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Abstract. This paper presents a new methodology for the automatic segmentation and character-
ization of object changes in time series of three-dimensional data sets. The purpose of the analysis
is a detection and characterization of objects based on their dynamic changes. The technique was
inspired by procedures developed for the analysis of functional MRI data sets. After precise registra-
tion of serial volume data sets to 4-D data, we applied a new time series analysis taking into account
the characteristic time function of variable lesions. The images were preprocessed with a correction
of image field inhomogeneities and a normalization of the brightness function over the whole time
series. This leads to the hypothesis that static regions remain unchanged over time, whereas local
changes in tissue characteristics cause typical functions in the voxel’s time series. A set of features
are derived from the time series and their derivatives, expressing probabilities for membership to the
sought structures. These multiple sources of uncertain evidence were combined to a single evidence
value using Dempster Shafer’s theory. Individual processing of a series of 3-D data sets is therefore
replaced by a fully 4-D processing. To explore the sensitivity of time information, active lesions are
segmented solely based on time fluctuation, neglecting absolute intensity information.
The project is driven by the objective of improving the segmentation and characterization of white
matter lesions in serial MR data of multiple sclerosis patients. Pharmaceutical research and patient
follow-up requires efficient and robust methods with high degree of automation. Further, an en-
hanced set of morphometric parameters might give a better insight into the course of the disease
and therefore leads to a better understanding of the disease mechanism and of drug effects.
The new method has been applied to two time series from different patient studies, covering time
resolutions of 12 and 24 data sets over a period of roughly one year. The results demonstrate that
time evolution is a highly sensitive feature to detect fluctuating structures.

1 Introduction

Serial magnetic resonance imaging of patients becomes attractive due to the minimal inva-
sive image acquisition, the speed-up in scanning and therefore patient time, and the high
spatial and tissue resolution. The time series reveal information about significant changes
of diseased anatomical regions, about the changes as an effect of a drug or radiotherapy
treatment, or about subtle morphological changes caused by a neurophysiological disease.
The temporal sampling thus not only provides information about morphological but also
functional changes.

A typical analysis of this type which is routinely applied is the analysis of functional
MRI data sets. A patient is stimulated with a specific time pattern of visual, auditory or
motor activity. Brightness changes due to local changes in the oxygenation state of blood
are expected to show a similar time pattern and can be detected by a correlation of the
stimulus function with the time series of each pixel. Here, the signal processing aims at
finding the best discrimination between noisy steady state signals and signals correlated
with the stimulus [1]. The processing most often assumes that a patient doesn’t move
during the examination, although slight object motion due to breathing, pulsation of the
heart and swallowing is unavoidable. It has been shown that a sub-voxel correction of 3-D
motion [2] can considerably improve the voxel-based time-series analysis.

Pharmacological studies or patient follow-up and monitoring, are different. Time fre-
quency is not in the range of seconds, but can be days, months or even years. The study
of a tumor change in relation to chemotherapy or radiotherapy, for example, typically re-
quires time intervals of weeks till months. In schizophrenia, temporal changes are studied
over long periods by imaging a patient with yearly scans.

The development of a new segmentation technique is driven by the motivation to get
a better understanding of the disease process in multiple sclerosis (MS). Research in MS
already demonstrated the power of using serial imaging [3]. Drug development for multiple
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sclerosis uses serial MRI as one measurement among other diagnostic features to study
the temporal changes of white matter lesions in the central nervous system. A series of
patients is divided into two groups getting either placebo or the new drug. Patients are
scanned in intervals of 1, 2 or 4 weeks during a period of about one year. The significance
of tests is increased by multi-center studies, collecting image data from various hospitals
using a standardized MR protocol. Image data are examined by radiologists, evaluating
each scan in relation to the previous one to visually assess the occurrence of new lesions.
A quantitative analysis of the total lesion load and of the single lesions is performed
using interactive user operated segmentation tools. A typical study often comprises up to
several thousands of 3-D data sets. The manual outlining of lesions in large number of
series of 2-D slices is not only time consuming but also tedious and error prone. Errors for
the segmentation of small structures are often in the range of the volume of the observed
structures.

