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Abstract

Measuring motion in medical imagery becomes more and more important, in particular for
object tracking, image registration, and local displacement measurements. Often, the require-
ments on the measurement precision are high compared to the image quality. Especially in
megavoltage X-ray images (portal images), which are used to control the position of patients
in high precision radiotherapy, render low contrast, blur, and noise accurate measurements
difficult.

In this work we review the framework of a generic matching algorithm only based on the
image signal and not on binary image features. Thus, the often unreliable step of feature
extraction in such imagery is circumvented. Another major advantage is the possibility of
self-diagnosis, which is used for restricting the transformation in motion measurements if the
image quality is not sufficient.

The matching leads to an estimate of parts of the rigid 3D motion of the patient during
radiotherapy, based on the measurements in the projected 2D portal images. The method of
digitally reconstructed radiographs (DRR) allow for the computation of error free reference
images, avoiding the additional step of therapy simulation. The multi-modal match between
such DRRs and portal images lead to an estimate of the patient position during radiotherapy
treatment. Results of generated data with known ground truth as well as results of a multi-
modal match are presented.

Keywords —portal imaging, medical image analysis, image matching, deformable templates,
self-diagnostics
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1 Introduction

Accurate motion measurements in images are essential to solve numerous problems in computer
vision. For medical imagery in particular, precise position measurements and registration of
image series represent two important applications. Wherever feature extraction is difficult or
high precision is required, the least squares template matching algorithm (LSM) reviewed in this
paper has many advantages over other methods. LSM is a generic matching algorithm suitable
for many applications including motion estimation in low-contrast megavoltage X-ray images,
also called portal images.

The specific goal in this work is the exact positioning of patients during radiotherapy, which
is essential for high precision treatment. This involves automatically measuring patient setup
deviation between or even during treatment sessions. One possible sensor is an electronic portal
imaging device (EPID), which delivers images of the exit dose distribution during treatment.
Unfortunately, the contrast of these megavoltage X-ray images is very low due to the high
energy beam, and, since we are dealing with projected images, parts of a rigid 3D motion must
be estimated by evaluating projected 2D images. Thus, the quantitative processing of portal
images is a very challenging task.

In [Berger and Danuser 1997] we propose the area-based LSM algorithm to find displacements
between two portal images, yielding a fast and accurate image matching procedure. Extending
this approach, we further exploit the self-diagnosis capabilities. The variation of image quality
of portal images inhibits the estimation of a 2D affine transformation for all cases. An adaptive
scheme based on self-diagnostic measures allows for an automatic reduction of the parameter
set where the full parameter set is not determinable. Furthermore we include the multi-modal
matching of portal images against digitally reconstructed radiographs computed from the CT
volume data.

1.1 Previous work on portal images

Several methods for portal images matching have been proposed but most are lacking either the
robustness or the accuracy necessary to be reliably used in daily hospital routine. Furthermore,
they often require too much user interaction. Algorithms like point-to-point (or landmark)
matching greatly depend on the exact localization of the landmarks by the physician. This is
not only time-consuming, but also varies for different operators. Less user interaction is required
by the chamfer matching algorithm where significant ridges are manually outlined in a reference
image and matched onto the detected features of the treatment image [Gilhuijs and van Herk
1993]. A similar approach in the sense that it also uses binary features, namely cores, is described
in [Fritsch et al. 1995], where also a quite complete review about published algorithms for portal
imaging can be found.

Since portal images are inherently noisy and low in contrast, it is difficult to robustly detect
features like edges, ridges or cores. Therefore, an area-based match is superior to a feature-based
algorithm. Greyvalue correlation techniques are described in [Dong and Boyer 1996, Moseley
and Munro 1994, Radcliffe et al. 1994]. Their limitations lie in the restriction to a translation
or in a coarse search grid for computational reasons.

1.2 Previous work on least squares template matching

The method of least squares template matching (LSM) with deformable templates meets the
requirements of being an area-based approach with rigorous error propagation, self-diagnosis
and thus, minimized user interaction. Early work in this field was presented by [Lucas and
Kanade 1981], who published an iterative image registration scheme base on LSM. Among the
first papers that discussed the concept of exploiting the full information of the statistical models



4 Least squares template matcning 9

for robust template matching are [Griin 1985] and [Forstner 1987]. [Bergen et al. 1992] describe
basically the same algorithm for motion estimation. It was further developed using a multi-scale
approach by [Lindeberg 1995].

