2000) uses a specific template for newborn
brains with predefined classifications for myelinated
and non-myelinated white matter. Methods that are dri-
ven by image intensities (Wells et al., 1996; Cocosco
et al., 2003) would have difficulties in the initialization
phase. The MR image intensities for newborn brains
are significantly affected by both low contrast and RF
inhomogeneity, which can be difficult to overcome with-
out spatial prior information.

Matsuzawa et al. (2001) presented a segmentation
method for infant brain MRI, as part of a study of early
brain development. Their method does not identify mye-
linated white matter and non-myelinated white matter
separately. The results show that their method has diffi-
culties dealing with tissue separation. Hüppi et al. (1998)
and Inder et al. (2005) showed segmentation results of
newborn infants, using the method of Warfield et al.
(2000). They study both prematurely born infants and
normal infants. The prematurely born infants tend to
have simpler cortical folding compared to normal new-
borns. The segmentation method identifies non-myelin-
ated and myelinated white matter. Boardman et al.
(2003) used image deformation for detecting regions of
major development.

Automatic segmentation of newborn brain MRI is
significantly more challenging than the segmentation
of adult brain MRI. This is mainly due to the biology
and the rapid growth process. The specific challenges
are:

(1) The white matter and gray matter contrast to noise
ratio (CNR) for newborn MRI can be as low as
half of the one for adult brain MRI. Factors that
reduce CNR are the small size of the infant brains
and the short scanning period. The small head size
requires them to be scanned at higher resolution,
which leads to higher noise levels. The infants need
to be scanned in very short time since they are not
sedated or constrained. The low CNR causes diffi-
culty in segmenting the partial volume regions.

(2) Typically, newborn brain MRI exhibits motion
artifacts even with very short scan sequences. The
infants may not stay motionless during the scan
period. This problem can be difficult to solve since
the infants are not mentally aware, and healthy
infants cannot be sedated or restrained due to
ethical reasons.
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(3) The process of myelination separates white matter
tissue into two types: myelinated and not myelin-
ated. We treat myelination as a fractional property
because the MR image intensities reflect the degree
of myelination and partial voluming. The dividing
boundaries between regions that are fully myelin-
ated and non-myelinated are generally ambiguous
(Rutherford, 2002). The myelinated white matter
regions are mostly distributed near the spine (cen-
tral posterior) and parts of the internal capsule.
We also observed the presence of myelinated white
matter around the regions associated with the sen-
sory and motor cortex.

(4) Each tissue type in newborn brain MRI exhibits
significant levels of intensity inhomogeneity and
variability, which may be due to a combination
of RF inhomogeneity and biological properties of
the developing tissue (Kandel et al., 2000).

(5) The different tissues have large overlaps in their
intensity characteristics, as shown in Fig. 2. The
decision boundaries for intensity-based classifica-
tion are typically ambiguous and complex.
Fig. 2. Intensity characteristics of one coronal slice of a newborn brain
MRI dataset (subject 0096). Top, from left to right: T1w image, T2w
image, and the manually assigned labels. Purple is myelinated white
matter, green is non-myelinated white matter, yellow is gray matter,
and blue is cerebrospinal fluid. Bottom: the scatterplot of the tissue
intensities, the horizontal axis represents T1w intensities and the
vertical axis represents T2w intensities. There is significant overlap
between the intensities of different tissues, and there are ambiguities in
the decision boundaries.
We developed an atlas based segmentation algorithm
for newborn brain MRI that addresses the challenges
listed above. The method incorporates the robust clus-
tering method proposed by Cocosco et al. (2003) and
the robust parameter estimation method presented by
Rousseeuw and Van Driessen (1999) to deal with noisy
data. It uses the intensity inhomogeneity estimation
scheme from spatial classification proposed by Van
Leemput et al. (1999a). The complex decision bound-
aries are modeled using non-parametric kernel density
estimates, using the efficient method of Girolami and
He (2003). The probabilistic atlas is used as a spatial
prior in the classification process as proposed by Van
Leemput et al. (1999a).
2. Method