Automated image segmentation systems have been proposed by several groups [4–7].
They consist of well-designed sequences of processing steps, including preprocessing, bias-
field correction, feature-space clustering of multi-echo MRI data [8], and a matching of
a statistical anatomical atlas [9, 10] to solve ambiguities of statistical classification. As a
result, they present a significantly improved reproducibility and therefore a reduced inter-
and intra-rater variability and allow an efficient processing of large amount of data.

Previous segmentation methods mostly intend to segment lesions from single data sets,
not taking into account the significance of correlation in the time domain. In radiological
examination on the light-box, however, experts use previous scans of patients to decide
about significant changes. An early attempt to consider the correlation in the time domain
was presented by Metcalf et al. [11] by proposing a 4-D connected component labeling on
registered segmented label images. The procedure serves as a postprocessing filter applied
after individually segmenting the data sets, removing insignificant lesion candidates which
appear only at one time point, or eliminating 4-D lesion patterns with volume below a
predefined threshold. The aim still was an improved lesion segmentation, although the
4-D connectivity additionally could give access to time domain information.

So far, temporal changes in signal intensity patterns of multiple sclerosis lesions have
not been used to improve and simplify the processing of time series. Guttmann [3] pre-
sented a seminal paper on characterizing the evolution of lesions in serial MR data, sug-
gesting to use this valuable information for image processing. The present paper will
explore the time domain information inherently given by serial MR data sets. The major
question in research of disease mechanisms or drug studies is most often not a segmen-
tation of static tissue or static lesions but of temporal changes. We claim that dynamic
changes in lesion voxels can be detected by analyzing the time series of each voxel, as-
suming perfectly registered and normalized data sets. Although the ultimate goal will be
a spatio-temporal analysis of the 4-D data sets, this paper only focuses on evaluating the
discrimination power of the temporal domain.

Besides exploring time domain as a new feature for segmentation, we are working
towards extracting a rich set of morphometric parameters. These include temporal in-
formation to analyze the time course of the disease, to understand time correlations of
lesion groups and lesion patterns, to determine the lesion load versus time, and finally to
combine the results with anatomic atlas information to describe major spatial categories
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(periventricular, deep white matter, cortical) of lesions. Scientific visualisation of dynamic
changes will be important to visually assess the disease course of individual patients.

The paper is organized as follows. Section two shortly describes the preprocessing
including bias correction and image brightness normalization, and the combination of
serial 3-D to 4-D data sets. The new time series analysis is explained in section three.
Section four presents results obtained with data sets from different pharmaceutical studies.
Details about the combination of multiple uncertain evidence sources are explained in the
appendix.

2 Combination of serial 3-D data to 4-D data

Individual magnetic resonance volume data sets acquired in weekly to monthly time inter-
vals can be combined to 4-D (x, y, z; t) data sets, which allows the application of time-series
analysis of single voxels.

Registration The serial data sets obtained from the Brigham and Women’s Hospital
Boston (cf. section 4.1) have been registered by the INRIA research group using crest-line
extraction and matching [12]. A second serial data set presented in this paper is pro-
cessed by the KUL research group using the MIRIT registration software package [13]
which maximizes the mutual information between corresponding voxel intensities. Both
registration methods work fully automatically. The transformation matrices are input to
a geometric transformation which performs trilinear interpolation.

Image brightness normalization and bias correction The corruption of the image bright-
ness values by a low-frequency bias field often occurs in MR imaging and impedes visual
inspection and intensity-based segmentation. A mathematical model for bias correction
using parametric bias field estimation was proposed in [14]. We assume the original scene
to be composed of tissue regions with homogeneous brightness only degraded by noise.
The estimation of the parametric bias field is formulated as a non-linear energy minimiza-
tion problem. Input parameters are the statistics (mean, standard deviation) of expected
categories. Using the same set of input parameters for each data set from series of vol-
ume images results in a combination of bias correction and brightness normalization. The
presence of strong striping artifacts on one of the data sets required a two step procedure
by first correcting for brightness changes between individual slices and then for the 3-D
bias field [15].