Following and extending the original work of Griin, [Danuser and Mazza 1996] achieved highly
accurate results at the resolution limit of a light microscope. The high accuracy of this technique
even in the case of low-contrast imagery is extensively exploited in [Danuser 1996]. The paper
reports of high accuracy positional measurements of a calibration grid used to calibrate a stereo
light microscope. Compared to their application, additional problems arise in portal images from
the higher complexity of the image scene and the out-of-plane rotations. On the other hand, the
requirements on accuracy are not as high in portal imaging.

A similar technique for the registration of medical image series is reported by [Unser et al.
1995], where each image is matched to the reference image based on a global greyvalue difference
measure. In contrast to their work, our framework does not rely on one global template, but
on several small templates each containing a significant image structure. Thus, the inclusion of
distinct but insignificant image features which vary between the data of one sequence is avoided
and the impact of global greyvalue errors such as bias fields is reduced.

2 Least squares template matching

LSM is an area-based matching algorithm. It replaces the conventional multi-stage approach
where feature detection is followed by thresholding, binarization and a discrete search. Thus,
LSM does not depend on the extraction of binary (also called non-iconic) image features. This is a
very important advantage in low-contrast and blurred imagery, where feature detection is mostly
unreliable. Furthermore, unlike in most correlation methods, the optimum transformation is not
searched by testing all possible cases, but approached using an optimization scheme. Assuming
that a fair initial guess can be supplied, this is not only faster but also more accurate.

The image signal of a template is fitted into the search image, minimizing the least squares
error between the greyvalues of the two regions. The fitting procedure has to account for both
radiometric and geometric transformations. In order to avoid ambiguities, these two transfor-
mations have to be estimated separately. This is achieved by estimating the parameters for the
radiometric transformation based on a global measure within the template region before each
iteration. Thus, they are not directly included in the actual least squares optimization.

The following sections give a short review over the mathematical framework of LSM. Further
information can be found in [Berger 1998, Berger and Danuser 1997].

2.1 Unconstrained LSM

The LSM includes two observations, the template image f[.] and the search image g[.], called
patch. The geometric relation between the original template and the matched area is defined by
an arbitrary transformation. Depending on the type of the chosen transformation, this allows
for displacement, rotation and/or deformation of the template. In addition to the geometric
transformation, the observations must be adjusted radiometrically. The simultaneous estimation
of both types of transformations would lead to an overdetermined system, since it is not possible
to distinguish them locally (cf. figure 1). In order to overcome this problem, the parameters
of the radiometric transformation are estimated based on a global measure within the template
region apart from the actual least squares optimization. The resulting radiometrically adjusted
patch g[.] is then used for the next optimization step. We use a linear transformation which can
be written as glu]=a + ( g[u], where u stands for the discrete image coordinates.

The general geometric transformation is denoted by & = (£, u), transforming the image
coordinates u to the parameter vector €. Applying the least squares framework, this leads to
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Figure 1: The ambiguity between radiometric and geometric transformation. Local operators
cannot distinguish between the two types of transformations, hence a simultaneous estimation
leads to an ill-conditioned system.

the observation equation
flu] +elu] = g(z) . (1)

Equation (1) represents a relation between each greyvalue within the template and its cor-
responding image intensity in the search image. Notice that square brackets denote functions
defined on a discrete grid. The functions g(.) and g(.) simply represent the continuous versions
of g[.] and g[.], respectively. Hence, the template greyvalues f[u] are defined on the grid of the
reference image while g(z) = g(¢ (€, u)) fall between the grid of the search image. Interpolating
the greyvalues g(¢(&,u)) for a given & we substitute

Gelu] = g((& u)) -

Based on a coordinate list u[k], equation (1) is reordered into a vector notation

f+e=g, (2)

building a series of n equations, where n is the number of pixels included in the template.
Together with the least squares objective function eTPe, with P as optional weight matrix, this
defines an unconstrained nonlinear least squares (NLS) problem.

We choose a Newton-Raphson scheme as optimization algorithm, linearizing the observation
equation (1) around the current estimate £€° or z° = ¥ (£€° u), respectively:

flu] +efu] = §(=°) + Ve g(=°) AL (3)
f+e = §+A At, (4)

where A is the Jacobian matrix with respect to the parameter vector €. A is a n X r matrix with
r being the number of parameters. If we neglect the stochastic nature of the Jacobian matrix,
this linear problem corresponds to a Gauss-Markov model with full rank. Note that only under
this assumption, the observations are separated from the parameters. Problem (4) is then solved
analytically setting the first derivative of the least squares goal function eTPe to zero, which
yields the normal equation system

ATPA- A¢ ~A™P (§° - f) ()
N-At = —ATPw. (6)
Notice that if P is a diagonal or a band-diagonal matrix, the matrix A doesn’t have to be

computed and stored as a whole. The weight matrix P is diagonal if and only if the observations
are independent of each other. In the case of LSM, this assumption usually holds' and it is

!Strictly, the assumption is fulfilled only for the original observations f and g, and not for the transformed
and interpolated patch §. But the influence of neglecting this becomes only significant for very high precision
measurements.
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sufficient to compute A row by row in order to build the normal matrix IN. This is an important
property, since the size of A increases with the number of pixels included in the templates.