Due to the large overlap in the tissue intensity distri-
butions, it becomes necessary to use spatial priors for
the segmentation. The spatial priors that we use is part
of a probabilistic brain atlas of newborn MRI, shown
in Fig. 3. The atlas provides voxel prior probabilities
for white matter, gray matter, and cerebrospinal fluid
(csf). Myelinated white matter and non-myelinated
white matter are combined as one white matter class
in the atlas. This is necessary because it is difficult to
model the different dynamic growth patterns across sub-
jects given the significant changes during early brain
development. With the combined white matter prior,
the discrimination between the two different white mat-
ter classes is primarily driven by the image intensities.
The atlas was created by averaging three semi-automatic
segmentations registered using affine transformation.
Each segmentation was done by a human rater that se-
lects samples for each tissue types for k-nearest neighbor
segmentation. The outputs of the k-nearest neighbor
classification are then edited by manual outlining.
The number of subjects is insufficient to create prior
Fig. 3. The probabilistic brain atlas of a newborn brain. From left to
right: (a) the T1w average image, (b) the T2w average image, and the
spatial prior probability values for (c) white matter (either myelinated
or non-myelinated), (d) gray matter, and (e) csf. Top: axial view.
Bottom: coronal view.
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probabilities that reflect the variability in the popula-
tion. At this point, we are limited by the size of our data-
sets and the amount of time for manual processing. To
compensate for the lack of available data, an additional
blurring is applied to the average segmentations. The
blurred spatial probabilities simulate an atlas with a
higher level of population variability.

Our segmentation framework is composed of three
major steps, as shown in Fig. 4. First, it obtains rough
estimates of the class intensity clusters. It then iteratively
performs inhomogeneity correction and parametric clas-
sification. Finally, it refines the segmentation using non-
parametric kernel density estimates.

Before segmentation, we register the atlas to the sub-
ject using affine transformation and the mutual informa-
tion image match metric (Maes et al., 1997). In this
study, we use T1w and T2w MR images, where the
T2w images are registered to the T1w images also by af-
fine transformation and mutual information metric. The
lower resolution T2w images are up-sampled with spline
interpolation. The registered subject MR images are fil-
tered using anisotropic diffusion (Gerig et al., 1992) to
reduce noise and motion artifacts.

2.1. Robust intensity distribution estimation

The segmentation of newborn brain MRI involves
classifying each voxel into different categories C, where
C is commonly defined to be {myelinated white matter,
non-myelinated white matter, gray matter, and cerebro-
spinal fluid}. The first step in the segmentation process
is to determine the rough estimates of the class inten-
sity distributions. We obtain samples for class Ci at
location ~x with high atlas prior probability values, for
example Prð~xjCiÞ > 0.9 as presented by Cocosco et al.
(2003).

The white matter samples are constrained to have low
image gradient magnitude values to avoid choosing
samples near the transition regions between myelinated
and non-myelinated white matter and at white/gray
matter boundaries. The value we use for the gradient
magnitude of our 3-D images is the 2-norm of the vector
of individual gradient magnitudes, where
Fig. 4. The segmentat
Gð~xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrI1ð~xÞj2 þ � � � þ jrInð~xÞj2

q
. ð1Þ

We only retain samples for the white matter class with
Gð~xÞ lower than the average of Gð~xÞ over the white
matter prior, c ¼ ½

P
~x Prð~xjwhite-matterÞGð~xÞ�=½

P
~xPrð~xj

white-matterÞ�. The 2-norm gradient magnitude metric
is more sensitive to noise compared to the vector field
gradient magnitude metric described in Lee and Cok
(1991). This is a desired property since we want to avoid
sampling noisy regions.