Result of Preprocessing The normalization of brightness and correction of inhomogeneity
artifacts results in sets of corrected 3-D data sets. After registration, they are combined to
form 4-D data sets. Picking a voxel and visualizing its time course gives a good impression
of the quality of the preprocessing. We assume that the signal intensity of white matter
should remain constant (figure 1b), whereas voxels representing active lesions would show
considerable changes (figure 1c-e).

3 Time series analysis to detect fluctuating lesions

Bias correction, image brightness normalization and spatial registration of serial 3-D image
data results in 4-D [x, y, z; t] data sets. The preprocessing yields a spatial and intensity-
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Fig. 1. Time series of voxels for healthy white matter (b) and typical lesions (c-e). Horizontal axis:
time, vertical axis: MR intensity. Image (a) illustrates a typical MR slice presenting white matter
lesions. The positions of the voxel generating the constant time series (b) is marked with a thin
cross, the lesion time series (c) with the thick cross. Plots d and e represent time series of other
lesions voxels.

based normalization of the time series. Therefore, we can assume that static tissue will
not change brightness over time, whereas voxels which are part of fluctuating lesions will
depict typical variations. Each voxel can be considered as a time series, suggesting the
application of methods for one-dimensional signal processing. The signal analysis shows
similarities to the postprocessing of functional magnetic resonance data (fMRI), but there
is one significant difference. Functional MRI is measured by a repetitive stimulation of a
certain task, which allows a comparison of the stimulation function with the time series of
each image pixel, most often using correlation techniques. The time course of MS lesion
voxels, on the other hand, does not follow a fixed pattern and can only be characterized
by a dynamic fluctuation of image brightness.

3.1 Visualization of brightness changes

The time course of lesion voxels can be studied by providing two-dimensional images of
arbitrary profiles through 3-D image data versus time. The displays illustrate fluctuations
of profiles over a typical time period of one year (Fig. 2. Tissue boundaries in general show
very small spatial displacements which can be explained by elastic tissue deformations,
whereas some boundaries in the vicinity of lesions can demonstrate larger deformations
due to a mass effect (see Fig. 2b lower middle). A characteristic feature for lesion time
series is a continuous fluctuation with time, presenting increasing and decreasing time
changes or both.

Based on observations of typical time series of lesion voxels we developed features that
describe fluctuations. The set of features will be used for discriminating between static
tissue and active lesions.

Brightness Difference: A simple calculation determines the minimum and maximum
brightness for each time series and calculates the absolute difference 4I = |Imax −
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Fig. 2. Visualization of spatiotemporal lesion evolution. a Original image with profile, b space-time
display (horizontal: spatial axis, vertical: time axis) and c sketch of typical time series at locations
xi and xj. Other typical lesion evolutions are displayed in d,e and f.

Imin|. This feature measures the maximum contrast change of a time series within the
observed time period (Fig. 3a).

Statistical measures: Mean, standard deviation and variance form a set of statistical
features expressing the temporal variation of brightness around the mean value. We
expect much higher variance for lesion voxels than for static tissue (3b,c,d).

Signs of fluctuation around mean: The features discussed so far do not consider the
temporal pattern or the frequency of fluctuations. We therefore determine the number
of zero-crossings of the zero-mean time series and evaluate the time length of positive
and negative segments. A noisy static signal will generate a large number of sign
changes with small segments, whereas large fluctuations will generate a small number
of long segments (3e,f,g).

