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Abstract.

Knowledge about the biological variability of anatomical objects is essential

for statistical shape analysis and discrimination between healthy and pathological

structures. This paper describes a novel approach that incorporates variability of

an object population into the generation of a characteristic 3D shape model. The

proposed shape representation is a coarse-scale sampled medial description derived

from a fine-scale spherical harmonics (SPHARM) boundary description. This me-

dial description is composed of a net of medial samples (m-rep) with fixed graph

properties. The medial model is computed automatically from a predefined shape

space using pruned 3D Voronoi skeletons to determine the stable medial branching

topology. An intrinsic coordinate system and an implicit correspondence between

shapes is defined on the medial manifold. Our novel representation describes shape

and shape changes in a natural and intuitive fashion. Several studies of biological

structures are presented. A new medial shape similarity study of group differences

between Monozygotic and Dizygotic twins in lateral ventricle shape demonstrates

the meaningful and powerful representation of local and global form.
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1. Introduction

Quantitative morphologic assessment of individual brain structures in

neuroimaging most often includes segmentation followed by volume

measurements. Volume changes are intuitive features as they might

explain atrophy or dilation of structures due to illness. On the other

hand, structural changes like bending/flattening or changes focused at

a specific location of a structure, for example thickening of the occipital

horn of ventricles, are not sufficiently reflected in global volume mea-

surements. Development of new methods for three-dimensional shape

analysis incorporating information about statistical biological variabil-

ity aims at tackling this issue. Representation and analysis of shape is a

complex and challenging problem. It has been argued that a generally

applicable solution is not possible and that specific shape descriptions

have to be established. In this paper, we present a novel framework

for building shape models to be used for shape analysis of anatomical

structures.
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(Davatzikos et al., 1996) proposed an analysis of shape morphometry

via a spatially normalizing elastic transformation. Inter-subject com-

parisons were made by comparing the individual transformations. The

method is applied in 2D to a population of corpora callosa. A similar

approach in 3D has been chosen in (Joshi et al., 1997) to compare

hippocampi. Using the viscous fluid transformation proposed by Miller

(Christensen et al., 1994), inter-subject comparisons were made by ana-

lyzing the transformation fields. The analysis of transformation fields in

both methods has to cope with the high dimensionality of the transfor-

mation and the sensitivity to the initial position. Although the number

of subjects in the studied populations is low, both show a relatively

stable extraction of shape changes (Csernansky et al., 1998). Thompson

also uses a non-rigidly transformation to detect sulcal variability and

morphological changes to study normal brain development (Thompson

et al., 2000a) and diseases specific changes (Thompson et al., 2000b).

The approach taken by (Kelemen et al., 1999) evaluates a popula-

tion of 3D hippocampal shapes based on a boundary description by

spherical harmonic basis functions (SPHARM), which was proposed in

(Brechbühler et al., 1995). The SPHARM shape description delivers a

correspondence between shapes on the boundary, which is used in the

statistical analysis. As in the approaches discussed before, this approach

has to handle the problem of high dimensional features versus a low
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number of samples. Further, the detected shape changes are expressed

as changes of coefficients that are hard to interprete.

(Golland et al., 1999) in 2D and (Pizer et al., 1999) in 3D proposed

two different approaches of applying shape analysis to a medial shape

description. (Blum, 1967) claims that medial descriptions are based

on the idea of a biological growth model and a ’natural geometry for

biological shape.’ The medial axis in 2D captures shape intuitively and

can be related to human vision (Burbeck et al., 1996; Siddiqi et al.,

1997). Both Pizer and Golland propose a sampled medial model that

is fitted to individual shapes. By holding the topology of the model

fixed, an implicit correspondence between shapes is given and statistical

shape analysis can directly be applied.

(Giblin and Kimia, 2000) have proposed a medial hypergraph in

3D. They showed that the hypergraph completely characterizes the

shape of an object. Similar to work in 2D by (Siddiqi et al., 1999), this

hypergraph could be used for shape recognition and shape design. To

our knowledge, no studies have been done towards using the medial

graph/hypergraph directly for shape analysis.

