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Abstract 
 
While there has been recent interest in the study of childhood and adolescent 

brain development, very little is known about normal brain development in the first few 

months of life.  In older children, there are regional differences in cortical gray matter 

development, while cortical gray and white matter growth after birth has not been 

studied to a great extent.  The adult human brain is also characterized by cerebral 

asymmetries and sexual dimorphisms, though very little is known about how these 

asymmetries and dimorphisms develop.  We used magnetic resonance imaging and an 

automatic segmentation methodology to study brain structure in 74 neonates in the first 

few weeks after birth.  We found robust cortical gray matter growth compared to white 

matter, with occipital regions growing much faster than prefrontal regions.  Sexual 

dimorphism is present at birth, with males having larger total brain, cortical gray and 

white matter volumes than females.  In contrast to adults and older children, the left 

hemisphere is larger than the right, and the normal pattern of fronto-occipital asymmetry 

described in older children and adults is not present.  Regional differences in cortical 

gray matter growth are likely related to differential maturation of sensory/motor systems 

compared to prefrontal executive function following birth.  These findings also indicate 

that while some adult patterns of sexual dimorphism and cerebral asymmetries are 

present at birth, others develop after birth.  
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Introduction 

The first year of life is perhaps the most dynamic phase of postnatal brain 

development with rapid development of a wide range of cognitive and motor functions 

(Kagen and Herschkowitz, 2005).  While there has been a great deal of recent interest 

in the study of childhood and adolescent brain development, very little is known about 

normal brain development in the first few months of life.  Prior magnetic resonance (MR) 

imaging studies of a small number of healthy neonates being compared to prematurely 

born infants found gray and white matter volumes increased in the perinatal period 

(Huppi et al., 1998a; Peterson et al., 2003); a recent preliminary study white matter 

growth appeared to slow after 36 weeks gestational age (Nishida et al., 2006). 

Cross-sectional neuroimaging studies of older children indicate that cortical gray 

matter volumes decrease after age 4-5 through puberty (Pfefferbaum et al., 1994, Reiss 

et al., 1996; Courchesne et al., 2000; De Bellis et al., 2001).  A longitudinal study found 

regional differences in cortical gray matter development (Giedd et al., 1999).  White 

matter volumes increase throughout later childhood and adolescent brain development 

(Pfefferbaum et al., 1994; Caviness et al., 1996; Giedd et al., 1999).   

Sexual dimorphisms are present in the adult brain, with males having larger total 

brain volumes (Gur et al., 1999; Nopoulos et al., 2000; Goldstein et al., 2001).  Older 

male children also have larger overall brain volumes and gray and white matter volumes 

than females (Giedd et al., 1996; Caviness et al., 1996; Reiss et al., 1996).   

Structural asymmetries of the human brain appear to underlie functional 

asymmetries, including language and handedness (Toga and Thompson, 2003).  

Cerebral asymmetries in the adult brain include the right hemisphere being larger than 
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the left, accounted for mainly by more white matter on the right, and fronto-occipital 

asymmetry or torque – the right prefrontal cortex is larger than the left, while the left 

occipital cortex is larger than the right (Nopoulos et al., 2000; Good et al., 2001; Raz et 

al., 2004; Toga and Thompson, 2003;).  Adult patterns of cerebral asymmetry have 

been observed in older children (Giedd et al., 1996; Caviness et al., 1996; Matsuzawa 

et al., 2001; Reiss et al., 1996; Herbert et al., 2005). 

Abnormalities of cortical gray and white matter have been described in 

neurodevelopmental disorders including schizophrenia (Honea et al., 2005) and autism 

(Hazlett et al., 2005).  Similarly, abnormalities of normal cerebral asymmetries and 

gender differences have been observed schizophrenia (Bilder et al., 1994; Sommer et 

al., 2001; Goldstein et al., 2002), autism (Herbert et al., 2005; Rojas et al., 2005), 

Tourette syndrome (Hong et al., 2002), and developmental stuttering (Foundas et al., 

2003).  A better understanding of normal cortical gray and white matter development in 

the early postnatal period, as well as how and when normal cerebral asymmetries and 

sexual dimorphisms develop would provide important insights into these 

neurodevelopmental disorders.  We present a study of regional cortical growth, sexual 

dimorphism, and cerebral asymmetry in a large cohort of healthy neonates. 

