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Abstract

Knowledge about the biological variability of anatom-
ical objects is essential for statistical shape analysis and
a discrimination between healthy and pathological struc-
tures. This paper describes ongoing research on a novel
approach that incorporates variability of a training set into
the generation of a characteristic 3D shape model. The
proposed shape representation is a hybrid of a fine-scale
global boundary description and a coarse-scale local me-
dial description. The hybrid overcomes inherent limitations
of pure medial based or pure boundary based descriptions.
The medial description composed of a net of medial primi-
tives (M-rep) with fixed graph properties is derived from the
shape space spanned by the major deformation eigenmodes
of a boundary description based on spherical harmonic de-
scriptors (SPHARM). The topology of the M-rep is deter-
mined by studying pruned 3D Voronoi skeletons in the given
shape space. Shapes are characterized by its SPHARM de-
scriptors and an individually deformed M-rep model. The
hybrid shape description gives an implicit correspondence
on the boundary and on the medial manifold, thus enabling
a more powerful statistical analysis.

1. Introduction

Shape is one of the most characteristic features of objects
in the real world. While humans have no apparent difficulty
dealing with shapes, research in computer vision faced the
usual problem when imitating human perception: Humans
can do it, but nobody knows exactlyhow. Representation
and especially analysis of shape proved to be a rather com-
plex problem to solve. It has been shown that a generally
applicable solution is not possible and that specific shape
descriptions have to be established.

Davatzikos et al [8] proposed an analysis of shape mor-

phometry via a spatially normalizing elastic transformation.
Inter-subject comparisons were made by comparing the in-
dividual transformations. The method is applied in 2D to
a population of corpus callosum. A similar approach in
3D has been chosen by Csernansky et al [7] to compare
hippocampi. Using the elastic transformation proposed by
Miller et al [5], inter-subject comparisons were made by
analyzing the transformation fields. Theanalysisof trans-
formation fields in both methods has to deal with the high
dimensionality of the transformation and the sensitivity to
the initial position. Although the number of subjects in the
studied populations is low, both show a relatively stable ex-
traction of shape changes. The changes provided by the
deformation fields are hard to interpret and cannot be ex-
pressed intuitively.

The approach taken by Kelemen [13] evaluates a pop-
ulation of 3D hippocampal shapes based on a bound-
ary description by spherical harmonics basis functions
(SPHARM), which was proposed by Brechbühler [3]. The
SPHARM shape description delivers an implicit correspon-
dence between shapes on the boundary, which is used in
the statistical analysis. As in the approaches discussed be-
fore, this approach has to handle the problem of high di-
mensional features versus a low number of subjects. Also,
the detected shape changes cannot be captured intuitively,
but are expressed as changes of coefficients.

Golland [12] in 2D and Pizer et al [10, 18] in 3D propose
two different approaches using a medial shape description
to perform statistical shape analysis. Blum [2] claims that
medial descriptions are based on the idea of a biological
growth model. He argues that they are a ’natural geometry
for biological shape.’ The medial axis in 2D captures shape
intuitively and can be related to human vision (see Burbeck
[4] and Kimia [20]). Changes of shape are captured locally
in an intuitive fashion. Both Pizer and Golland propose a
sampled medial model that is fitted to individual shapes. By
holding the topology of the model fixed, an implicit corre-



spondence is given by the model. There has not yet been an
effort to automatically construct the medial model, rather it
has been determined manually.

In this paper we present a scheme for a new ap-
proach that combines the SPHARM boundary description
of Brechb̈uhler [3] and the medial M-rep model of Pizer
[18] into a novel hybrid description. The M-rep model is
derived automatically from the SPHARM description of a
shape space spanned by the principal component analysis of
a shape population. The topology of the M-rep is calculated
by studying the topological changes of pruned 3D Voronoi
skeletons in the given shape space. Voronoi skeletons as
representations of shapes have been studied intensively in
past. The pruning of Voronoi skeletons has been examined
by Ogniewicz [16] in 2D, and Naef [15] or Attali [1] in 3D.
The proposed hybrid description efficiently captures biolog-
ical variability and has a given implicit correspondence on
both the boundary and the medial model. Both parts of the
hybrid are computed automatically.