In this paper we present a new approach to shape analysis using

medial descriptions. The medial description is computed automatically

from a population of objects described by their boundaries. The topol-

ogy of the medial description is calculated by studying the topological
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changes of pruned 3D Voronoi skeletons. Voronoi skeletons as a shape

representations have been studied intensively in past. The most influen-

tial pruning related studies in regard to this work have been performed

by (Ogniewicz and Ilg, 1992), Naef (Näf, 1996) and Attali (Attali et al.,

1997).

This paper is organized as follows. In the next section, the mo-

tivation of our work is discussed guided by an example. Then, we

discuss our methods to generate a stable sampled medial description

automatically from a population of objects. We start with a general

description of the scheme and discuss shape space, common medial

branching topology and minimal sampling in detail. In the result sec-

tion, several neuroimaging applications of medial shape analysis are

presented.

2. Motivation: Shape analysis in an asymmetry study

This section describes an example of the intuitive description of shape

changes that is inherent to the medial description. We will show an

analysis of left/right asymmetry in hippocampi, a subcortical human

brain structure which is a structure of interest in schizophrenia re-

search. Asymmetry is defined via the interhemispheric plane, therefore
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Figure 1. Visualization of a left/right hippocampus pair with its average structure.

Boundary (left), pruned Voronoi skeleton (right) with thickness coloring (same range

for all objects). For the average case the medial axis and grid is shown on the top

row.

the right hippocampus was mirrored at this plane for comparison. The

main advantage of medial descriptions is the separation of the local

shape properties thickness and position. In the presented case we chose

to investigate mainly the thickness information of the medial manifold.

In Fig. 1 the hippocampi are visualized and asymmetry is clearly

visible. Volume and medial axis length measurements indicate the same

result that the right hippocampus is larger than the left: volright =

2184mm3, volleft = 2023mm3; axisright = 65.7mm, axisleft = 64.5mm.

But these measurements do not provide a localization of the detected
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Figure 2. Thickness asymmetry along medial axis (tail to head): a: Radius plot. b:

Difference Plot: ~rright − ~rleft. c,d: m-rep description (c: left, d: right). e: Difference

(R−L) at medial atoms with proportional radius/color: r ∼ |R−L|; col ∼ (R−L).

asymmetry. This asymmetry can easily be computed and intuitively

visualized using our medial description.

When analyzing the thickness of the hippocampi along the medial

axis (the intrinsic coordinate system), we get a more localized under-

standing of the asymmetry. In Fig. 2 the right hippocampus is thicker

over the full length of the axis, and the difference is most pronounced in

6/09/2001; 11:27; p.7



Shape analysis based on medial models 8

a b

4mm

0.8mm c

0.25mm r>l

-0.03mm r<l

Figure 3. Thickness asymmetry for a left/right hippocampus pair: a,b: M-rep de-

scriptions (a: right, b: left). Radius/color are proportional to the corresponding

radius. c: Difference (R − L) at medial atoms with proportional radius/color:

r ∼ |R− L|; col ∼ (R− L).

the middle part of the axis. In order to relate this thickness information

with the appropriate location, we visualize it in the medial samples

itself. Each medial atom (sample of the medial surface) is displayed by

a sphere of size and color that is proportional to its thickness. This kind

of display can also be used to visualize the thickness difference of corre-

sponding locations in the right and left hippocampus. The sphere radius

and color is proportional to the difference: r ∼ |R − L|; col ∼ (R − L)

(see Fig. 2).

As a next step, we take into account a grid of medial atoms and

perform the same analysis as for the axis (see Fig. 3). We observe that

the right shape is thicker, but the difference is most pronounced in the

middle part.
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All parts of the processing are described in the methods section. The

applied methods computed the medial branching topology of one single

sheet with volumetric overlap larger than 98% and approximation error

Epop less than 0.05.

In the presented hippocampus study the medial description gives

a better understanding of the observed asymmetry than simple mea-

surements like volume or even the length of the medial axis. Limiting

ourselves to a coarse scale description does not lessen the power of the

analysis and asymmetry can reliably be detected and localized.