Methods 

Subjects:  This study was approved by the Institutional Review Board of the 

University of North Carolina School of Medicine.  Infants scanned for this study were 

part of a larger study of prenatal and neonatal brain development in children at high risk 

for neurodevelopmental disorders and controls.  Control mothers were recruited during 

the second trimester of pregnancy from the outpatient OB-GYN Clinics at UNC 
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Hospitals.  Exclusion criteria were the presence of abnormalities on fetal ultrasound or 

major medical or psychotic illness in the mother.  Singleton subjects with a gestational 

age ≥ 37 weeks who had both T1 and T2/PD scans that were free of major motion were 

included in this analysis (n = 78).  All scans were reviewed by a neuroradiologist (JKS).  

Additional exclusion criteria for this analysis included major delivery or neonatal 

complications or significant CNS abnormality on MRI (n = 4).  12 subjects had small 

incidential subdural hematomas or other intracranial bleeds, which are present in about 

25% of vaginal births (Looney et al., 2006); these subjects were included in the 

analysis. 

Image Acquisition: Neonates were scanned unsedated, fed prior to scanning, 

swaddled, fitted with ear protection and had their heads secured in a vacuum-fixation 

device.  A physician or nurse was present during each scan; a pulse oximeter was used 

to monitor heart rate and oxygen saturation.  T1-weighted structural pulse sequences 

were a 3D magnetization prepared rapid gradient echo (MP-RAGE TR/TI/TE/Flip Angle 

1820/400/4.38ms/7°) in the early phases of the study (n=9), then a 3D T1-weighted 

FLASH (TR/TE/Flip Angle 15/7msec/25°; n=65). Proton density and T2 weighted 

images were obtained with a turbo spin echo sequence (TSE TR/TE1/TE2/Flip Angle 

6200/20/119ms/150°). Spatial resolution was 1 x 1 x 1mm voxel for T1 weighted 

images, 1.25 x 1.25 x 1.5mm voxel with 0.5 mm interslice gap for proton density/T2 

weighted images. 

The Siemens head-only 3T scanner is FDA approved for use in all age groups.  

Specific absorption rates are kept within safe levels for body weight by both hardware 

and software features of the scanner.  We have previously confirmed that the scan 
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sequences did not cause significant temperature increases with a phantom (Gilmore et 

al., 2005). 

Image Analysis: Our segmentation method (Prawstawa et al., 2005) is an 

extension of a previously developed atlas-moderated automatic tissue classification 

technique which uses an iterative expectation maximization segmentation (EMS) 

algorithm (Wells et al., 1996; Van Leemput et al., 1999; Prastawa  et al., 2004). The 

method operates on single or multi-channel MRI data and uses a co-registered 

probabilistic brain atlas as a spatial prior. The EM segmentation tool incorporates multi-

channel image registration, registration of the probabilistic brain atlas to the subject, 

automatic bias inhomogeneity correction and brain stripping in one integrated 

framework, which offers significant advantages over processing pipelines where each of 

the tasks is solved as a separate, independent processing step.  In neonate MRI, the 

low contrast-to-noise ratio of non-myelinated white matter to cortical and subcortical 

gray required significant changes. Parametric modeling of multivariate distributions is 

replaced by robust graph clustering and parameter estimation, resulting in an 

intermediate segmentation. This segmentation is finally refined using training sample 

pruning and non-parametric kernel density estimation.  The segmentation of a two-

channel MRI of the neonate brain is depicted in Figure 1. Validation by comparison to 

human-expert segmentation showed very good agreement (Prawstawa et al., 2005). 

The segmentation process is fully automatic, uses about 30 minutes on a standard PC 

workstation, and does not require human interaction which often limits reliability.  EM 

segmentation requires a probabilistic brain atlas to define local geometric priors for each 

tissue category, but existing probabilistic atlases for adults are not appropriate for 
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pediatric studies. We followed the concept proposed by Evans et al. (1993) to build a 

new statistical brain atlas for the neonatal age group. 

Parcellation of each subject’s brain into regions is achieved by non-linear 

warping of a parcellation atlas template (Rueckert et al., 1999).  The brain atlas 

template MRI, subdivided into regions by anatomical experts, serves as the template 

(see Figure 1).  Left and right hemispheres were subdivided into four regions along the 

anterior-posterior axis (pre-frontal, frontal, parietal, occipital) and into infra- and 

supratentorial regions.  The cerebellum, brainstem and combined sets of subcortical 

structures are represented separately.  This parcellation template is registered to each 

individual subject’s MRI by volumetric nonlinear by nonlinear deformation based on the 

mutual information criterion (Rueckert et al., 1999), combined with the individual tissue 

segmentation masks, and results in an estimate of gray, white and CSF volume for each 

region along the anterior-posterior axis. 