We then process the obtained intensity samples to re-
move outliers and false positives. We use the minimum
covariance determinants (MCD) estimator (Rousseeuw
and Van Driessen, 1999) to generate the robust mean
and covariance estimates of the unimodal distributions
(gray matter and csf). The MCD estimator computes
the robust mean and covariance that have the smallest
determinant of covariance and covers at least half of
the data. For the bi-modal white matter distribution,
we use a robust graph based clustering method, similar
to the one described in (Cocosco et al., 2003). The clus-
tering method creates the minimum spanning tree
(MST) graph (Cormen et al., 2001) from the sample
points and breaks long edges to form the clusters (Duda
et al., 2001). The minimum spanning tree is the graph
where all the points are connected such that the total
edge lengths are minimized. The MST graph does not
have any closed loops (cycles). The removal of samples
with high image gradient helps in the MST clustering
process, as shown in Fig. 5.

The algorithm searches for myelinated white matter
and non-myelinated white matter intensity clusters by
iteratively breaking long edges of the MST. At each iter-
ation, we break an undirected edge e(v,w) that connects
vertices v and w if it is longer than A(v) · T or A(w) · T.
A(v) is the average length of edges incident on vertex v,
AðvÞ ¼ 1

ns

P
sjeðv; sÞj, while T is a distance multiplier. The

edge breaking results in subtrees where each subtree
forms an intensity cluster. For each detected cluster,
an intensity location estimate is computed. The cluster
intensity location estimate provides an approximation
of where most points in the cluster is distributed in the
intensity space. The iterative algorithm terminates when
ion framework.



Fig. 5. Illustrations of the minimum spanning trees for white matter
obtained using different sampling strategies. Left: Samples with high
probability values. Right: Samples with high probability values and
low gradient magnitude. Choosing only samples with low gradient
magnitude helps to remove samples from the transition regions
between myelinated white matter and non-myelinated white matter
and gray/white boundary voxels. This is crucial for clustering based on
edge breaking. As seen on the right picture, breaking the longest edge
marked by the arrow would give two well separated clusters.
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two clusters are found with intensity location estimates
that are in the proper order. For example, the order of
intensities for the classes in T2w from darkest to bright-
est is myelinated white matter, gray matter, non-myelin-
ated white matter, and csf.

The intensity location estimates for the two white
matter classes are also computed using the MCD estima-
tor. We use the robust MCD mean values, as opposed to
the standard location estimates such as the mean or
median, to make sure that we obtain reasonable sample
clusters. The standard location estimates such as mean
or median may not always be optimal for the noisy new-
born MRI data. The mean value can be skewed by a sin-
gle outlier sample, while the median value only uses one
sample point and ignores contributions of other sam-
ples. The initial intensity distributions for non-myelin-
ated white matter and myelinated white matter are
computed as the MCD mean and covariance estimates
of the largest detected clusters. The MCD estimator
therefore serves to estimate the initial intensity distribu-
tions. The initial gray matter and csf distributions are
the MCD estimates of the atlas sampled data. The initial
white matter distributions are the MCD estimates of the
atlas samples that are clustered and pruned using MST.
The steps involved in the intensity distribution estima-
tion are listed in Algorithm 1.

Algorithm 1. Initial intensity distribution estimation

1: Obtain samples by thresholding atlas prior
probabilities

2: Remove white matter samples with gradient magni-
tude higher than c

3: Compute robust mean intensity values for gray
matter and csf (lgm and lcsf) using the MCD
estimator

4: Construct Minimum Spanning Tree from white
matter samples

5: T 2
6: repeat

7: Break edges longer than T · A, where A is the aver-
age length of connected neighbor edges
8: Find largest myelinated white matter cluster, where
lmyelinated < lgm in T2w

9: Find largest non-myelinated white matter cluster,
where lgm < lnon-myelinated < lcsf in T2w

10: T T � 0.01
11: until both white matter clusters are found or T 6 1
12: if T < 1
13: Algorithm fails
14: end if

15: Compute white matter Gaussian distribution
parameters from detected clusters

2.2. Inhomogeneity correction

Newborn brain MRI exhibit higher intensity vari-
ability for each tissue and low intensity contrast com-
pared to adult brain MRI. These two factors severely
hamper the estimation of intensity inhomogeneity. His-
togram based intensity inhomogeneity estimation meth-
ods, such as the ones proposed by Sled et al. (1998)
and Styner et al. (2000), are likely to have difficulties
in obtaining the optimal solution. The histogram of a
newborn brain MR image is generally smooth with
weak maximas.