3. Model building methods

The main problem for a medial shape analysis is the determination of

a stable medial model in the presence of biological shape variability.

Given a population of similar objects, how can we automatically com-

pute a stable medial model? The following sections describe the scheme

that we developed to construct a medial m-rep model from a popula-

tion of objects described by boundary parameterization using spherical

harmonics (SPHARM). More details of the scheme are described in

(Styner and Gerig, 2001a).
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Figure 4. Computation of a m-rep model from an object population. 1. Shape

space definition. 2. Common medial branching computation. 3. Minimal sampling

computation.

In overview, our scheme is subdivided into 3 steps as visualized

in Fig. 4. We first define a shape space using Principal Component

Analysis. From this shape space we generate the medial model in two

steps. First we compute the common branching topology using pruned

Voronoi skeletons. Then the minimal sampling of the m-rep model is

computed given a maximal approximation error in the shape space.

M-rep models. A m-rep (Pizer et al., 1999) is a linked set of

medial primitives called medial atoms, m = (x, r, F , θ). The atoms are

formed from two equal length vectors and are composed of 1) a position

x, 2) a width r, 3) a frame F implying the tangent plane to the medial

manifold and 4) an object angle θ. The medial atoms are grouped into

figures connected via inter-figural links. These figures are defined as

non-branching medial sheets and together form the medial branching
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topology. A figure is formed by a set of medial atoms connected by

intra-figural links. The connections of the medial atoms and the figures

form a graph called ’medial graph’ with edges representing either inter-

or intra-figural links.

SPHARM The SPHARM description is a parametric surface de-

scription that can only represent objects of spherical topology (Brech-

bühler, 1995). The basis functions of the parameterized surface are

spherical harmonics. SPHARM can be used to express shape deforma-

tions (Kelemen et al., 1999), and is a smooth, accurate fine-scale shape

representation, given a sufficiently small approximation error. Based on

a uniform icosahedron-subdivision of the spherical parameterization, we

obtain a Point Distribution Model (PDM) directly from the coefficients

via a linear mapping. Correspondence of SPHARM is determined by

normalizing the parameterization to the first order ellipsoid.

3.1. Shape space

As a first step in our scheme, we compute a shape space using Principal

Component Analysis (PCA) of parametrized objects from a training

population. The shape space smoothes the shape variability in the

training population, thus making the computations of our scheme more

stable. We assume that the shape space is an appropriate representation
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a b c d

Figure 5. Voronoi skeleton pruning scheme applied to a lateral ventricles (side

views). a. Original ventricle. b: Original Voronoi skeleton (∼ 1600 sheets). d: Pruned

skeleton (2 sheets). c: Reconstruction from pruned skeleton (Eoverlap = 98.3%).

of the object’s biological variability. PCA is computed from SPHARM

objects as described by (Kelemen et al., 1999) resulting in the average

coefficient vector and the eigenmodes of deformation. The bases of the

shape space are the first eigenmodes that cover at least 95% of the

population’s variability.

A discrete description of the shape space is gained by sampling it

either uniformly or probabilistically. These samples form an object set

that is a representative sampling of the shape space. All subsequent

computations of the model building are then applied to this object set.

3.2. Computing a common medial branching topology

Branching topology of a single shape - The branching topology

for a single shape is derived via Voronoi skeletons from finely sampled

PDM’s. A face-grouping/merging algorithm was developed that groups
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the Voronoi faces into a set of medial sheets. The medial sheets are

weighted by their volumetric contribution to the overall object volume:

Csheet = (volskel−volskel\sheeti)/volskel. The sheets are then pruned using

a topology preserving deletion scheme.

Our experiments show that a considerable reduction of the number

of medial sheets is possible with sacrificing only little accuracy of the

reconstruction. In fact, the pruned skeletons of all objects studied so

far had a volumetric overlap with the original object of more than 98%

(see Fig. 5).

Computation of a common branching topology - (August et al.,

1999) and (Siddiqi et al., 1999) showed that the 2D medial branching

topology is quite unstable. In 3D, the medial branching topology is

even more unstable. Thus, we developed a matching algorithm that is

not based on graph matching but on spatial correspondence.