Statistical Analysis: For cross-sectional analyses of gender differences on 

volumes, a two-group one-way analysis of variance was used, with ICV added as a 

covariate.  For examinations of cerebral asymmetry, we used paired t-tests of right-left 

volumes, without covariates as these were entirely within-subject comparisons; analysis 

was repeated separately for each gender.  For growth trajectory models, we fit mixed 

models with pre-frontal, frontal, parietal, occipital region (each overall region combines 

left and right inferior and superior subregions determined by the parcellation template) 

as the within-subjects variable of interest and age at MRI as a continuous predictor.  In 

this model, we examined differences in slopes between regions with contrasts. 

Results 
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The final study sample (n=74) included 40 males and 34 females; ethnic 

composition was 61 Caucasian, 12 African – American, and 1 Asian-American.  

Gestational age at MRI was (mean ± SD) 42.8 ± 1.6 wks (range 38.8 – 47.8 wks).  

There were no significant gender differences in the gestational age at birth (M: 39.7 ± 

0.9 wks; F: 39.6 ± 1.0 wks; p = 0.79) or gestational age at MRI (M: 43.0 ± 1.7 wk; F:  

42.6 ± 1.5 wk; p = 0.28).  There was a significant difference in birth weight between 

males and females (M: 3587.7 ± 465.5 g; F: 3278.7 ± 407.39 g; p = 0.0036). 

In the first several weeks after birth, total gray matter grew robustly compared to 

myelinated  and unmyelinated white matter [inhomogeneity of slopes, F(3,288) = 16.6, p 

< 0.0001; Figure 2). In the cortex, overall trajectories of gray matter growth were 

similar in males and females, though there was a trend for female cortical unmyelinated 

white matter growth to be more rapid than male [F(1,70) = 3.2, p = 0.08].  Interestingly, 

there is a posterior to anterior gradient for cortical gray matter development.  There 

were significant differences in the regional growth rates, with the occipital and parietal 

regions growing significantly faster than the prefrontal region [F(3,288) = 8.61, p < 

0.0001; Figure 3].  This overall posterior greater than anterior regional growth was also 

seen in the unmyelinated white matter compartment, though less pronounced compared 

to gray matter and not statistically significant [F(3,288) = 1.5, p = 0.218; Figure 4].   

We found that sexual dimorphism was present in the early postnatal brain (Table 

1), with males having intracranial volumes (ICV) 7.8% larger than females [two-group 

one-way ANOVA, F(1,72) = 10.0, p = 0.0023], comparable to the gender difference in 

birth weight of 9.42%.  Males had significantly larger ICV compared to females, even 

controlling for birth weight [F(1,71) = 4.3, p = 0.0418].  Males had approximately 10.2% 
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more cortical gray matter [F(1,72) = 11.35, p = 0.0012] and 6.4% more cortical white 

matter [F(1,72) = 6.0, p = 0.0169] than females.  Males also had 7.8% larger subcortical 

gray matter volumes [F(1,72) = 4.28, p = 0.0423] than females.  These differences were 

related to the ICV of males, as there were no significant gender differences when 

controlling for ICV (Table 3).  There was no significant gender difference in lateral 

ventricle or cerebellum volume in the first weeks of life, though males tended to have 

larger volumes (Table 1). 

Cerebral asymmetry was present at birth (Table 2), with the left hemisphere 

approximately 4.3% larger than the right [T(73) = 14.2, p < 0.0001], – the opposite of the 

right greater than left asymmetry observed in older children and adults.  This left greater 

than right hemisphere asymmetry was a very consistent finding, present in 70 subjects 

(94.6%).  Left greater than right asymmetry was present in hemispheric gray matter 

(4.6%, T(73) = 9.3, p < 0.0001) and white matter [1.2%, T(73) = 2.8, p = 0.0065], though 

more pronounced in gray matter compared to white.  Left greater than right 

asymmetries of the subcortical gray matter [6.8%, T(73) = 11.4, p < 0.0001] and lateral 

ventricles [37.9%, T(73) = 2.9, p = 0.0054] are also evident in the early postnatal period.  