This paper is organized as follows. In section 2, we
study following properties of shape descriptions: localiza-
tion, scale, boundary vs. medial representation. In the next
section, we discuss how we combine the SPHARM and M-
rep representation. In section 4 the method used to generate
the medial M-rep model is described. It is followed by the
description of the fit process for the M-rep model to an indi-
vidual shape. Lastly, applications of the hybrid description
are delineated.

2. Properties of shape descriptions

This section studies a selection of general shape descrip-
tion properties that can be used to broadly categorize most
shape descriptions. The objects of interest are biological
objects that were segmented by selecting a region of inter-
est from volumetric medical images resulting in a binary
segmentation. The effect of the presence of biological vari-
ability for each of the following properties is emphasized.

2.1. Localization: Local versus Global

Global 3D surface shape descriptions of interest in
this paper, like Staib and Duncan’s sinusoids [21] and
Brechb̈uhler’s spherical harmonics [3], are based on a pa-
rameterizationX = (x(u, v), y(u, v), z(u, v)), where u
and v vary over the shape. Global representation other
than (u, v) parametrized manifolds are not taken into ac-
count in this paper. A specific shape is described by a set
of coefficients weighting the given basis functions. Local
shape properties like derivatives can be computed analyti-
cally from the functional parameterization. Deformations
are not well localized in a global description but rather are
distributed over the whole set of coefficients. Changes of

the coefficients cannot be interpreted intuitively. Moreover,
small deformations applied to the shape can lead to quite a
different set of coefficients.

A: B:

C: D:

Figure 1. Different shape descriptions of a hu-
man right hippocampus: A. SPHARM: Global,
Fine Scale, Boundary. B. Point Distribution
Model: Local, Fine Scale, Boundary. C.
Voronoi Skeleton: Local, Fine Scale, Medial.
D. Manual M-rep (dots = medial atoms) + im-
plied boundary (mesh) : Local, Coarse Scale,
Medial.

Local shape descriptions are composed of a set of primi-
tives, such as points, edges or faces, which locally describe
the shape well, but deliver no global information about the
shape. Deformations are captured locally and can be visual-
ized and understood intuitively. In order to accurately define
local shape properties like curvatures, primitives have to be
densely sampled. A shape description is said to be efficient
if shapes are described byconcisesets of parameters or fea-
tures. Thus, a finely sampled local shape description is not
as efficient as a global description, since the same shape can
be described by a lower number of parameters. Sparse sam-
pling, to achieve a more efficient local description, can be
used if we are not interested in accurate local shape proper-
ties or if we can determine them by additional means other
than the primitives.

As we deal with biological shapes, we aim to pinpoint
deformations intuitively as changes of anatomical land-
marks. This criterion clearly favors a local description.
Global parametrized descriptions are favored by the need
for an accurate computation of geometric shape properties,
which are used for registration and establishing correspon-
dence.

2.2. Scale: Fine versus Coarse

In medical image analysis studies, 3D objects are defined
as a binary segmentation of regions of interest in volumet-
ric images. In the present routine, such anatomical objects



are segmented based on human expert interaction. These
segmentations are often processed as if free of error. Be-
cause fine scale descriptions reconstruct the object accu-
rately, they are perceived to be anatomically correct. How-
ever, the presence of noise, partial volume effects, intensity
inhomogeneities and other artifacts suggests that the view
of an error-free object is not accurate. A fine scale descrip-
tion is therefore not efficient. Also, statistical shape analy-
sis, to detect and discriminate shape changes, demands an
efficient description in order to handle the problem of high
dimensional features. On the other hand, we would like to
be able to precisely pinpoint the shape changes, which de-
mands a high anatomical correctness. Thus, the choice of
scale can be interpreted as balancing the tradeoff between
descriptive efficiency and anatomical correctness.

