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Abstract. We present a method for automatically finding correspon-
dence in Diffusion Tensor Imaging (DTI) from deformable registration
to a common atlas. The registration jointly produces an average DTI
atlas, which is unbiased with respect to the choice of a template im-
age, along with diffeomorphic correspondence between each image. The
registration image match metric uses a feature detector for thin fiber
structures of white matter, and interpolation and averaging of diffusion
tensors use the Riemannian symmetric space framework. The anatomi-
cally significant correspondence provides a basis for comparison of tensor
features and fiber tract geometry in clinical studies and for building DTI
population atlases.

1 Introduction

Diffusion tensor imaging (DTI) has become increasingly important as a means
of investigating the structure and properties of neural white matter. The local
diffusion properties of water in the brain can be measured in vivo using dif-
fusion tensor MRI (DT MRI). In brain tissue, water diffuses more easily along
myelinated axons which make up the white matter fiber bundles. Acquiring mul-
tiple images with different gradient sensitizing directions provides an estimate
for the local diffusion tensor at each voxel. The major eigenvector of each tensor
corresponds to the direction of the local fiber bundle, and the field of principal
eigenvectors can be integrated to produce fiber tracts.

Many approaches have been proposed to analyze DTI in clinical studies. For
example, derived scalar properties such as fractional anisotropy (FA), relative
anisotropy (RA), or mean diffusivity (MD) of the tensors are often compared
in regions of interest drawn by experts. Other methods have characterized the
geometry of white matter through tractography, as well as quantitative analysis
of tractography [1]. However, region of interest approaches require an expert
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Fig. 1. Flowchart of atlas building process

to segment structures of interest, and inter-subject comparison of tractography
lacks the correspondence between fiber tracts needed to make statistical compar-
isons. Wakana et al. [2] have built a fiber-tract atlas in the form of voxel maps
of prior probabilities for major fiber bundles. We propose to build an atlas for
tensor images to provide a basis for statistical analysis of tensors, tensor-derived
measures, and fiber bundle geometry.

We use the techniques of registration and atlas-building to provide inter-
subject correspondence for statistical analysis of diffusion data as shown in Fig-
ure 1. Our metric for optimizing the registration parameters is based on a struc-
tural operator of the tensor volumes. An initial alignment is performed by com-
puting the affine transformation between the structural images and applying the
transformation to the tensor volumes. An unbiased, deformable atlas-building
procedure is then applied which produces mappings between each subject and a
common atlas coordinate system using the method of Joshi et al [3]. We validate
our method by showing an improvement over affine registration alone.

2 Registration

Several image metrics have been proposed for inter-subject registration of DTI
including metrics based on the baseline images and the full diffusion tensors
[4,5]. We propose an intermediate, heuristic solution between using only baseline
images and using metrics based directly on the diffusion tensors. Our method
is based on a structural operator of the FA image that is more sensitive to
major fiber bundles than metrics based only on the baseline images. Given a
tensor image I and the corresponding FA image FA, the structural operator C
is defined in terms of the maximum eigenvalue of the Hessian,

C = max [eigenvalues(H)], where H ≡

⎛
⎝

FAxx FAxy FAxz

FAyx FAyy FAyz

FAzx FAzy FAzz

⎞
⎠ . (1)

Figure 2 shows the FA image of a tensor field and the corresponding structural
image C. Let hi(x) be a mapping which gives the corresponding point in the
subject image Ii for all x in the domain Ω of the atlas image Î. Given two
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Fig. 2. The top row shows axial, sagittal, and coronal slices of the FA image from a
DTI scan of a 1-year old subject. The bottom row shows the result of the structural
operator on the FA image taken at σ = 2.0mm. Major fiber bundles such as the corpus
callosum, fornix, and corona radiata are highlighted, while the background noise is
muted.

images I1 and I2 the image match functional that is optimized in the registration
process is