Males and females had similar patterns of asymmetry in total hemisphere volume, 

hemispheric gray matter, hemispheric white matter, subcortical gray matter, and lateral 

ventricles (data not shown).   

We did not observe torque in the neonatal brain.  While the left occipital region 

was larger than the right as expected [10.4%, T(73) = 18.8, p <0.0001], the left 

prefrontal region was actually non-significantly larger than the right [0.92%; T(73) = -1.9, 

p = 0.0603] – the opposite pattern of that observed in adults (Table 3).  The magnitude 
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of the asymmetry was more pronounced in the female brain in both regions, with a 

significant gender differences in asymmetries in the prefrontal [T(72) = 2.2, p = 0.0272] 

and occipital regions [T(72) = -2.3, p = 0.0243]. 

Discussion 

The early postnatal period is characterized by a robust growth of cortical gray 

matter compared to white matter, as well as by a posterior to anterior regional specificity 

of cortical gray matter growth.  Sexual dimorphisms are generally similar to those found 

in later stages of brain development, indicating that adult patterns of sexual dimorphism 

arise before birth and persist throughout postnatal brain development.  The patterns of 

cerebral asymmetry in this period of brain development are different from those 

observed in older children and adults suggesting that adult patterns of cerebral 

asymmetry arise after birth. 

Overall brain volume in the neonatal period is roughly 35% that of normal adults 

scanned on the same scanner (Mortamet et al., 2005), indicating there is enormous 

overall growth of the brain between birth and adulthood.  Early results from follow-up 

scans at one year of age suggest that total brain size increases 100% in the first year of 

life to approximately 73% of adult size (Gilmore et al., unpublished results). 

In the first weeks after birth, there is a robust increase in cortical gray matter 

volumes, likely the result of exuberant development of new synapses in the cortex, 

which has been observed in human and non-human primates (Huttenlocher, 1979; 

Huttenlocher and Dabholkar, 1997; Bourgeois and Rakic, 1993; Bourgeois et al., 1994).  

Interestingly, there is regional specificity to this gray matter growth, with occipital and 

parietal regions growing significantly more than prefrontal regions.  This pattern 
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suggests that gray matter is maturing faster in the sensory and motor regions than in 

the prefrontal regions, reflecting the rapid maturation of visual and motor functions 

relative to the executive functions of the prefrontal cortex in the early postnatal period 

(Kagen and Herschkowitz, 2005).  This pattern of gray matter development is also 

consistent with a similar posterior to anterior maturation of cortical white matter tracts, 

with the occipital poles myelinating before the frontotemporal poles (Sampaio and 

Truwit, 2001). 

The regional differences in gray matter growth is consistent with previous studies 

of synapse development in human brain, in which synapse numbers peak at 3-4 months 

in the occipital cortex, and at 4-5 years in the prefrontal cortex (Huttenlocher and 

Dabholkar, 1997).  In non-human primates, there does not appear to be regional 

differences in synapse development (Bourgeois and Rakic, 1993; Bourgeois et al., 

1994), and whether there are real regional differences in humans has been debated 

(Rakic et al., 1994).  While overall volume gray matter changes are an indirect measure 

of synapse proliferation, our results are supportive of regional differences in synapse 

development in humans.   

Sexual dimorphism is present in the neonatal brain.  After birth, males have 

about 9% larger intracranial volumes than females.  This difference in ICV is similar to 

that observed in adults – 11.9 to 14.6 % (Gur et al., 1999; Raz et al., 2004).  Infant 

males had 10% more cortical gray matter than females, which is similar to the 10 -11% 

differences in gray matter in observed in older children (Giedd et al., 1999; Reiss et al., 

1996) and the 7-10% differences noted in adults (Gur et al., 1999; Allen et al., 2003).  

Males also had 6% more cortical white matter, similar to the 7.5% differences in older 
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children (Reiss et al., 1996), but less than the 17-15% differences found in adults (Gur 

et al., 1999; Allen et al., 2003).  Sexual dimorphism in head circumference has been 

observed as early as the second trimester in human and non-human primates on 

ultrasound (Joffe et al., 2005).  Our study suggests that adult patterns of sexual 

dimorphisms of overall intracranial and cortical gray matter volumes are present at birth, 

while adult patterns of cortical white matter and lateral ventricle volumes develop after 

birth. 