In the case of inhomogeneity correction of newborn
brain MRI, the spatial information is useful to deal with
the low intensity contrast. We have chosen to use the
method developed by Van Leemput et al. (1999a). The
scheme uses the spatial posterior probabilities to esti-
mate the intensity inhomogeneity, which helps to over-
come problems with low contrast and high variability.
The inhomogeneity estimation method is an iterative
generalized expectation maximization algorithm. It
interleaves classification with inhomogeneity estimation
at each iteration. The Gaussian distributions obtained
from the previous segmentation step are used as initial
parameters for the iterative inhomogeneity estimation
algorithm.

The intensity likelihoods are modeled using paramet-
ric Gaussian functions, and the inhomogeneity is mod-
eled using polynomials:

pð~Ið~xÞjCiÞ ¼ /Ri
ð~Ið~xÞ � li �

X
k

bkqkð~xÞÞ; ð2Þ

where / is the Gaussian function, with mean li and
covariance Ri, the intensity inhomogeneity is the linear
combination of the coefficients bk and the basis polyno-
mials qk. The intensity inhomogeneity is estimated by
least squares fitting of the polynomial coefficients to
the log difference of the original image and the recon-
structed image. The reconstructed image is the homo-
geneous image computed with the mean values li and
the class posterior probabilities. The class posterior
probabilities are computed using the image intensity
likelihood probabilities and the atlas prior prob-
abilities:
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pðCij~Ið~xÞÞ ¼
P

ipð~Ið~xÞjCiÞPrð~x;CiÞP
iPrð~x;CiÞ

; ð3Þ

where PrðCi;~xÞ is a combination of the atlas prior proba-
bilities (Prð~xjCiÞ) and the global class prior probabili-
ties ðPrðCiÞÞ: Prð~x;CiÞ ¼ Prð~xjCiÞPrðCiÞ. The myelinated
and non-myelinated white matter shares the same atlas
prior, Prð~xjC1Þ ¼ Prð~xjC2Þ. The global class prior prob-
abilities can be tuned based on the age of the newborns
to be segmented. For the results presented here, we set
the global class priors such that white matter is more
likely to be not myelinated: Pr(C1) = 0.2, Pr(C2) = 0.8,
and Pr(Ci) = 1 for the other classes. The use of the atlas
spatial prior probabilities Prð~xjCiÞ helps resolve ambigu-
ities that are caused by the low image contrast, following
the formulation used in Van Leemput et al. (1999b).
2.3. Segmentation refinement using kernel density

estimation

The class intensity likelihoods are modeled as Gauss-
ian probability density functions in the segmentation
and inhomogeneity correction to obtain an optimal
parametric solution. The use of the parametric Gaussian
distribution eases the computation of the maximum like-
lihood estimate. However, Gaussian distributions can
have significant overlap and therefore result in degener-
ate decision boundaries. In order to capture the complex
and ambiguous intensity characteristics of newborn
brain MRI, we switch from the parametric Gaussian dis-
tribution to a non-parametric distribution estimate. We
refine the classification by sampling the inhomogeneity
corrected images, pruning the outliers and false positives
from the intensity samples, and then estimating the
intensity distribution using kernel density functions
(Duda et al., 2001; Hastie et al., 2001).

The non-parametric intensity probability density
function for each class is estimated as follows:

p̂ð~Ið~xÞjCiÞ ¼
XNi

j¼1
wijKhð~Ið~xÞ � T ijÞ; ð4Þ

where Kh is the Gaussian kernel with standard deviation
h, Ni is the number of training samples for class Ci, and
Tij is the jth training sample for the ith class. Each train-
ing sample has an associated weight wij, where for each
class Ci,

PNi
j¼1wij ¼ 1. The kernel density estimates are

used to produce the final classification results, which
are the class posterior probabilities:

p̂ðCij~Ið~xÞÞ ¼
P

ip̂ð~Ið~xÞjCiÞPrðCi;~xÞP
iPrðCi;~xÞ

. ð5Þ

The atlas spatial prior probabilities are also used at
this stage. The spatial priors are combined with the
non-parametric kernel densities to provide class poster-
ior probabilities that are capable of capturing more
complex intensity characteristics.