All objects to be compared are mapped into a common spatial frame

by a warped thin plate splines registration based on the correspondence

established by the SPHARM description. In order to minimize the

mapping distortions, the average object of the shape space is chosen to

provide the common spatial frame. The common branching topology

is then computed iteratively starting with the topology of the aver-

age object as the initial guess. Non-corresponding sheets are identified

using the paired Mahanolobis distance between sheet centers. These
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Figure 6. Sampling approximation errors Epop of the m-rep implied surface (dark

blue dots) with the original object boundary (light blue transparent) in a hippocam-

pus structure (ravg = 2.67 mm). The m-rep grids are visualized as red lines. The

grid dimensions are shown in the second row, and the Epop errors in the third row.

non-corresponding sheets are added to the current branching topology.

Every sheet of all objects in the shape space is matched by at least one

sheet in the final common branching topology.

3.3. Minimal sampling of m-rep model

From the common branching topology we compute the sampling of the

associated sheets by a grid of medial atoms. The m-rep model is deter-

mined by the common branching topology and a set of parameters that

specify the grid dimensions for each sheet. The sampling algorithm is

based on the longest 1D thinning axis of the edge-smoothed 3D medial

sheet. The set of grid parameters is optimized to be minimal while the
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corresponding m-rep deforms into every object in the shape space with

a predefined maximal approximation error. The approximation error

is computed as Mean Absolute Distance (MAD) of the implied and

the original boundary. In order to have an error independent of the

object size, we normalize with the average radius of all skeletons in

the population: Epop = MAD/ravg,pop. In Fig. 6 we show the error of

various sampling parameters. The limiting error is chosen in the range

of 5% to 10% depending on the structure.

3.4. Deforming the m-rep model into an individual shape

Once a m-rep model is computed, we want to fit it into individual

shapes. This fit is done in two steps. First we obtain a good initial

estimate which is then refined in a second step to fit to the boundary.

The initial estimate is obtained by warping the m-rep model from

the common frame into the frame of the individual shape using the

SPHARM correspondence on the boundary. From that position we run

an optimization that changes the features of the m-rep atoms to im-

prove the fit to the boundary as described in (Joshi et al., 2001). Local

similarity transformations as well as rotations of the local angulation

are applied to the medial atoms. The fit to the boundary is constrained
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by an neighborhood dependent prior that guarantees the smoothness

of the medial manifold.

4. Object alignment and scaling

As a prerequisite for any shape analysis and shape similarity calcula-

tion, shapes have to be normalized with respect to a reference coordi-

nate frame. Since we are interested in measuring shape differences, a

normalization is needed to eliminate differences that are due to rota-

tion, translation and magnification. Normalization of translation and

rotation is accomplished by aligning the objects via the first order ellip-

soid. This perfectly matches center and axes of the first order ellipsoids

(see Fig. 7).

Figure 7. Object alignment. Two left lateral ventricles are aligned to perfectly match

the center and axis of the first order ellipsoid; left: objects, middle: first order

ellipsoids, right: aligned ellipsoids.
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In order to normalize for magnification, an appropriate scaling method

has to be defined. The choice of the scaling method depends on the task

and the type of objects. We investigated two possibilities (see also Fig.

8):

A No scaling correction: The computation of shape differences with-

out any scale normalization reveals differences between small and

large objects even though they might have the same shape prop-

erties. Thus, the differences will reflect mixed values of both the

shape differences and the size differences.

B Uniform scaling to unit volume: Creating a shape difference mea-

sure that is orthogonal in its nature to the volume measure has the

potential to reveal information additional to size. The volume mea-

surements can be incorporated later into a multivariate statistical

analysis as an additional orthogonal feature.

5. M-rep shape analysis

The main advantage of a medial shape analysis over a boundary shape

analysis is the separation of the two medial shape properties of lo-

cal position and thickness. Fig. 9 demonstrates how thickness and
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No scaling Unit Volume scaling

Figure 8. Object scaling. Pairs of right lateral ventricles (MZ twin pair) unscaled

(left) and scaled to unit volume (right). This example shows that shapes are quite

similar and that the scaling corrected for an existing size difference.