2.3. Boundary versus Medial shape description

Twin A Twin B

Figure 2. Lateral ventricles of 2 monozygotic
twins. The shapes are similar, but twin A has
a larger right ventricle (Volume L/R = 0.75).
Twin B shows a reversed symmetry (Volume
R/L = 0.79). The medial description (bottom),
with color coded thickness, captures more
intuitively the 3D structure of the object than
the boundary representations (top).

The main advantage of medial descriptions is the sep-
aration of the local shape properties: location, orientation
and thickness (see Fig. 2). The main disadvantages of
medial descriptions include their inability to capture non-
symmetric information and the sensitivity of its branching

topology to small changes on the boundary. Because the
non-symmetric part of shape can be regarded as being less
stable, some researchers view this property as an advantage
rather than a disadvantage. Considering the presence of bi-
ological variability, the sensitivity of the branching topol-
ogy to small changes cannot be left unsolved. A statistical
analysis of a set of medial manifolds based on similar bio-
logical objects would be very challenging if the branching
topology is not the same for all objects. Recent research
about this topic in 2D has been done by Siddiqui et al ([19],
[17]), but none have been done so far for 3D objects.

The discussion above leads to the proposition that
boundary descriptions are well suited for fine scale, as me-
dial descriptions are well suited for coarse scale (see also
Pizer [18]). If we can resolve the problem of the branch-
ing topology sensitivity, the medial description can be well
suited for statistical shape analysis. This is especially the
case if we perform the analysis for the medial properties of
location, orientation and thickness separately.

3. A hybrid boundary/medial approach

We propose a hybrid shape description that combines
both the boundary-based spherical harmonic description
(SPHARM) [3] and a description via a net of medial primi-
tives (M-rep) [18]. A hybrid approach of these two descrip-
tions can combine its advantages and overcome some of the
inherent disadvantages.

The SPHARM description is a hierarchical, global, un-
constrained, fine scale description that can only represent
shapes of sphere topology. The basis functions of the pa-
rameterized surface are spherical harmonics, which have
been demonstrated by Kelemen to be non-critical to issues
of shape deformations [13]. SPHARM is a smooth, accurate
shape representation, given that one chooses the approx-
imation error of the truncated harmonic series expansion
to be sufficiently small. Based on a uniform icosahedron-
subdivision of the spherical parameterization, we can obtain
a Point Distribution Model (PDM) (see Cootes et al [6]) di-
rectly from our coefficients via a linear mappingx = A · c.
Using this relationship, local shape properties can be com-
puted analytically for every point of the PDM. The PDM is
a local shape description and it has a better localization of
shape changes. Nevertheless, the PDM is not well suited as
a partner with SPHARM in a hybrid description, because it
is dual to SPHARM and still fine scale and boundary based.

A M-rep is a linked set of medial primitives, called me-
dial atoms,m = (x, r, F , θ) (see Pizer et al [18]). The
atoms are composed of: 1) a positionx, 2) a widthr, 3)
a frameF = (~n,~b, ~b⊥) implying the tangent plane to the
medial manifold and 4) an object angleθ. The medial
atoms are connected in a graph with edges representing ei-
ther inter- or intra-figural links. A figure is defined as an



unbranching planar medial sheet forming a planar graph of
medial atoms connected by intra-figural links. Figures are
connected via inter-figural links. An example of a M-rep
is visualized in figure 1. In the generic case, the graph of
the whole M-rep is overlapping when displayed in a 2D di-
agram, i.e. the medial graph is non-planar.

A M-rep description is a local and medial shape descrip-
tion per se. In our approach, the sampling of medial atoms
is low and thus leads to a coarse scale description. We de-
rive the M-rep from the SPHARM description, constrained
by a medial model with a fixed medial graph. This implies
that the branching topology and the sampling of the me-
dial atoms is fixed. Every shape is expressed by the same
medial graph varying only the parameters of the individual
medial atoms. This, of course, only makes sense for shapes
of similar nature. Thus, our approach is to define a M-rep
model for each anatomical object, that incorporate the bio-
logical variability of this object. The M-rep shape descrip-
tion of an individual object is thus constrained by 2 aspects:
1) The medial topology and sampling is constrained by the
fixed medial graph of the model. 2) The geometric proper-
ties of the medial atoms are constrained by their statistical
distribution regarding a given shape space incorporating the
biological variability. The generation of such a statistical,
fixed-graph M-rep model is described in the next section.