M(I1(x), I2(h(x))) =
∫

x∈Ω

[C1(x) − C2(h(x))]2 dx, (2)

the mean squared error between C1 and C2.
We use C over existing methods for two main reasons. First, we observe that

C is a good detector of major fiber bundles which occur as tubular or sheet-like
structures. Callosal fibers form a thin swept U; the corona radiate is a thin fan;
the cingulum is a tubular bundle, and C serves as a strong feature detector for
all types of these thin structures. Consequently, C optimizes correspondence of
fiber tracts better than the baseline image, because C has the strongest response
at the center of major fiber bundles, while the baseline image has the strongest
signal in the cortico-spinal fluid (CSF). Secondly, we use C instead of a full
tensor metric or the FA itself in order to minimize overfitting the diffeomorphic
registration by using the same feature for registration that will be used for
statistical comparison. The Hessian at a fixed scale is a first step towards basing
the registration on a geometric model of the white matter, and future work will
investigate a multi-scale approach to computing C to make the measurement
dependent only on the local width of the structure.

Using our definition for an image match functional, registration of the images
proceeds in two stages. First, a template tensor image is aligned into a standard-
ized coordinate system by affine alignment of the baseline image with a T2 atlas
using normalized mutual information. The remaining tensor images are then
aligned with the template using an affine transformation and equation 2. In this
coordinate system, we can average the tensor volumes to produce an affine atlas.
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Fig. 3. The top six images show the correspondance of the affine atlas and the five sub-
ject images at a point in the splenum of the corpus callosum. Notice the corresponding
index in the subject images does not necessarily correspond to the same anatomical
location. The bottom six images show the deformable atlas and subject images with
the same point selected; Here the atlas provides better anatomical correspondence, and
the deformable atlas has sharper structures.

However, the affine registration does not account for the non-linear variability of
the white matter geometry, and many of the white matter structures are blurred
in the atlas volume. For this reason, we subsequently apply a deformable regis-
tration procedure to obtain anatomical correspondence between the population
of images Ii and a common atlas space [3]. This procedure jointly estimates an
atlas image Î and a set of diffeomorphic mappings hi that define the spatial
correspondence between Î and each Ii. Figure 3 shows the improved correspon-
dence attained from the deformable registration. The computed transformations
are applied to each tensor volume as described in the next section.

3 Tensor Processing

The application of high-dimensional transforms to the DTI volumes must ac-
count for the space of valid tensors. The orientation of a diffusion tensor pro-
vides a measurement of fiber orientation relative to the anatomical location, and
spatial transformations of the tensor fields must account for the reorientation of
the tensor. Furthermore, since diffusion tensors are symmetric positive-definite
matrices, operations on the images must preserve this constraint.



264 C. Goodlett et al.

3.1 Spatial Transformations of Tensor Images

When spatial transformations of diffusion images are performed to align the
anatomy of different scans, the tensors must also be transformed to maintain
the relationship between anatomy and anisotropy orientation. We use the finite
strain approach of Alexander et al. to reorient tensors in a deformation field by
decomposing the local linear approximation of the transformation into a rota-
tion and deformation component [6]. The rotation of each tensor is computed
by performing singular value decomposition (SVD) on the local linear approxi-
mation of the transformation F , where F is given by the Jacobian matrix of the
deformation field computed by finite differencing. A local linear deformation F
is decomposed into a rotation matrix R and a deformation matrix U , where

F = UR. (3)

The local transformation of a tensor D is given as

D′ = RDRT . (4)

3.2 Interpolation and Averaging of Tensor Images

The space of valid diffusion tensors does not form a vector space. Euclidean
operations on diffusion tensors such as averaging can produce averages with a
larger determinant than the interpolating values, which is not physically sensible.
Furthermore, operations on diffusion tensors are not guaranteed to preserve the
positive-definite nature of diffusion. The Riemannian framework has been shown
as a natural method for operating on diffusion tensors, which preserves the phys-
ical interpretation of the data, and constrains operations to remain in the valid
space of symmetric positive-definite matrices [7,8]. Further simplifications have
shown an efficient method for computation using the Log-Euclidean metric [9].
Interpolation and averaging are treated as weighted sums in the Log-Euclidean
framework defined as