As long as A has no row deficiency, the r x r normal matrix ATP A is always positive definite
and symmetric and hence the Cholesky decomposition can be applied to solve equation (5).
After each iteration step, matrix A must be recomputed using the updated set of parameters
gt = ¢+ A¢. When the parameter change A¢ falls below a specified numerical resolution the
iteration process is stopped.

Parameter estimation in linear least squares problems are extensively discussed in standard
literature on parameter estimation theory, e.g., [Koch 1988]. The iterative solution of equation (1)
is an unbiased estimate for the unknowns with a stochastic variance expressed by the diagonal
elements of the covariance matrix

Sge =60 Qe - (7)
The value 6y denotes the a posteriori noise estimate and Qze= N1 is the cofactor matrix.

2.2 Affine transformation as geometric transformation

So far no assumptions have been made on the dimensionality of the problem and on what type of
transformation is used. In the following, the case of a two dimensional affine transformation is pre-
sented. The corresponding parameter vector consists of six variables & = [t1,t2,m1, 51, 52, ma]T
and the coordinate transformation is written as

I mi S
w_th]—i_lS?m?]u' (8)
The derivative Vg g(x) is now calculated explicitly using the chain rule. In vector notation, this
leads to the n x 6 Jacobian matrix A (cf. equation (4)), each line Ay representing the derivatives

at z[k] = ¥ (&, u[k]). Calculating the derivatives in the resampled patch image g[.] and denoting
the derivatives by gy, [.] and gy,|[.], we write

Ak = [gun guw gufu'la §u1u2a guzula §u2u2] )

omitting the parameter u[k] of the functions g,,[.] for better readability.

As mentioned in the previous section, the normal matrix N = ATP A can be built computing
A row by row, as long as the weight matrix P is diagonal. If the greyvalues of each pixel are
considered independent this is fulfilled and IV is computed without the need to multiply large
matrices.

2.3 Employing constraints

The least squares formalism allows one to introduce additional constraints in a simple and in-
tuitive way. In addition to the observation equations, zero observations are included in the
framework, which results in soft or spring constraints. In this section, we will apply this tech-
nique to LSM. As an examples serves the reduction of an affine to a similarity transformation.
Instead of reparametrization we still employ equation (8) as transformation equation and add
the following constraints to the parameter vector &:

mi—mo+e, = 0
s1 + s2 +e; = 0
Since £ is not estimated directly, but only the parameter update A, the derivative of these
constraints must be taken analogous to the linearization of the observation equations. Thus, the
matrix A is augmented by the constraint vectors
Ap = [O, 0,1,0,0, _1]
A; = [0,0,0,1,1, 0].
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Employing constraints instead of reparametrization is easier to implement and also more
versatile. On the one hand, constraints can easily be changed during the iteration, quickly
switching from a similarity to an affine transformation. The formalism for the derivatives and
therefore for building the normal matrix always stays the same. On the other hand, only a few
types of constraints can actually be expressed by reparametrization, which makes constraints
more flexible to use.

2.4 Multi template extension

There are several ways to extend the standard LSM to multiple templates. For all of them, the
equation (1) has to be adapted to include multiple templates and their corresponding patches:

FEu] + e u] = g% () . (9)

The most straightforward extension is to keep one single transformation for all patches X = x
with the same parameter set shown in equation (8). The observations can be reordered into
a vector notation analogous to the single template matching (2). Formally, this procedure is
equal to the definition of one large template with several scattered regions of interest. The only
difference is that the radiometric parameters o and X differ between the templates. Thus,
the influence of bias fields and other global greyvalue errors is minimal.

2.5 Parameter determinability

The determinability of a parameter 7 is tested using its relative contribution d; to the trace of
the cofactor matrix Qg

o |[n1Qe] — iy
b tr[Qe] ’

where Qze is the cofactor matrix with parameter ¢ excluded. J; describes the influence of each
parameter upon the others. Weakly determinable parameters cause quasi-singular normal equa-
tions, thus a large change in the trace of the cofactor matrix.

An efficient implementation of (10) is achieved by using the Kalman-Bucy filter technique
(cf. [Koch 1988]), computing the partial cofactor matrix Qﬁ.f directly from Qg:. Applying this
framework to (10) yields an expression for the contribution

5= >, 4is”
Gy 457

(10)

(11)

where g;; denotes the elements of the full cofactor matrix Q.