Figure 9. Medial shape analysis (schematically shown in 2D): The differences in the

thickness and position properties between 2 m-reps can be studied separately. The

properties express different kinds of underlying processes (growth vs. deformation).

position capture different forms of shape deformation, i.e. thickness

changes are due to locally uniform growth forces and positional changes

are due to locally deformation forces. Since these two features are

quasi-orthogonal, we investigate them separately, which lends addi-

tional statistical power to our analysis.
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When computing group differences instead of pair-wise differences,

we designate the average medial description of all groups to be the

reference object. Our medial shape analysis computes for each subject

the difference to this reference object. In this paper, the presented

group study involve pair-wise differences, thus there was no need for a

reference object.

We can perform a global and a local shape analysis using the m-rep

description. In the global analysis, we integrate the properties over all

atoms of the whole m-rep to compute a one position and one thickness

feature per m-rep. In the local analysis, we study each atom’s properties

individually to detect locations of significant differences. In this paper,

we treat the atoms to be independent of each other. This viewpoint is

not fully accurate, but appropriate for a preliminary analysis.

6. Applications

6.1. Medial model computation

The scheme has been applied to different studies with populations of

several human brain structures; the overall number of processed cases

is shown in parenthesis: hippocampus-amygdala (60 cases), hippocam-
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pus (200), thalamus (56), pallide globe (56), putamen (56) and lateral

ventricles (80). The computed models are shown in Figs. 10 and 11.

Three of the model building studies are presented in more detail in the

following paragraphs.

Figure 10. Selection of medial models of anatomical structures in the left and right

brain hemisphere. All of these models are single-figure models. From outside to

inside: lateral ventricle, hippocampus, pallide globe.

Figure 11. Selection of medial models of anatomical brain structures. All of these

models are multi-figure models. From left to right: hippocampus-amygdala complex,

pallide globe and thalamus.
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Figure 12. Six individual m-rep descriptions of the hippocampus study. The visual-

izations show m-rep grids as red lines, the m-rep implied surface as dark blue dots

and the original object boundary in transparent light blue.

Hippocampus schizophrenia study. The hippocampus struc-

ture of an object population with schizophrenic patients (56 cases) and

healthy controls (26 cases) is investigated. The goal of the study was to

assess shape asymmetry between left and right side objects, and also to

analyze shape similarity between patients and controls. The model was

built on a object population that included the objects of all subjects on

both sides, with the right hippocampi mirrored at the interhemispheric

plane prior to the model generation.

The SPHARM coefficients were normalized for rotation and trans-

lation using the first order ellipsoid. The size was normalized to unit

volume. The shape space was defined by the first 13 eigenmodes with

every other eigenmode holding less than 1% of the variability in the

population. All objects in the shape space had a medial branching

topology of a single medial sheet with a volumetric overlap of more than

6/09/2001; 11:27; p.21



Shape analysis based on medial models 22

98%. Thus, the common topology was a single sheet. The computed

minimal grid sampling of 3x8 had an Epop error of less than 5% for all

objects in the shape space. The application of this model to the whole

hippocampus population of 164 objects generated Epop errors in the

range of [0.048 . . . 0.088] with an average error of 0.058 (see Fig. 12).

The average radius is 3.0 mm and thus the average error is 0.17mm.

The original sampling is 0.942x1.5mm, and thus the individual m-reps

are computed with sub-voxel accuracy.

Lateral ventricle twin study. Another study investigates the

lateral ventricle structure in a population of 10 monozygotic and 10

dizygotic twins. The same processing has been performed as in the

first study. The SPHARM coefficients were normalized for rotation and

translation using the first order ellipsoid. The size was normalized to

unit volume. The first 8 eigenmodes define the shape space, which holds

96% of the variability of the population. The medial branching topolo-

gies in the object set varied between one to three medial sheets with an

volumetric overlap of more than 98% for each object. The single medial

sheet topology of the average object matched all sheets in the common

frame since the matching algorithm allows one-to-many matches. Thus,

the common medial topology was computed to be a single sheet. The

minimal sampling of the medial topology was computed with a maximal

Epop ≤ 0.10 in the shape space. The application of this model to the
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Figure 13. Four individual m-rep descriptions of the lateral ventricle study. The

visualizations show m-rep grids as red lines, the m-rep implied surface as dark blue

dots and the original object boundary in transparent light blue.

whole population generated Epop errors in the range of [0.057 . . . 0.15]

with an average error of 0.094 (see Fig. 13). The average radius is

2.26mm and thus the average error is 0.21mm.