The set of training samples T for the kernel density
estimates are obtained by sampling the MR images
using the previously obtained posterior probabilities.
Each sample Tij is obtained by selecting features at loca-
tion~x where

argmax
Ck

pðCkj~Ið~xÞÞ ¼ Ci. ð6Þ

The samples are pruned and clustered using the ro-
bust MST-based method proposed by Cocosco et al.
(2003). This step removes the false positives and outliers
in the intensity data resulting from using Gaussian dis-
tribution estimates in the previous step.

The method proposed by Girolami and He (2003) is
applied to efficiently estimate the kernel density func-
tion. This method speeds up the density estimation pro-
cess by reducing the size of the training set. The weights
wij are chosen to minimize the integrated squared error
between the true density function and the estimated ker-
nel density function. Redundant training features are as-
signed lower weight values compared to characteristic
training features. This minimization process for the sam-
ple weight assignment is similar to the quadratic optimi-
zation process for Support Vector Machines, for which
an efficient solution exists (Schölkopf et al., 2001). The
samples with zero weights are removed from the training
set, which effectively eliminates the redundant features
in the training set. Compared to other fast density esti-
mation techniques such as pre-binning (Scott and
Sheather, 1985) and multi-scale selection using hyper-
discs (Mitra et al., 2002), this method has the advantage
of having only one user specified parameter: the kernel
width or the standard deviation of the Gaussian kernels.
3. Results

We show the application of our new segmentation
method to four different subjects. Fig. 6 shows the coro-
nal view of the MR images along with two sets of man-
ual segmentation slices done by different raters. Fig. 7
shows the coronal view of the automatic segmentation
results. The 3D volumes for the automatically seg-
mented structures are listed in Table 1. The four cases
are samples from a large neonatal study at UNC Chapel
Hill to assess early brain development in normal and
high risk children (Zhai et al., 2003; Gilmore et al.,
2004). We currently have over 50 datasets of neonatal
MRI and will collect a total of 125, with some of them
followed-up at the age of one year. As part of the study,
we plan to measure the cortical folding and the cortical
thickness of the newborn brains. Fig. 8 illustrates the 3D
view of the relevant structures for one of the subjects.
Visual inspection of the results show that the myelinated



Fig. 6. The MR images along with the manually segmented labels.
From left to right: (a) T1w image, (b) T2w image, (c) color image
showing the segmentation done by the first human rater, and (d) color
image showing the segmentation done by the second human rater.
Purple is myelinated white matter, green is non-myelinated white
matter, yellow is gray matter, and blue is csf. From top to bottom:
subject 0096, 0117, 0118, and 0123.

Fig. 7. Coronal view of the 3D automatic segmentation results. From left t
myelinated white matter, (c) non-myelinated white matter, (d) gray matter, an
and 0123.

M. Prastawa et al. / Medical Image Analysis 9 (2005) 457–466 463
white matter regions are mostly distributed near the
spine (central posterior) and internal capsule. We have
also observed the presence of small regions of myelin-
ated white matter around the regions associated with
the sensory and motor cortex.

Images were acquired on a Siemens head-only 3T
scanner (Allegra, Siemens Medical System, Erlangen,
Germany). Two structural imaging sequences were
used: a magnetization prepared rapid gradient echo
(MPRAGE) T1-weighted and a turbo spin echo (TSE),
dual-echo (proton density and T2 weighted). Total scan
time for structural scans was approximately 10 min.
The imaging parameters for the MP-RAGE sequence
were: repeat time TR = 11.1 ms, echo time TE = 4.3 ms,
inversion time TI = 400 ms, slice thickness TH = 1 mm,
in-plane resolution = 0.898 · 0.898 mm2. A total of 128
sagittal images were acquired to cover the entire brain.
The imaging parameters for the TSE sequence were:
TR = 7 s, TE = 15 and 90 ms, TH = 1.95 mm, in-plane
resolution 1.25 · 1.25 mm2, and 56 slices.