If a contribution ¢; of the parameter 7 is high, this parameter strongly correlates to one or
more parameters. One should either exclude parameter 7 or combine it with the correlating
parameters by applying parameter constraints as described in section 2.3.

3 Controlling patient position in radiotherapy

The steps before high precision conformal therapy include the acquisition of a CT, then a 3D
planning of beam directions, field shape and dose distribution and finally the positioning of the
patient using a simulator with the same geometry as the linear accelerator (figure 2). During the
radiotherapy treatment, either portal films or electronic portal images are acquired for quality
control.

The portal images in this work were acquired at the University Hospital of Zirich using
a Varian accelerator and their electronic portal imaging device (EPID). This device delivers a
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Figure 2: Overview of the different steps of radiotherapy treatment.

distortion free image with a resolution of 256 x256 pixel on an area of 32x32 cm? [van Herk and
Meertens 1988].

The diagnostic X-ray images from the simulator are often used as a reference image for
measuring the patient motion in subsequent portal images. One goal of this project is to eliminate
the need for simulator X-ray images for motion measurements by direct comparison with the
DRR. Besides the fact that simulator images are not suitable for automated area-based matching
due to their different greyvalue characteristics, they also represent an additional source of error
with respect to the original planning data. Moreover, it is thus conceivable to circumvent the step
of therapy simulation entirely in order to increase safety and to save costs. DRRs are employed
in two ways:

1. One reference image is computed representing the optimum patient position. Subsequent
portal images are compared against this reference image and the estimate of a 2D affine
transformation leads to a correction of the patient position.

2. Each portal image is compared against a series of DRRs, including minor out-of-plane
rotations to better account for the 3D patient motion.

In order to compute DRRs with sufficient quality, the CT slice thickness should be no larger
than 3 mm.

3.1 Template selection

In the particular problem of portal images, two displacements must be computed. Since the EPID
is in general not in a fixed position, a common coordinate system must be established using the
edges of the radiation field. These edges are very distinct features and pose no problems to the
matching algorithm. We refer to [Berger and Danuser 1997] for a more detailed description of
the fieldedge match.

In the following, we will concentrate on the anatomy match. The selection of the template
regions strictly follows the previous work. Due to artifacts and the presence of distinct but
unstable features (e.g., originating from air in the rectum), a fully automated template selection
is beyond the possibilities of computer vision. Thus, the physician has to position predefined
standard templates onto the significant structures in the reference image.
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Figure 3: Image (a) depicts a portal image with a common unstable features that originates from
air in the rectum (dark blur in the center of the image). A typical template selection for a AP
pelvis field is shown in (b).

3.2 Self-diagnosis within LSM

We first focus on the determinability analysis as described in section 2.5. Since the statistics
behind the self-diagnosis is valid only in the adjusted state, this measure can not be applied
directly to the initial system. However, an upper bound for the determinability is computed
matching the templates onto themselves.
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Figure 4: Mesh view of the test image for the determinability analysis. Based on a match onto
itself, the contribution values of all parameter are computed. As expected, the contribution of
the scale parameters d,,; is significantly higher than of the shear parameters ds;.

The example in figure 4 illustrates the meaning of the contribution values. The 63x63 test
image contains a noisy corner with a signal to noise ratio of 10. It is Gaussian filtered with ¢ = 1.
Building the normal equation system by matching the template onto itself, the contribution values
shown in figure 4 result. As expected, the contribution of the scale parameters is significantly
higher than of the shear parameters, which clearly reveals the weak determinability of the two
scale parameters.

A suitable matching strategy is to estimate a congruent transformation first and then to
test the full affine parameter set for determinability. If none of them shows intolerably large
contributions §, the optimization is continued with the full parameter set. A general flowchart
is depicted in figure 5.

The cross-correlation between the template f[.] and the patch §[.] — which is interpolated
from the search image using the final parameter set & — should be very close to 1.0. If the
correlation coeflicient is below a certain threshold, the analysis of the final error vector e might
point at an incorrectly aligned template. Large values of e indicate a mismatch for this region.
Excluding such a template and reoptimizing the geometric transformation may result in a better
parameter set.
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Figure 5: Flowchart of the diagnostic measures.
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3.3 Combine multiple 2D measurements to 3D motion estimate

In radiotherapy, the patient is treated from different directions during one treatment session.
In the case of prostate cancer treatment for example, the four directions AP, PA, 90°, 270° are
typical (figure 6). Even though images from different directions are matched separately, the 2D
results combine to a rough 3D motion estimate. In the near future, this combination will help
to validate and possibly to improve the measurements.