The proposed shape description is a hybrid descrip-
tion consisting of a fine-scale SPHARM and a coarse-scale
M-rep derived from the SPHARM with the shape space
spanned by the principal component analysis (PCA) cap-
turing the biological variability.

4. M-rep model generation incorporating
shape variability

Sampled medial models such as the M-rep are currently
created manually by human interaction, as human experts
decide on the properties of such a model. The model is
derived from one representative sample shape of a popu-
lation of biological objects. Thus, it is assumed that the
sample’s topology and geometry represent a set of similar
shapes with respect to the population and that a human ex-
pert can reliably extract this topology and geometry. Our
new approach takes a step further towards a stable statisti-
cal description by taking into account a whole population
and automatically deriving the model from statistical obser-
vations of the shape.

We start from a smooth SPHARM shape representation
for every individual shape of our population. We can cal-
culate the population average and its major deformation
modes (eigenmodes) of the population by applying prin-
cipal component analysis (PCA). The calculation of PCA
from SPHARM coefficients is described by Kelemen [13].
We assume that the average model and the first few eigen-
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Figure 3. Schematic overview of the medial
model generation, that incorporates shape
variability. The average model and the first
few eigenmodes span a shape space. In this
shape space, we study the topology of the
Voronoi skeleton and extract a common me-
dial topology. As a last step the sampling of
the medial sheets is determined.

modes describe the biological variability of the shape ap-
propriately and span the space of all similar biological
shapes with respect to the studied population. From this
SPHARM shape space, we generate the sparsely sampled
medial model in 2 steps. First, we compute the branching
topology of the M-rep using Voronoi skeletons. Secondly,
we calculate the sampling of the M-rep taking into account
a predefined maximal approximation error.

The computation of the branching topology can be inter-
preted as grouping parts of the medial manifold into figures
of medial sheets connected by a net of inter-figural links.
Each of the medial sheets is sampled by medial atoms con-
nected by a net of intra-figural links. The intra-figural net is
constrained to be composed of quadrilateral connections.

4.1. Branching Topology - division into figures

The branching topology of the M-rep model is derived
via the Voronoi skeleton medial representation (see Attali
[1]). In order to calculate the 3D Voronoi skeleton from
the SPHARM description, we first calculate a finely sam-
pled PDM from the SPHARM, which can be done directly
from the coefficients via a linear mappingx = A · c
(see Kelemen [13]). From the PDM, the full inside 3D
Voronoi diagram and Delaunay triangulation is calculated.
The Voronoi diagram is well behaved due to the fact that
SPHARM is a smooth description and the PDM is a fine



Figure 4. The proposed shape space is
spanned by the first few eigenmodes of defor-
mation. In this figure, the first 2 dimensions
of the shape space are visualized. The com-
puted M-rep model will be representative for
this whole shape space

sampling of this smooth description. The medial manifold
of a Voronoi skeleton is described by Voronoi vertices con-
nected by Voronoi edges forming planar Voronoi faces. A
conservative adaption of the grouping algorithm proposed
by Naef [14] groups the Voronoi faces into medial sheets.
These medial sheets are then weighted by their volumetric
contribution to the overall object volume. This is followed
by a topology preserving deletion of the medial sheets with
low volumetric contribution. We are aware that this group-
ing/deletion scheme can lead to problems when dealing
with very complex objects like the whole brain cortex.