Validation of the automatic segmentation results are
difficult because a gold standard does not exist. The
common standard, manual segmentations, is difficult
to obtain since highly convoluted structures in low-con-
trast, noisy data are very hard to trace. In addition to
that, the myelinated white matter and the non-myelin-
ated white matter have ambiguous boundaries, which
o right: (a) the T2w image and the class posterior probabilities for (b)
d (e) cerebrospinal fluid. From top to bottom: subject 0096, 0117, 0118,



Table 2
The j coefficients that measure the level of agreement between manual
raters, first manual rater against the automatic method, and second
manual rater against the automatic method

Subject Rater 1
vs rater 2

Rater 1 vs
automatic

Rater 2 vs
automatic

0096 0.658 0.604 0.558
0117 0.627 0.577 0.587
0118 0.603 0.561 0.500
0123 0.625 0.626 0.542

Table 1
The volumes of the segmented structures for the four subjects

Subject ICV Myelinated
WM

Non-myelinated
WM

Gray
matter

CSF

0096 504,724 15,353 157,160 289,133 43,078
0117 527,885 12,678 234,706 250,161 30,340
0118 514,760 11,480 193,307 255,849 54,124
0123 499,775 28,487 170,227 252,056 49,005

These include the intra cranial volume (ICV) and the volumes of the
individual structures (myelinated white matter, non-myelinated white
matter, gray matter, and cerebrospinal fluid). All volumes are mea-
sured in cubic millimeters.

Fig. 8. Surface renderings of the segmented structures of subject 0123.
From left to right: (a) intra cranial volume, (b) gray matter, (c) non-
myelinated white matter, and (d) myelinated white matter.

Table 3
The Dice similarity values that measure the overlap between the two
manual segmentations

Subject Myelinated
white matter

Non-myelinated
white matter

Gray
matter

CSF

0096 0.715 0.767 0.777 0.738
0117 0.760 0.771 0.741 0.662
0118 0.683 0.738 0.752 0.696
0123 0.787 0.757 0.750 0.639

Table 4
The Dice similarity values that measure the overlap between the
segmentation results of the first human rater and the automatic
method

Subject Myelinated
white matter

Non-myelinated
white matter

Gray
matter

CSF

0096 0.634 0.676 0.809 0.681
0117 0.637 0.725 0.776 0.491
0118 0.681 0.661 0.782 0.598
0123 0.777 0.724 0.790 0.569
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would make manual segmentation results highly vari-
able and difficult to reproduce. We have done a limited
validation of the segmentation results by restricting the
validation to only a 2D coronal slice of each dataset.
The human raters assign discrete labels to each voxel
in the slice. The degree of myelination is not specified be-
cause it is extremely difficult for the raters to consistently
assign a continuous weight for myelination. The poster-
ior probabilities that are generated by the automatic seg-
mentation method are discretized following Eq. (6).

We use Cohen�s j (Cohen, 1960) to measure the seg-
mentation variability. The j value given two observa-
tions and N classes is defined as

j ¼
PN

i¼1agreeðCiÞ �
PN

i¼1efðCiÞ
N �

PN
i¼1efðCiÞ

; ð7Þ

where agree(Ci) is the number of agreements between
the two observers for class Ci and ef(Ci) is the expected
frequency of agreement by chance for class Ci. Given the
number of observations of class Ci for the first and sec-
ond observer, ai and bi, the expected frequency of agree-
ment is efðCiÞ ¼ 1

N aibi. This reliability measure places
equal weight on the samples of each class, so classes with
larger number of observations will have more influence
on the final result. The j value is normalized, 0 indicates
independence and 1 indicates complete agreement. j val-
ues above 0.7 is generally interpreted to reflect a satisfac-
tory level of reliability. The j values comparing the two
manual segmentations and the manual segmentation
against the automatic segmentation is shown in Table 2.