Time derivatives: The gradient of the time function provides information about the
rate of change, both for decreasing and increasing events. Fig. 2 illustrates that lesions
often appear with a large brightness change. We used the minimum and maximum
gradient as features for our lesion analysis (3h). The attributed time will be further
used for displaying temporal evolution (see results).
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Evaluation of sign changes of zero-mean
time series: Analysis of the sequence of
signs: Nr. of “segments” (7), maximum
(5), minimum (1) and average segment
length (2.86). Observation: Low-frequency
variations (lesions) result in large differ-
ences from the mean and generate a small
# of sign changes with large segments.

a b c d

e f g h

Fig. 3. 2-D cuts of 3-D feature maps: Difference Max-Min (a), Mean (b), standard deviation (c) and variance
(d), Nr. of zero-crossing segments (e), length of minimum segment (f), length of maximum segment (g), and
maximum absolute time gradient (h)

3.2 Evidence accumulation by combining uncertain measurements

The multiple features derived by signal processing provide probabilistic maps of the like-
lihood to characterize the sought structures (Fig. 3a-h). Each of this features is inherently
uncertain, and they must somehow be combined to derive a measurement which incorpo-
rates different properties of the typical temporal pattern of a lesion. A pooling of evidence
from different knowledge sources will strengthen beliefs in some cases and erode beliefs
in others, even handling contradictory evidence. The following analysis assumes that the
features are independent, although this might not be strictly true. A combination of prob-
ability measures can be accomplished by using Dempster-Shafer’s theory. To get around
the computational complexity of the original DS method [16, 17], we used binary frames
of discernment (BFOD) as proposed by [18]. Details describing the choice of confidence
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factor functions (cf), basic probability assignments (cfa) and the combination rules can
be found in the appendix. The design of these functions and probabilities (see Table 3)
represents a crucial step. However, our tests with the analysis of very different serial data
sets showed that only minor parameter adjustments were necessary. The initial design
and training was based on a comparison of the resulting feature maps with segmentation
results produced by statistical classification followed by manual corrections.

The Dempster’s combination rule is associative and commutative, so that the final
probability does not depend on the order in which evidence is combined (Fig. 4a).

x
a b c

Fig. 4. Combination of fuzzy features by Dempster’s rule (a), segmented active lesions on 2-D slice (b) and as
3-D rendering (c).

The combined 3-D data set is again probabilistic, with a value range of [0, · · · , 1]
(Fig. 4b). A binary segmentation, for example for three-dimensional graphical visualiza-
tion (Fig. 4c), is obtained by choosing an appropriate threshold either by visual inspection
of overlay images or by comparing the segmentation output to hand-segmented training
data. Tests with multiple data sets and visual inspection showed that the choice of the final
threshold was not critical and revealed very similar results within a range of thresholds,
provided a careful design of the cf-functions and bpa assignments.

4 Results

The new segmentation system has been applied to two time series from different patient
studies. A first study carried out at the Brigham and Women’s hospital covers 40 patients
with 24 brain scans, with a fixed sequence of scanning intervals of one, two and 4 weeks.
Another study currently analyzed in the European BIOMORPH project [19] comprises 12
serial imaging sessions of 40 patients, each imaging session delivering multiple MR proto-
cols (PD,T1,T2). The data sets are preprocessed as described in section 2 and analyzed
using the signal processing methods described in section 3.

4.1 Brigham and Women’s Hospital data sets

The image data sets were acquired on a GE Signa 1.5 Tesla using a double echo spin echo
pulse sequence (TR 3000ms, TE 30/80ms) half Fourier sampling (0.5 NEX). 54 slices
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with 3mm slice distance and thickness and 256x256 pixels result in voxel dimensions of
0.96x0.96x3 mm3. The time series includes 24 data sets acquired over a period of 50 weeks
with a specific time protocol: weekly scans for 10 weeks followed by every other week scans
for 16 weeks and monthly scans for 24 weeks. We could use 23 out of the 24 scans for our
analysis. The unequally spaced time image series was converted into a regularly sampled
sequence by linear interpolation.

The 3-D visualizations (Fig. 6) display the time course of lesion evolution, coded as a
color map ranging from 1 to 23. Additionally, the processing results in a quantification of
the temporal evolution of the total lesion load, measured relative to the first image data
set. Please remind that the procedure only measures time changes and excludes voxels
that remain unchanged, thus providing information that is different from the conventional
total lesion load over time.