The previously described Voronoi skeleton extraction is
first applied to the average shape of the SPHARM descrip-
tion, yielding the initial approach to the branching topology
of the M-rep model. We then study stepwise the changes
of the branching topology in the shape space spanned by
the average shape and the deformationsalong the first few
eigenmodes±2 ·

√
λi from a PCA on the SPHARM de-

scription. Corresponding sheets can be identified using the
given correspondence on the boundary. For all studied de-
formations, significant additional medial sheets are incor-
porated into the M-rep model. Sheet significance is mea-
sured by the volumetric contribution to the shape. Thus, the
topology of the M-rep model is refined step by step by in-
corporating medial sheets necessary to describe the given
shape space. The determined final branching topology for
the M-rep model captures efficiently the biologically vari-
able topology of the medial surface with respect to the pro-
posed PCA shape space.

a b

c b

Figure 5. Proposed Voronoi skeleton group-
ing/deletion scheme applied to a lateral ven-
tricles (side views). a. Original ventricle. b:
Original Voronoi skeleton ( ∼ 1600 sheets). c:
Object reconstructed from pruned skeleton.
d: Pruned skeleton (3 sheets).

Figure 6. Extraction of a common topology.
After determining the branching topology of
pruned Voronoi skeletons in the shape space,
we combine significant sheets to build a com-
mon model topology. In this case, this would
result in a M-rep topology of 3 medial sheets.



4.2. Sampling of sheets - division into medial atoms

Holding the branching topology fixed, we aim to deter-
mine the sampling of the medial sheets given a tradeoff be-
tween sampling rate and approximation error. The com-
putation of the sampling is done in parallel for all sheets
simultaneously. A low number of sampled medial atoms is
desirable to improve localization, statistical stability and de-
scriptive efficiency of the model. A low approximation er-
ror is desirable from the viewpoint of maintaining both high
accuracy and a correct description of the original shape.
Because the role of the M-rep in the hybrid description is
to represent the coarse-scale shape, the aim is to keep the
number of medial atoms as low as possible while keeping
the approximation error in certain bounds for all shapes in
the proposed shape space. In order to determine the bounds
of the approximation error, a M-rep model with a proposed
sampling is fitted to the center and the extrema of the shape
space. The algorithm to fit a M-rep model to a single shape
given by its boundary description is discussed in section 5.

Grid sampling
parameters for
each medial 

sheet 

Common Topology

Common 
Medial model

Figure 7. The common topology and a set of
grid parameters ( ni ×mi grid points for sheet
i) determine the final M-rep model. Grid sam-
pling parameters are optimized for minimal
number given a predefined maximal approxi-
mation error for all shapes in the given shape
space.

We constrain the medial atoms on a medial sheet to be
organized in a planar net of quadrilateral connections, hold-
ing its dimensions fixed. Thus, the topological structure of
the medial graph is a grid and can be represented by the
numbers of medial atoms sampled along the two grid di-
rections. The sampling of the M-rep is defined by the grid
densities of the individual medial sheets.

An exhaustive search of the minimal sampling for a M-
rep-model given a branching topology and a shape space is

only achievable for simple shapes due to the computational
cost of fitting a M-rep-model to the whole shape space.
Thus, we propose an evolutionary algorithm to solve this
optimization problem.

5. Fit of a M-rep model to the boundary

Individual  SPHARM M−rep model

Fit model to SPHARM
with fixed medial graph

Warped M−rep

Statistical
constraints

Figure 8. Determination of the medial part of
the proposed hybrid from the SPHARM part
by fitting a M-rep model (dots = medial atoms,
mesh = implied boundary), with fixed medial
graph and statistical constraints.

We interpret the problem of fitting a deformable M-rep
model to a SPHARM description as an optimization pro-
cess that can be solved using a non-linear optimization tech-
nique. The goal function of the optimization is composed of
2 termsf(M-rep) = Eapprox− log(Mmedial) withEapprox

as approximation error andMmedial = Σmmedial,i as
the sum of measures of medialness strength at the medial
atoms. The approximation error is calculated as the Mean
Squared Distance between the model-implied boundary and
the given SPHARM boundary. The strength of medialness
at a medial atom is defined by the application of a set of
medial strength kernels at different scales (see Pizer et al
[9],[18], [11] and figure 9). The optimization is further con-
strained to smooth changes of the medial atom properties
within a medial sheet. The actual implementation is purely
based on the medial strength measurement and does not yet
include the approximation error.