We also measure the overlap of the segmentations of
each class using the Dice similarity coefficient (Dice,
1945). For two segmentations A and B, the Dice similar-
ity coefficient is defined as 2jA \ Bj=ðjAj þ jBjÞ. This
overlap measure is normalized, where 0 indicates com-
plete dissimilarity and 1 indicates complete agreement.
The overlap values reflecting inter-rater variability is
shown in Table 3. The overlap comparison between
the manual raters and the automatic segmentation
method is shown in Tables 4 and 5. Since the validation
is only done on 2D slices presenting complex folding
structures, the number of samples is low and conse-
quently leads to low overlap values.

The j values show that there is insufficient level of
reliability for the two manual segmentations. The non-
myelinated white matter and gray matter classes have
higher number of observations compared to the other
classes and therefore dominate the j measurements.
The j values are low because the segmentations of the
brain tissue classes tend to be ambiguous. The overlap
measures show that the automatic segmentation method
has similar level of variability to the two manual seg-
mentations. The overlap values for csf for the automatic
method are generally lower due to misclassifications in
the partial volume regions.



Table 5
The Dice similarity values that measure the overlap between the
segmentation results of the second human rater and the automatic
method

Subject Myelinated
white matter

Non-myelinated
white matter

Gray
matter

CSF

0096 0.774 0.649 0.777 0.598
0117 0.651 0.739 0.760 0.577
0118 0.606 0.630 0.742 0.601
0123 0.719 0.694 0.732 0.478
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4. Discussion

We have presented an atlas-based automatic segmen-
tation method for multi-channel newborn brain MRI.
The method uses graph clustering and robust estimation
to obtain initial distribution estimates from the noisy
data. These estimates are then used to generate spatial
posterior probabilities for correcting the intensity inho-
mogeneity inherent in the image. The segmentation is fi-
nally refined through the use of non-parametric kernel
density estimates.

The use of a probabilistic atlas or a template such as
the one used in Warfield et al. (2000) is crucial to over-
come the intensity contrast limitations. A probabilistic
brain atlas that captures the variability of the large pop-
ulation is essential for the proposed method, such as the
one described in Evans et al. (1993) for adult brain MRI.
The creation of a true newborn brain atlas requires the
segmentations of a large set of representative data. Also,
with the high level of brain shape variability in infants, it
is likely that a non-linear registration will be required for
a reliable atlas formation. These factors make the crea-
tion of a newborn brain atlas highly challenging. The
current atlas that is built from a small set of data seems
sufficient for our data. However, we are working on an
improved atlas that shows better population variability.

Visual inspection of the results shows that the major
structures are segmented consistently. The segmenta-
tions of regions largely affected by partial voluming is
still insufficient and is an inherent problem with voxel-
based classification. Illustrations of segmentations of
the four cases demonstrate that the new method can
cope with variable brain shapes. Also, location and
shape of the early myelination structures across the sub-
jects seem quite similar. The new segmentation tech-
nique is currently applied to the whole database of
over 50 neonates (age range is 42.7 ± 1.8 weeks of gesta-
tional age) to study volume and structure of brain tissue
at this early age. The reproducibility of the results is
optimal since the method is fully automatic.

Due to the lack of a gold standard, we have per-
formed only a limited validation of our results. The j
coefficient values and the volume overlap measures show
that our segmentation results have similar level of vari-
ability to the inter-rater variability for manual segmen-
tations. A significant challenge in newborn brain MRI
segmentation is the construction of a gold standard for
validation. To our knowledge, there is no standard data-
set available to the community to measure and compare
the performance of segmentation methods for neonatal
MRI. This problem is solved for adult brain MRI by
using web-based archives with simulated datasets (Coco-
sco et al., 1997; Collins et al., 1998) and a large collec-
tion of manually segmented real datasets (MGH, 2004).
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