D̂ = exp

(
N∑

i=1

wi log(Di)

)
, (5)

where log and exp are the matrix logarithm and exponential functions. To pro-
duce the atlas tensor volume the deformed tensor volumes with locally rotated
tensors are averaged per-voxel using the Log-Euclidean scheme,

Irot(x) = R(x)I(x)R(x)T , (6)

Î(x) = exp

(
1
N

N∑
i=1

log(Irot
i (hi(x)))

)
. (7)

4 Experiments and Results

Our methodology was tested on five datasets of healthy 1-year olds from a clinical
study of neurodevelopment. The images were acquired on a Siemens head-only
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(a) Affine (b) Affine (c) Deformable (d) Deformable

Fig. 4. 4(a) and 4(c) show a slice of the FA for the affine and deformable atlases. 4(b)
and 4(d) illustrate a subregion of tensors in the splenum of the corpus callosum. Notice
that the FA image of the affine atlas is more blurry, and that the tensors in the splenum
are more swollen in the affine atlas.

3T scanner. Multiple sets of diffusion weighed images were taken for each sub-
ject and averaged to improve signal-to-noise ratio. Each dataset consisted of
one baseline image and six gradient direction images with b=1000s/mm2 us-
ing the standard orientation scheme. An image volume of 128x128x65 voxels
was acquired with 2x2x2 mm resolution. Imaging parameters were TR/TE =
5200ms/73ms.

For each set of diffusion weighted images the diffusion tensors were estimated
using the method of Westin et al [10]. The structural image C was computed
from the FA volume with σ = 2.0mm. Affine and deformable alignment were
computed using the methods described in section 2. The warped DTI volumes
were averaged to produce an affine atlas and a deformable atlas. Figure 4 shows
a comparison between the tensor volumes of the two atlases.

Tractography was performed in the atlas space, and the tract bundles were
warped to each subject image using hi. Figure 5 shows the results of tractography
in the atlas and the corresponding warped fibers in two subject images.

Fig. 5. Fibers traced in the corpus callosum of the atlas (a) are mapped to correspond-
ing locations in the subject images (b) (c) despite pose and shape changes.

5 Validation

Visual inspection of tractography in the atlas volume shows an initial qualitative
validation that the registration and averaging methods provide anatomically sen-
sible results. Histogram comparisons of derived tensor measures in the affine and
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(a) Affine (b) Deformable

(c) Gradient Magnitude Histogram (d) Cumulative Histogram

Fig. 6. (a) and (b) show an axial slice of the gradient magnitude image. Notice the
structures in the marked regions which are visible in the deformable atlas, but not the
affine atlas, and the increased sharpness of the splenum of the corpus callosum. Fig-
ures (c) and (d) show the histogram and cumulative histogram of gradient magnitude
intensities in the whole brain.

diffeomorphic atlas show an initial quantitative validation of the improvement
of the deformable registration over affine registration alone. The gradient mag-
nitude of the FA was measured in the whole brain of the affine and deformable
atlases. Figure 6 shows the gradient magnitude images and a histogram compar-
ison. At the 90th percentile of the cumulative histogram, the deformable atlas
has a gradient magnitude of 684 while the affine atlas is 573, an increase of
20%. This shows that the deformable atlas better preserves thin structures via
improved alignment.

6 Discussion and Future Work

We have developed an automatic method for producing correspondence in diffu-
sion tensor images through deformable registration, and a novel image match
which alignes structural features. We apply the transformation using the fi-
nite strain model for tensor rotation and a Riemannian framework for averag-
ing and interpolation. Initial validation of deformable registration is performed
by showing improvement in thin structure preservation over affine alignment.
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Future validation work will try to quantify the quality of correspondence of fiber
tracts. In future work, we intend to build DTI atlases of different populations to
compare tract geometry and tensor statistics along tracts.
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