Hippocampus-amygdala schizophrenia study. This section

presents our scheme applied to a hippocampus-amygdala population

from a schizophrenia study (30 subjects). As in the first study, shape

asymmetry and similarity analysis are to be determined and thus the

same processing has been performed. The SPHARM coefficients were

determined and normalized regarding rotation and translation using

the first order ellipsoid. The scale was normalized to unit volume. The

shape space is defined by the first 6 eigenmodes which cover 97% of the

variability in the population. The medial branching topologies in the

object set varied between two to five medial sheets with an volumetric
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Figure 14. Three m-rep descriptions of the hippocampus-amygdala study. The visu-

alizations show m-rep grids as colored lines, the m-rep implied surface as dark blue

dots and the original object boundary in transparent light blue.

overlap of more than 98% for each object. The common branching

topology was computed to be composed of four sheets. The minimal

sampling of the medial topology was computed with a maximal Epop ≤

0.10 in the shape space. The application of this model to the whole

population generated Epop errors in the range of [0.035 . . . 0.112] with

an average error of 0.084 (see Fig. 14). The average radius is 3.6mm

and thus the average error is 0.30mm.

6.2. Shape analysis for group difference

The lateral ventricle study presented before is investigated for group

differences between Monozygotic (MZ, 5 pairs) twins, Dizygotic (DZ, 5

pairs) twins and unrelated (NR, 10 pairs) subject pairs. All groups are

gender, age and handedness matched. The lateral ventricle is a fluid

filled structure in the center of the human brain that is divided into a

left and a right part located in the respective brain hemispheres (see
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Fig. 6.2). The original brain images were provided by D. Weinberger,

NIMH Neuroscience in Bethesda, Maryland. The segmentation method

used a single gradient-echo channel (T1w, matrix 256x256x128, resolu-

tion 0.93752x1.5mm) with manual seeding for Parzen-window based

non-parametric supervised statistical classification. Manually-guided

three-dimensional connectivity was used to extract the left and right

lateral ventricles. The segmented structures were postprocessed using

a morphological closing operation to provided simply connected 3D

objects.

In this study, we were mainly interested in investigating the degree of

similarity of the lateral ventricles between subject pairs. Thus, the goal

of the study was to determine whether MZ twins have more similarly

shaped lateral ventricles than DZ twins or unrelated (NR) subject pairs.

The population size of each group is very small, so the observed effect

must be quite large for the statistical analysis to yield a significant

result. A previous study was performed by Bartley et al (Bartley et al.,

1997) on the same datasets with the goal of distinguishing the groups.

They compared cortical gyral patterns and the total brain volumes.

Both measures showed significant differences between the MZ and DZ

groups.
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A B

Figure 15. A: Three-dimensional rendering of the skin and bone structures of one

subject’s head (transparent) and the lateral ventricles. B: Visualization of the

right-side lateral ventricles of all twin pairs (top view, same color for pairs) scaled

to unit volume. Top row: MZ twins. Bottom Row: DZ twins.

6.2.1. Volume similarity analysis

We studied each twin pair’s similarity using the normalized absolute

volume difference: ∆volT1,2 = |volT1 − volT2 |/(volT1 + volT2). As shown

in Fig. 16, there is a trend in both brain hemispheres between the two

groups, but no significant conclusions can be drawn since the volume

measurement distributions are overlapping. The p-value for discrimi-

nating the two groups is at 0.15/0.16, which is non-significant at a 5%

significance level (see Tab. I).
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Figure 16. Plot of pairwise relative ventricle volume difference ∆volT1,2 between MZ

and DZ twin groups. Results of left and right ventricles are shown in the left and

right figures. No significant conclusions can be drawn.