_ source
1
I\\
I: \‘ AP
E i
o= / l
8 J ' patient/CT
- I v/
90° 270°
— -
_____ - - isocenter plane
S ¢ )
o
= : ‘ table T
| \
a S ——  EPID / film plane b. PA

Figure 6: The therapy setup is illustrated in (a) including the patient coordinate system. The
four main beam directions are shown in (b).

4 Results

The high precision capabilities of LSM are extensively shown in [Berger and Danuser 1997,
Danuser and Mazza 1996, Danuser 1996]. In the following sections, the emphasis is on the
estimation of the in-plane part of the 3D patient motion based on the evaluation of projected
2D images. We first apply the algorithm to generated datasets to test the potential of LSM. In
the last section, we present preliminary tests of the multi-modal match.
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4.1 In-plane translation and rotations

The following test series consisted of 25 simulated portal images with a maximum patient dis-
placement of 20 mm in x and y direction and a maximum rotation of 10° (figure 7). The results are
depicted in figure 9a. The standard deviations of the translation measurements are 0.25 pixel
(0.23 mm) in x direction and 0.37 pixel (0.33 mm) in y direction. These systematic errors are
caused by the unknown y position in the CT coordinate system of the template features (see
figure 6 for an illustration of the CT coordinate system). Within the rotation measurement,
these systematic error do not occur and the standard deviations are below 0.01°.

~ T ———— —-‘

k__

a. reference image b. 25 translated images c. 10 rotated images

Figure 7: In-plane test series computed from CT volume. The CT is translated and rotated in
the image plane.

4.2 Including out-of-plane rotation

In order to test under more realistic conditions, a test series with small out-of-plane rotations is
generated (figure 8). The area-based match still finds the corresponding regions with a correlation
well above 0.9. The systematic errors already encountered in the example above, which are an
inherent problem of using projected images, are of course higher in this example. But the total
point errors of 1.24 mm for 2° rotation and 3 mm for 5° still are promising results (see figure 9b).

a. reference image b. 100 images rotated c. 100 images rotated
around x axis around z axis

Figure 8: Out-of-plane rotation test series computed from CT volume.

4.3 Multi-modal match with portal images

The CT data acquired for radiotherapy in the current hospital routine consists of 10 mm slices,
which is too coarse for an accurate computation of DRRs. At the moment, only one — unfortu-
nately incomplete — data set with 3 mm slicing is available. Better datasets are acquired in the
near future. Thus, no tests for measuring a full 2D affine transformation could be carried out.
Nevertheless, the results on measuring translation and scale are promising. Figure 10a shows
the partly reconstructed radiograph with the chosen templates and two validation lines. The
matching results to two portal images are depicted in 10b and c.
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Figure 9: Displacement measure errors in test series without (a) and including out-of-plane
rotations of 2° (b). In (a) the error vectors are enlarged by a factor 10. The total point error
amounts to 0.3 pixel (0.28 mm) without and 1.4 pixel (1.25 mm) with out-of-plane rotations.

a. reference image b. translation (2,-1) mm c. translation (7,-2) mm
scale 1.05 scale 1.06

Figure 10: Multi-modal match between a DRR image computed from incomplete CT data (a)
and a portal image series (b,c). The transformation model includes translation and scale. The
white polygons outline the template regions and patches respectively, the black lines represent
validation lines which are not used for matching.
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5 Conclusion and Outlook

The LSM method with deformable template regions is a versatile matching algorithm. Since it is
an area-based method, the often unreliable step of feature extraction is circumvented. Especially
in low-contrast imagery like megavoltage X-ray images (portal images), this is an important
feature.

In earlier work, LSM has been successfully applied to matching megavoltage X-ray images
of the same modality. The results presented in this paper show the suitability for a multi-
modal match between digitally reconstructed radiographs as reference images and the portal
images acquired during radiotherapy. The area-based method LSM proved robustness even when
matching slightly distorted patterns.

In two test series with generated data, the systematic error caused by estimating a 3D motion
from projected 2D images is examined. Furthermore, preliminary tests with an incomplete DRR
matched to real portal images show promising results. A complete data set will be available
soon and allow for a full test of the multi-modal displacement measurements. Another goal is to
combine multiple 2D measurements to better estimate the 3D motion as outlined in section 3.3.
Thus, the influence of the systematic error occurring in the 2D measurements is reduced.

The presented methods are a step further in the direction of automatically controlling the pa-
tient position in radiotherapy. Applied in daily hospital routine, this should lead to an improved
quality assurance in radiotherapy.
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