4.2 BIOMORPH data sets

Image data are acquired on a Philips T5 magnetic resonance scanner, 1.5 Tesla, using a
double echo spin-echo pulse sequence with TR 2816ms and TE 30/80ms). 24 axial slices
256x256 were measured, with voxel dimensions 0.9x0.9x5.5mm3. 12 scans are measured
over a period of 56 weeks: 11 scans with approximately 4 weeks intervals and a last scan
with a 13 week interval. This unequally spaced time image series was converted into a
regularly sampled sequence by linear interpolation.

Figures 7 and 8 illustrate the segmentation result, again attributing the segmented
lesions with the time of appearance.

5 Validation

Validation of the time series analysis method is not straightforward as it measures tem-
poral changes rather than absolute lesion volumes. It has been decided to validate the
method using simulated lesion patterns in 4-D data sets. We used a 3-D magnetic reso-
nance data set of a healthy volunteer which has been replicated by the number of time
steps, here 12. Remaining insufficiencies of the clincial 4-D data sets resulting from the
spatial registration and the bias correction are therefore not subject to this validation. It
has been visually verified that the dataset doesn’t contain white matter lesions.

Lesions of varying size, contrast and lifetime have been produced with the help of a non-
linear diffusion process with a source and a sink term. This decision has been influenced by
the visual analysis of realistic temporal patterns (Fig. 2). Lesions in magnetic resonance
image data are always diffuse and most often showed a sharp increase and a smooth
decrease of the size and brightness function.

∂u(x, t)

∂t
= div(c(u(x, t))∇(u(x, t))) + q(x, t) + r(u(x, t)) (1)

Equation 1 produces time series of diffuse lesions with quick appearance and slower
disappearance (Figure 5a). The time series of the artificial lesions were merged with the
time series of the head by taking the voxel with the maximal intensity of the sources. Due
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to this operation, voxels which are only slightly brighter than the surrounding tissue are
also counted as lesion voxels and therefore allowed to implant very diffuse lesions. The
lesions were inserted in both the white matter and in the grey matter of the brain.

The 4-D data set (including the evolution of the lesions) has then been corrupted
by Gaussian noise with a variance equally to the variance of white matter (Fig 5b).
The parameters for the temporal analysis were chosen exactly the same as for the other
segmentations. As a result, the number of detected lesion voxels per lesion and their time
point of appearance and disappearance have been obtained. The 4D test data set consists
of 12 time points and 18 lesions were implanted. All inserted lesions have been detected
(Fig 5c).

Table 1 lists the maximal number of implanted/detected voxels during the time course
for each lesion. For most generated lesions about 80% of the implanted voxels are detected,
since very diffuse lesion voxels have been discarded by the time series analysis. For very
small or weakly lesions of weak contrast the ratio of very diffuse lesion voxels to well
contrasted lesion voxels is large and thus the detection rate in percent becomes worse.

Table 2 compares the number of implanted and detected voxels for different lesions at
each time point. Beside the problems with the diffuse contours of the lesions it can also
be seen that the estimate of the lifetime of the detected lesion voxels is often too short.
The lifetime of a voxel is determined by calculating the minimal and maximal gradient
of the time course of this voxel and does not exactly match with the time points of first
appearance and final disappearance.

-4

-2

0

2

4
0

5

10

15

20

0

0.5

1

1.5

-4

-2

0

2

4

1-D evolution Slice of 4-D MRI 0 11

a b c

Fig. 5. Simulated lesions in 4-D MR data sets. Image a illustrates the non-linear diffusion with the one-dimensional
profile as the horizontal axis time varying from front to back. Image b represents a cut through the 4-D data set
with simulated lesions, and image c represents a 3-D display of the segmented lesions attributed by the time of
appearance.
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lesion implanted detected percentage of
number voxels voxels detected voxels