6.2.2. Medial shape similarity analysis

The medial shape analysis is performed on the objects that have been

normalized to unit volume. The goal of the medial shape analysis

is to detect global shape differences and also to pinpoint the loca-

tions of significant group difference in a atom-by-atom shape analysis.

These differences can manifest in the medial properties of thickness and

position (see section 5), each of them potentially at different locations.

In the global m-rep shape analysis, we integrate the local differences

between corresponding atoms. Each of the two m-rep properties detects

a higher level of similarity between MZ twins than between DZ twins

at a significant p-value (5% significance level) on the right side (see

Fig. 17, Tab. I). No significance can be detected on the left side. When

studying the joined feature space of both thickness and position differ-

ences, this becomes even better visible. Furthermore, when comparing
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Figure 17. Medial shape analysis plots of pairwise shape differences of the thickness

(1. column) and position (2. column) property. In the 3. column a combined analysis

is shown, which displays the quartile ellipsoids of the 3 groups (MZ=red squares,

DZ=blue diamonds, NR=black triangles). Top row: left ventricle, bottom row: right

ventricle. It is clearly visible that the effect is much stronger on the right side than

on the left.

the MZ group to the population of non-related pairs, we observe that

the similarity in MZ twins significantly differs from the similarity of

non-related pairs. This is not the case for the dizygotic twin pairs, thus

suggesting that there isn’t a difference that can be detected with our

methods. We also computed a global boundary shape analysis (Styner

and Gerig, 2001b) using the SPHARM description, which had the same
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outcome as the medial analysis, but had slightly different p-value’s from

the analysis.

Table I. Table of p-values for group mean difference testing between MZ

and DZ twin pairs and unrelated pairs. Bold numbers are significant at 5%

significance level.

MZ/DZ MZ/Other DZ/Other

Volume diff - Left 0.151 0.333 0.486

M-rep global thickness diff - Left 0.316 0.356 0.959

M-rep global position diff - Left 0.157 0.068 0.75

Volume diff - Right 0.167 0.377 0.500

M-rep global thickness diff - Right 0.016 0.011 0.646

M-rep global position diff - Right 0.026 0.005 0.91

The local medial shape analysis is visualized in Fig. 18 by indicating

location of significant group differences between MZ and DZ twins.

These locations are not the same for the thickness and position features.

As in the global analysis, the right side shows a much larger effect than

the left side. It is also clearly visible that the locations of significant

difference cluster in the posterior and anterior part on the position

analysis. This suggests that the main shape difference between MZ and

DZ twin pairs in this study is that MZ twin pairs have less deformation
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differences in the posterior and anterior part of the lateral ventricle than

DZ twin pairs.

Thickness diff. Position diff.

L

R

p > 0.1 p < 0.05

Figure 18. Local medial shape analysis of MZ vs. DZ twin pairs. Lateral ventricles

shown in side view. The radius of the medial atoms is proportional to the significance

of the group difference at its location of either the thickness or position property.

A clustering in the anterior and posterior part is visible in the right side position

analysis (bottom right).

The results of the medial shape analysis reveals interesting new in-

formation about the structure of brain ventricles in genetically identical

MZ twin pairs, non-identical DZ twins, and non-related but age and

gender matched pairs. We are well aware that we have to be cautious
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with conclusions due to the small sample size. The size normalized right

ventricles reveal that MZ twin pairs show a very small shape difference,

with low variability, suggesting that the shapes after normalization

are very similar. Surprisingly, this strong and significant effect is not

found in the left ventricles, where there is only a trend indicating more

similar ventricle shape in MZ as compared to DZ. The statistics further

illustrates that DZ twin pairs didn’t differ from unrelated pairs in our

analysis.

7. Summary and Conclusions

We present a new approach to the description and analysis of shape for

objects in the presence of biological variability. The proposed descrip-

tion is a medial description derived from a boundary description. The

generation of the medial description takes into account the biological

variability of a set of training shapes, which is a novel concept and a

step further towards a natural shape representation. We have shown

that we can compute a stable medial description for a population of

shapes. Using the medial description we can visualize and quantitate

globally and locally computed shape features regarding similarity. Since
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a correspondence is given on the medial manifold a statistical analysis

can be directly applied.