As a first step, we fit the model to the average case. All
following fit computations can take advantage of the known
correspondence on the boundary by the SPHARM descrip-



A B

Figure 9. Visualization of Energy terms for fit-
ting a medial model to a boundary surface.
A - Mean Squared Distance of boundaries:
Distance between corresponding PDMs of 2
individual shapes mapped onto one of them
(low intensity = low distance). B - Medialness:
Example of a medial strength kernel.

tion between the average shape and the actual shape. Us-
ing the PDM, dual to SPHARM, we define a transformation
field using a thin-plate spline algorithm. Warping the aver-
age M-rep-model according to this transformation yields an
appropriate initialization for the optimization.

As a byproduct of calculating the optimal sampling (see
previous section 4.2), we gain a statistical distribution of
the properties of the medial atoms in regard to the proposed
shape space. The statistical distributions of the location,
orientation and thickness information of medial atoms are
incorporated into the final M-rep fitting procedure. These
statistics are used to constrain the fit of the Mrep-model to
the individual cases.

6. Application

The main application of the hybrid shape description is
statistical shape analysis discriminating normal from patho-
logical shape. The hybrid model gives an implicit corre-
spondence on the boundary and on the medial manifold.
Thus, statistical analysis can be applied directly. The pro-
posed statistical shape analysis is based on Principal Com-
ponent Analysis (PCA) and discrimination analysis. Pre-
liminary results of such an analysis have already been re-
ported on pure SPHARM descriptions (see Kelemen [13])
and on pure 2D M-rep descriptions (see Yushkevich [22]).
The detected changes via SPHARM were not intuitively in-
terpretable and only captured global changes. The shape
analysis by Yushkevich was performed in 2D and was based
on a manually derived model from a single case. The results
in both cases are encouraging.

First applications include a first-episode schizophrenia
study of hippocampi and a monozygotic twins schizophre-

nia study of lateral ventricles. Both exhibit promising pre-
liminary results.

7. Conclusion and Discussion

We present a new approach to the description of shape
for objects in the presence of biological variability. The
proposed description is a hybrid of the boundary based
SPHARM and the medial M-rep. The hybrid captures both
fine scale using SPHARM and coarse scale properties using
the M-rep. The hybrid model gives an implicit correspon-
dence on the boundary and on the medial manifold. Thus,
statistical analysis can be applied directly.

We have to be aware that the M-rep is constrained to the
assumption that the biological variability can be captured
based on the shape space spanned by the principal compo-
nent analysis of SPHARM. A consequence of this assump-
tion is that we cannot describe pathological shapes that are
not represented in the PCA shape space. However, we are
able to detect such pathological shapes by inspecting the
approximation error.

The choice of afixed topology for the M-rep has sev-
eral advantages, e.g. enabling an implicit correspondence
for statistical analysis. On the other hand, a fixed topol-
ogy M-rep model cannot accurately capture the topology of
an individual object. The determined M-rep is therefore al-
ways an approximation, which emphasizes our decision of
a coarse scale M-rep description.

The SPHARM description and thus also our hybrid ap-
proach is constrained to objects of sphere topology. The
proposed algorithm to compute the branching topology is
designed for objects whose major deformation eigenmodes
of the fine-scale boundary incorporate the coarse scale de-
formations. We expect that objects like the cortex of a hu-
man brain are hard to handle without further adaption of our
algorithms.

The generation of the medial part of the hybrid takes into
account the biological variability of a set of training shapes,
which is a novel concept. The biological variability is cap-
tured efficiently, and therefore the hybrid description is a
step towards a natural shape representation

This paper describes a scheme for a hybrid shape de-
scription which is work in progress and ongoing research
at our laboratories. Parts of the scheme have already been
implemented, applied and tested. Applications to clinical
studies in Schizophrenia and other neurological diseases are
in progress.
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