1 226 178 79%

2 600 463 77%

3 85 67 79%

4 450 352 78%

5 256 217 85%

6 31 15 48%

7 100 79 79%

8 67 48 72%

9 31 15 48%

10 31 18 58%

11 770 641 83%

12 797 649 81%

13 905 771 85%

14 254 133 52%

15 142 89 63%

16 69 44 64%

17 15 12 80%

18 160 113 70%
Table 1. Simulation experiment: Number of implanted versus detected voxels per 4-D lesion
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lesion maximal implanted/ number of detected/implanted lesion voxels at each time point
number intensity detected 1 2 3 4 5 6 7 8 9 10 11 12

1 1300 implanted 39 192 226 78 6
detected 3 178 178 1 1 1 2

2 900 implanted 119 600 565 134 1
detected 2 10 463 394 1 1 1 1 1 1

3 1000 implanted 4 28 79 85 37 5
detected 6 67 61 1 1

4 1100 implanted 97 387 450 176 26
detected 1 1 1 4 352 352 1

5 1200 implanted 1 38 79 192 256 114 44
detected 1 35 177 217 7 1 1

6 1000 implanted 1 9 18 31 11
detected 1 15 15

7 1100 implanted 4 28 80 100 61 16 4
detected 14 79 79 1 1 1 1 1 1

8 900 implanted 7 29 64 67 33 12 4
detected 11 48 42 1

9 1200 implanted 1 5 9 31
detected 5 9 15

10 1200 implanted 5 31 31 9 1
detected 1 16 18

11 1200 implanted 163 671 770 375 79
detected 1 1 2 2 2 8 641 641 7 2

12 1200 implanted 52 232 666 797 474 198 36
detected 1 1 2 2 55 631 649 20 17 1

13 1300 implanted 18 120 301 681 905 731 456 249 84 9
detected 3 3 120 639 771 310 24 2 2 1

14 900 implanted 60 254 196 38
detected 15 133 95 2 2 1 1 1 1

15 1000 implanted 20 142 88 1
detected 3 89 31

16 800 implanted 4 25 69
detected 4 18 44

17 900 implanted 5 15 14 5
detected 12 11

18 900 implanted 3 50 160
detected 1 36 113

Table 2. Simulation experiment: Time course of implanted versus detected voxels per lesion. The intensity ranges
of the MR image were ≈ 500-610 for WM, ≈ 650-800 for GM and ≈ 1000-1300 for CSF.
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6 Summary and Conclusions

We present a new image processing system for the time series analysis of serial data sets
representing time series. The purpose of this project was the exploration of the discrimi-
nation power of the time axis, which is most often not directly used for the segmentation
of structures. On purpose, we excluded any absolute scalar or multi-spectral information
about structures as most often used for the voxel-wise segmentation of lesions from MRI
by multi-dimensional thresholding and statistical clustering. Here, we exclusively analyzed
the time series of each voxel to demonstrate the additional information obtained by taking
into account the temporal evolution of brightness.

The paper describes the development of a the image analysis techniques for segmenta-
tion of fluctuating structures from 4-D data sets. Analyzing the time series of each voxel,
we derive a set of statistical and structural features each of which discriminates static
tissue from changes in the time function. The extraction of each feature creates a prob-
ability map for the presence of the sought structure. The multiple probabilities from the
different evidence sources are combined using The Dempster-Shafer theory. We selected
this technique because it allows to combine different sources of evidence by considering
not only the probability of the occurrence of a feature, but also of the absence and of
the ignorance about the measurements. The design of the confidence factor functions and
the transformation of confidence factors into basic probabilities represent a decisive step
which is comparable to supervised training in statistical classification. Test showed that
once trained, these settings can be used for other data sets as well since measurements do
not directly depend on absolute intensity values. Further, brightness and contrast of our
data sets are normalized in the preprocessing step.