The left hemisphere greater than right hemisphere asymmetry present after birth 

is the opposite of the right greater than left asymmetry observed in older children and 

adults (Nopoulos et al., 2000; Good et al., 2001; Raz et al., 2004; Giedd et al., 1996; 

Caviness et al., 1996; Matsuzawa et al., 2001).  The magnitude of cerebral asymmetries 

in the early postnatal period are also greater than the asymmetries observed in older 

children and adults, which are modest (Reiss et al., 1996; Gur et al. 1999; Matsuzawa 

et al., 2001).  For example, while we found a 5% L > R difference in hemispheric gray 

matter in the neonatal brain, Gur et al. (1999) found a 0.19% R > L difference in adults.  

There was a significant asymmetry in cortical white matter in our cohort, while white 

matter volumes are symmetric in adults (Gur et al., 1999). 

Adult patterns of overall fronto-occipital asymmetry or torque are not present in 

the neonate.  While we did find the expected right greater than left asymmetry in the 

occipital region, the expected prefrontal region asymmetries are not present.  Prefrontal 

asymmetry appears to develop after birth, and this lack of asymmetry may reflect a 

relative “immaturity” of the prefrontal regions compared to occipital regions, consistent 

with the slower trajectory of prefrontal gray matter growth pattern versus posterior 
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cortical regions.  Interestingly, the magnitude of asymmetry in each region was 

significantly larger in females, in contrast to studies in adults that found no gender 

difference in the magnitude of torque (Raz et al., 2004).  

Cerebral asymmetries are present at birth in humans, indicating they arise during 

prenatal brain development.  A prior ultrasound study found that this left greater than 

right hemisphere asymmetry is present as early as 20-22 weeks gestational age 

(Hering-Hanit et al., 2001).  Left greater than right asymmetry of the lateral ventricles 

has also been observed in the fetus using ultrasound (Achiron et al., 1997).  In a 

postmortem study of fetal and neonatal tissue, the right frontal region was found to be 

larger than the left, while the left occipital region was larger than the right (Weinberger 

et al., 1982).  This contrasts with our finding that the left prefrontal region is the same 

volume or even larger than the right. 

Asymmetry patterns present in the neonatal brain are likely due to genetic 

programs that operate during prenatal brain development as gene expression in human 

embryonic cortex is asymmetric as early as 12 weeks (Sun et al., 2005; Sun and Walsh, 

2006).  Adult patterns of asymmetry are also likely the result of genetic programming of 

and environmental influences on postnatal brain development.  A recent study of 

cerebral asymmetry in 14 year olds who were born very preterm found normal fronto-

occipital asymmetry, suggesting that environmental insults to the developing brain at 

this very early age does not affect adult asymmetry patterns (Lancefield et al., 2006).  

Children with posttraumatic stress disorder have a loss of normal frontal lobe 

asymmetry, suggesting that postnatal stress may influence development of adult 

patterns of asymmetry (Carrion et al., 2001).   
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While the automatic segmentation approach used is the best available for 

reproducible, highly automated segmentation with good validity given the processing 

needs of a study with a large number of subjects, there are a few limitations to this 

approach.  There appears to be a slight overestimation of the region of early white 

matter myelination, especially in the region of the lower anterior part of the internal 

capsule.  Binary classification, i.e. tissue label maps, may misclassify tissue in regions 

that do not exhibit a clear assignment to gray or white matter. This problem will be 

addressed in future studies by calculating regional tissue volumes through integration of 

tissue probability values, produced by the currently applied EM segmentation, instead of 

hard labels.  Such a procedure also might much better cope with partial voluming at the 

very thin cortical gray matter layer, which in label color maps leaves the impression of 

overestimation of gray matter. 

The current parcellation is based on a Talairach-based box parcellation of the 

brain volume with separation of subcortical regions, brain stem and cerebellum.  Our 

results provide information about overall regional growth in the cortex, but does not 

provide detailed information about specific lobes or subregions within the cortex.  

Growth trajectories of cortical lobes such as those defined in the semi-automated 

approach of Nishida and colleagues (Nishida et al., 2006) may differ from the results 

presented in this study, but the overall pattern of posterior greater than anterior growth 

should be consistent. 