The choice of a fixed m-rep topology has several advantages, e.g.

enabling an implicit correspondence for statistical analysis. On the

other hand, a fixed topology m-rep model cannot precisely capture the

topology of an individual object. The determined m-rep is therefore

always an approximation of the object.

The SPHARM boundary correspondence has shown to be a good

approach in the general case, but it has inherent problems e.g. in case of

rotational symmetry. Although not used in our correspondence scheme,

externally computed correspondences can be included into the scheme.

The MZ/DZ twin study demonstrates that shape measures reveal

new information additional to size measurements which might be rel-

evant for improved understanding of structural differences in normal

populations but also in comparisons between healthy control groups

and patients. Twin studies offer the advantage to reduce natural bio-

logical variability by choosing subjects with identical genes. Our twin

study clearly demonstrates that significant differences between MZ and

DZ pairs could not be found by volume measurements but only by shape

analysis. There is a significant group difference between MZ and DZ

twin pairs for the right but not for the left ventricle. We have no obvious

explanation for this finding but hope to get more insight through close
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collaboration with experts in neurobiology and neurodevelopment. A

follow-up study currently analyzes differences between MZ twins discor-

dant for schizophrenia to reveal insight into hypothesized morphologic

changes due to illness. Analysis of shape changes similarly to the pre-

sented case study might become important in longitudinal assessments

of morphologic change due to developmental or degenerative processes.

As next steps, we have to study more thoroughly the robustness of

our scheme. Additional applications to clinical studies in Schizophrenia

and other neurological diseases are in progress. Also, more sophisticated

methods of medial shape analysis are in development as indicated in

(Yushkevich and Pizer, 2001).

Acknowledgements

Miranda Chakos and MHNCRC image analysis lab at Psychiatry UNC

Chapel Hill Hospitals kindly provided the original MR and segmenta-

tions of the hippocampi. Ron Kikinis and Martha Shenton, Brigham

and Women’s Hospital, Harvard Medical School, Boston provided the

original MR and segmentations of the amygdala-hippocampus study.

We further acknowledge Daniel Weinberger, NIMH Neuroscience in

Bethesda for providing the twin datasets that were segmented in the

6/09/2001; 11:27; p.33



Shape analysis based on medial models 34

UNC MHNCRC image analysis lab. We are thankful to Christian Brech-

bühler for providing the software for SPHARM surface parameteri-

zation and description. We are further thankful to Steve Pizer, Tom

Fletcher and Sarang Joshi of the MIDAG group at UNC for providing

us with m-rep tools. We would like to thank Steve Pizer for his insight-

ful comments and discussions about m-rep and other medial shape

descriptions. Sarang Joshi is acknowledged for discussions about the

m-rep deformation.

References

Attali, D., G. Sanniti di Baja, and E. Thiel: 1997, ‘Skeleton simplification through
non significant branch removal’. Image Proc. and Comm. 3(3-4), 63–72.

August, J., K. Siddiqi, and S. Zucker: 1999, ‘Ligature Instabilities in the Perceptual
Organization of Shape’. In: IEEE Comp. Vision and Pattern Rec.

Bartley, A., D. Jones, and D. Weinberger: 1997, ‘Genetic variability of human brain
size and cortical patterns’. Brain 120, 257–269.

Blum, T.: 1967, ‘A transformation for extracting new descriptors of shape’. In:
Models for the Perception of Speech and Visual Form. MIT Press.

Brechbühler, C.: 1995, Description and Analysis of 3-D Shapes by Parametrization
of Closed Surfaces. Diss., IKT/BIWI, ETH Zürich, ISBN 3-89649-007-9.
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Kelemen, A., G. Székely, and G. Gerig: 1999, ‘Elastic Model-Based Segmentation of
3D Neuroradiological Data Sets’. IEEE Trans. Med. Imaging 18, 828–839.
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