The analysis of normalized 4-D data sets is automatic and takes about 10 minutes
processing time (SUN Ultra 1 with 128Mb). The results were visually compared with
results from alternative segmentation methods and revealed a surprisingly good sensitivity
and specifity to MS lesions. However, we have to keep in mind that our analysis so far
is only based on time series information of one MR echo. We can expect an even higher
sensitivity if multi-echo information could be embedded, and if we would combine the time
series analysis with the segmentation of spatial structures. So far, data was inspected by
clinical experts by evaluating overlays of the segmented lesions with the original MR
scans (Fig. 4). The quantitative validation and tests with simulated lesions show that all
the lesions could be detected, but that the lifetime of segmented is consistently shorter
than the lifetime of the implanted lesions. However, our lesions were not binary blobs but
were generated by a non-linear diffusion process which starts with a very weak contrast.
Thereby, we tried to simulate lesions in real images which are often nearly invisible at
early stages.

We can conclude that temporal changes represent a highly significant feature for the
identification of active lesions and should be considered for future analysis. Further, tem-
poral evolution and the detection of time changes are the most important features for
pharmaceutical studies and research, as the goal most often is the evaluation of changes
due the disease process or a drug treatment. Besides detection of lesion voxels, our method
reveals the time of appearance and disappearance as attributes to each voxel. A dynamic
visualization of this temporal information allows the detection of groups and patterns of
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lesions which show a similar time course. If additionally combined with anatomical atlas
information to link lesion positions to anatomy, we would get a new insight in the MS
disease process and hopefully a new understanding of the disease mechanism.

Currently, we are extending the time-series analysis by spatial analysis to develop a
spatio-temporal description of fluctuating lesion patterns. We will also include information
from multiple spectral MR channels (PD, T1, T2, FLAIR) to replace the scalar image
brightness by vector-valued measurements.
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A Dempster Shafer (DS) Theory

The DS theory [16, 17] makes inferences from incomplete and uncertain knowledge, pro-
vided by different independent knowledge sources. The theory allows the strengthening
or erosion of beliefs by combining additional sources of evidence, even in the presence of
partly contradictory evidence. It can be shown that the Dempster-Shafer theory contains
the Bayesian theory of partial belief as a special case.

The problem of lesion detection allows a simplification, as the set of admitted answers,
the so called frame of discernment, is simply the set Θ = {lesion,¬lesion} of mutu-
ally exclusive elements and represents the special case of a binary frame of discernment
(BFOD) [18]. The set of all subsets of Θ is called the power set 2|Θ| of Θ with the fo-
cal elements ({∅}, {lesion}, {¬lesion}, {Θ}), where {Θ} stands for {lesion,¬lesion} or
ignorance.

Basic probability assignment (bpa): A bpa represents a belief in an elementary proposition
or in a disjunction of several of them. Formally, a bpa is a function m : 2Θ → [0, 1] with
0 ≤ m(.) ≤ 1,m(∅) = 0, and

∑
A⊆Θm(A) = 1, where ∅ is the null proposition. A belief

function Bel(A) over Θ is defined by a sum of the bpa’s of all proper subsets of A,
Bel(A) =

∑
B⊆Am(B), and calculates our total belief in a proposition A.

Combination of evidence: Dempster’s rule calculates a new evidence from two given basic
probability assignments m1 and m2, designated as m1 ⊕ m2. The products of the bpa’s
with focal elements with non-empty intersection are normalized with 1

1−κ , where κ is the
sum of the products with empty intersection. κ can be expressed as a measure for the
contradiction or inconsistency of the combined evidence.
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m1 ⊕m2{x} =
m1{x}m2{x}+m1{x,¬x}m2{x}+m1{x}m1{x,¬x}

1− (m1{¬x}m2{x}+m1{x}m2{¬x})

m1 ⊕m2{¬x} =
m1{¬x}m2{¬x}+m1{x,¬x}m2{¬x}+m1{¬x}m1{x,¬x}

1− (m1{¬x}m2{x}+m1{x}m2{¬x})
m1 ⊕m2({x,¬x}) = 1−m1 ⊕m2({x})−m1 ⊕m2({¬x})

Confidence factor functions: It remains the problem of transforming the output of a source
(measurement) to an appropriate input for the bpa’s. [18] introduced a confidence factor
function cf(v) : < → [0, 1] that produces a confidence factor for the measurement v if it
satisfies the following:

1. cf(v) is an increasing function

2. cf(v) = 1.0 if the measurement v implies {x} with certainty

3. cf(v) = 0.0 if the measurement v implies {¬x} with certainty

4. cf(v) = 0.5 if the measurement v favors neither {x} nor {¬x}

Once a confidence value is obtained, the transformation into a bpa can be accomplished
by

beliefin{x} : m({x}) =
B

1− A
∗ cf(v)− AB

1− A

beliefin{¬x} : m({¬x}) =
−B

1− A
∗ cf(v) +B

ignorance : m(Θ) = 1−m({x})−m({¬x})

Tests with different confidence factor functions showed that the sigmoid function and
the one-sided Gaussian were the most appropriate functions cf(v) for the combination of
the measurements in our application.
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Sigmoid function y = 1
1+e−k(x−θ)

with k = 1 and
θ = 0, k describes the steepness and θ determines
the offset on the x-axis.
One-sided Gaussian function y = e(x−θ)2σ, σ is
the scaling and θ a shift in x-direction.

Table 3. Choice of confidence factor functions for evidence sources. The columns invert, greatest lower bound,
and sigmoid transient define the function parameters

Evidence source Confidence factor function invert greatest lower bound sigmoid transient

standard deviation One-sided Gaussian no 0.3 -

nr. of segments Sigmoid yes 0.01 10.5

maximal length of segment Sigmoid no 0.01 13

maximum of gradient Sigmoid no 0.01 4.5

Minimum of Gradient Sigmoid yes 0.01 -6.4
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Example of combination of evidence using Dempster Shafer’s rule

A test example illustrates the narrowing of the hypothesis by accumulation of evidence.
Source 1, although with high ignorance 0.5, strengthens the bpa for {x} if combined with
source 2. Source 3, although with higher belief in {¬x} than in {x}, only slightly erodes
the bpa for {x} if combined with source 2, whereas the the belief in {¬x} is somewhat
increased. The combination of all the three sources demonstrate the low ignorance Θ =
0.03 and the high belief in {x}. The combination rule is associative and commutative and
consequently the belief function does not depend on the order in which the evidence was
gathered (see Fig. 4a).
bpa source 1 source 2 source 3

mi {x} 0.4 0.8 0.3
mi {¬x} 0.1 0.0 0.5
mi (Θ) 0.5 0.2 0.2

combination bpa combination bpa combination bpa

m1 ⊕m2 {x} 0.87 m1 ⊕m3 {x} 0.26 m2 ⊕m3 {x} 0.77
m1 ⊕m2 {¬x} 0.02 m1 ⊕m3 {¬x} 0.36 m2 ⊕m3 {¬x} 0.17
m1 ⊕m2 (Θ) 0.11 m1 ⊕m3 (Θ) 0.38 m2 ⊕m3 (Θ) 0.06

contradiction κ 0.08 contradiction κ 0.18 contradiction κ 0.4

combination bpa

m1 ⊕m2 ⊕m3 {x} 0.84
m1 ⊕m2 ⊕m3 {¬x} 0.13
m1 ⊕m2 ⊕m3 (Θ) 0.03

contradiction κ 0.145
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d

Fig. 6. Three-dimensional display of lesions segmented from the Brigham and Women’s data set. (a) Side-view
with transparent intracranial cavity. (b) Time of appearance, (c) time of disappearance. (d) Plot of total volume
estimates versus time. Remember that the method analysis only fluctuations and excludes static portions of
lesions. The color represents the time of appearance or disappearance, respectively, coded from 1 to 23.

a b c d

Fig. 7. Three-dimensional renderings of time evolution resulting from the 4-D analysis of the BIOMORPH data
set. Images (a-d) represent weeks 0, 28, 36 and 40.

1 12

Fig. 8. Three-dimensional displays of lesions segmented from the BIOMORPH data set, top and side view of
lesions and intracranial cavity. The color represents the time of appearance, coded from 1 to 12).
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