In summary, brain development in the first weeks of life is characterized by rapid 

cortical gray matter growth that is regionally specific.  Overall sexual dimorphism of 

brain size at this age is similar to that found in older children and adults, though there 
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are some subtle differences in patterns of cerebral gray and white matter volumes.  The 

pattern of cerebral asymmetry in neonates is opposite that of older children and adults 

and suggests that adult patterns of cerebral asymmetry are the result of ongoing 

neurodevelopmental processes active after birth, driven by genetic programming as well 

by experience.  There is much to learn about human brain development in the first years 

of life.  We are currently following this cohort with longitudinal imaging and 

developmental assessments at ages one and two years. 
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Table 1. Sexual Dimorphism 

Male 
mean (SD) 

Female 
mean (SD) 

Difference 
%, M>F 

p value p value 
ICV 
controlled* 

Birthweight 
(grams) 

3587.7 
(465.5) 

3278.7 
(407.7) 

9.42 % 0.0036 na 

ICV 
(mm3)

525524 
(58637) 

487378 
(41848) 

7.83 % 0.0023 na 

Hem GM 
(mm3)

218212 
(28693) 

197945 
(197944) 

10.24 % 0.0012 0.2734 

Hem umWM 
(mm3)

163987 
(18420) 

154146 
(15745) 

6.38% 0.0169 0.8365 

Subcort GM 
(mm3)

24390 
(4229) 

22628 
(2823) 

7.79% 0.0423 0.5868 

Lat 
Ventricle 
(mm3)

2927  
(2054) 

2771 
(3944) 

5.67% 0.8277 0.3553 

Cerebellum 
(mm3)

28227 
(4050) 

26893 
(3156) 

4.96 % 0.1235 0.6712 

Table 2. Cerebral Asymmetry 
 Left 

mean (SD) 
Right 

mean (SD) 
Difference 

%, L>R 
p value* 

Total 
Hemisphere 
(mm3)

237395 (26573) 227623 (25826) 4.29 <0.0001 

Hem GM 
(mm3)

106833 (14213) 102067 (13689) 4.67 <0.0001 

Hem umWM 
(mm3)

80225 (9092) 79240 (8988) 1.24 0.0065 

Subcort GM 
(mm3)

12180 (1919) 11401 (1860) 6.83 <0.0001 

Lat Ventricle 
(mm3)

1655 (2134) 1200 (1011) 37.91 0.0054 

GM – gray matter; umWM – unmyelinated white matter 
* paired t-test 
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Table 3. Fronto-Occipital Asymmetry (Torque) 

Left 
mean (SD) 

Right 
mean (SD) 

Difference 
%, L>R 

p value 

Prefrontal 
(mm3)

All 29001 (3710) 28736 (2823) 0.92 0.0603 
Male 29697 (3668) 29713 (3706) -0.05 * 

Female 28183 (3642) 27586 (3686) 2.16 * 
Occipital 
(mm3)

All 63407 (8177) 57048 (7642) 10.45 <0.0001 
Male 65682 (8501) 60341 (7788) 8.85 ** 

Female 60730 (6989) 53956 (58899) 12.55 ** 

* Gender difference in prefrontal asymmetry, T(72) = 2.2, p = 0.0272 
 
**  Gender difference in occipital asymmetry, T(72) = -2.3, p = 0.0243 
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Figure 1. T1 weighted (A) and T2 weighted (B) images are automatically segmented 
(C) into CSF (blue), gray matter (yellow), unmyelinated white matter (green) and 
myelinated white matter (pink).  (D) Template of the neonatal brain for automatic 
parcellation into 16 cortical regions, right and left subcortical regions, brainstem 
and cerebellum.   

 
Figure 2. Tissue specific growth rates in whole brain (n=74).  There is a significant 

overall difference in slopes [inhomogeneity of slopes, F(3,288) = 16.6, p < 
0.0001].  There are significant differences in growth rates between gray matter 
(GM) and unmyelinated white matter [umWM; F(1,288) = 28.0, p < 0.0001] and 
between GM and myelinated white matter [mWM, F(1,288) = 44.9, p <0.0001]. 

 
Figure 3. Regional growth of cortical gray (n=74).  There is a significant overall regional 

difference in slopes [inhomogeneity of slopes, F(3,288) = 8.6, p < 0.0001].  There 
were significant differences between occipital and prefrontal [F(1,288) = 18.9, p < 
0.0001), occipital and frontal [F(1,288) = 5.8, p = 0.0166), and between parietal 
and prefrontal [F(1,288) = 17.9, p < 0.0001) matter growth rates. 

 
Figure 4. Regional growth of cortical unmyelinated white matter (n=74).  There was not 

a significant regional difference in slopes for unmyelinated white matter 
[inhomogeneity of slopes, [F(3,288) = 1.5, p = 0.2180]. 
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