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ABSTRACT

Biomedical imaging of large patient populations, both
cross-sectionally and longitudinally, is becoming a standard
technique for noninvasive, in-vivo studies of the pathophys-
iology of diseases and for monitoring drug treatment. In
radiation oncology, imaging and extraction of anatomical
organ geometry is a routine procedure for therapy planning
an monitoring, and similar procedures are vital for surgical
planning and image-guided therapy. Bottlenecks of today’s
studies, often processed by labor-intensive manual region
drawing, are the lack of efficient, reliable tools for three-
dimensional organ segmentation and for advanced morpho-
logic characterization.

This paper discusses current research and development
focused towards building of statistical shape models, used
for automatic model-based segmentation and for shape anal-
ysis and discrimination. We build statistical shape models
which describe the geometric variability and image intensity
characteristics of anatomical structures. New segmentations
are obtained by model deformation driven by local image
match forces and constrained by the training statistics. Two
complimentary representations for 3D shape are discussed
and compared, one based on global surface parametrization
and a second one on medial manifold description. The dis-
cussion will be guided by presenting a most recent study to
construct a statistical shape model of the caudate structure.

1. INTRODUCTION

This paper discusses two complimentary shape represen-
tation schemes for three-dimensional objects, a parametric
boundary description using spherical harmonics (SPHARM)
and a medial manifold description (skeletonization) using a
sampled medial representation (M-rep). Both representa-
tions can describe the same objects but are fundamentally
different in the way they represent the object shapes.

The SPHARM description (see Brechbühler [1, 2]) is
a global, fine scale descriptionthat represents shapes of
spherical topology. The basis functions of the parameter-

ized surface are spherical harmonics. SPHARM is a smooth,
accurate surface shape representation given a sufficiently
small approximation error (see Fig. 1a). Based on a uni-
form icosahedron-subdivision of the spherical parameteri-
zation, a Point Distribution Model (PDM) is directly ob-
tained from the coefficients via a linear mapping between
parameter space and image coordinates. Correspondence of
surface points represented by SPHARM is determined by
normalizing the parameterization and the object alignment
to the coarse shape represented by the first order, which is
an ellipsoid. Truncating the spherical harmonic series at dif-
ferent degrees results in object representations at different
levels of detail, resulting in a multi-scale object representa-
tion.
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Fig. 1. Alternative shape representation schemes to char-
acterize a three-dimensional caudate structure: a) bound-
ary representation parametrized by spherical harmonics
(SPHARM, fine-scale), b) skeletal representation based on
a pruned Voronoi diagram and color coding of the local ra-
dius of enscribed spheres (local, fine-scale), and c) sampled
medial description (mesh of atoms) with implied boundary
(local, coarse scale). Pictures show average models from a
population of 186 objects.

The discrete, sampled medial representation (M-rep) is
a discrete, local medial shape description. It is a set of
linked samples, called medial atoms,m = (~x, r, F , θ) (see
Pizer,Joshi et al. [3, 4]). Each atom is composed of: 1) a
position~x, 2) a widthr, 3) a frameF implying the tangent
plane to the medial manifold and 4) an object angleθ. A



figure is a non-branching medial sheet. Multiple figures are
connected via inter-figural links. The medial atoms form a
graph with edges representing either inter- or intra-figural
links. In the generic case, this medial graph is non-planar,
i.e. overlapping when displayed in a 2D diagram. The
sampling is sparse and leads to a coarse scale description
(see Fig. 1c). Correspondence between shapes is implicitly
given if the medial graphs are equivalent. The medial graph
at each sampling scale implies an object boundary, thus rep-
resenting objects at a hierarchy of scales.

Both shape representations are used in automatic seg-
mentation methods by model deformation, driven by local
boundary match forces but constrained by global smooth-
ness and statistical geometric object priors. Further, param-
eterizations of three-dimensional objects and object popula-
tions are used for describing statistics of healthy and patho-
logic shape and for group discrimination.

2. METHODS

2.1. Shape representation by spherical harmonics

The SPHARM shape description, originally described by
[5], is a hierarchical, global, multi-scale boundary descrip-
tion which is limited to represent objects of spherical topol-
ogy. The basis functions of the parameterized surfaces are
spherical harmonics. A key component of the processing
scheme is the mapping of surfaces of volumetric objects
to parametrized surfaces prior to expansion into harmon-
ics. Brechb̈uhler [6] presented a solution that initializes
a parametric surface net by diffusion between poles and
around the meridian and refines the parametrization by non-
linear optimization, solving for area preservation while min-
imizing distortion of originally squared voxel surface ele-
ments. Closed surfaces are thus represented asv(θ, φ) =
(x(θ, φ), y(θ, φ), z(θ, φ))T , creating a bijective mapping of
the voxel surface to the unit sphere. Object surfaces are
thus mapped to the unit sphere and optimized for a homo-
geneous distribution of parameters. The parametrization of
single objects has been later combined with the concept of
statistical shape models proposed by Cootes et al. [7, 8],
but using the coefficients of the parametrization rather than
a point distribution model [9, 2].

2.1.1. Spherical harmonics descriptors

Spherical harmonic basis functionsY m
l , −l ≤ m ≤ l of de-

greel and orderm are defined onθ ∈ [ 0; π ]× φ ∈ [ 0; 2π)
by the following definitions (see Fig. 2 left for a visualiza-
tion of the basis function):

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ) eimφ (1)

To express a surface using spherical harmonics, the three
coordinate functions are decomposed and the surfacev(θ, φ) =
(x(θ, φ), y(θ, φ), z(θ, φ))T takes the form

v(θ, φ) =
∞∑

l=0

l∑
m=−l

c m
l Y m

l (θ, φ) , (2)

where the coefficientscm
l are three-dimensional vectors due

to the three coordinate functions. The coefficientscm
l are

obtained by solving a least-squares problem.
Using spherical harmonic basis functions, we obtain a

hierarchical surface description that includes further details
as more coefficients are considered (Fig. 2 right).

Fig. 2. Decomposition of objects using SPHARM descrip-
tion. Left: Visualization of the Spherical harmonic basis
functions. The plot shows the real parts of the spherical har-
monic functionsY m

l , with l growing from0 (top) to 5 (bot-
tom), andm ranging from0 (left) to l in each row. Right:
Shape representation of a caudate structure (side view) at
different degree’s; m = 1,2,5,12, top to bottom.

2.1.2. SPHARM correspondence

The scheme for establishing correspondence between object
surfaces described by SPHARM [6] is a 3D extension of
the 2D arc-length shape parameterization (see also Székely
[9]). As the optimal mapping to spherical coordinates and
expansion into coefficients does not use any object centered
coordinate system, the parameterization needs to be rotated
in parameter space for normalization. Our choice is the use
of the first order ellipsoid (Fig. 2top right) and the choice
of the three major axis as the intrinsic coordinate system.
The same coordinates are also used for a spatial aligning
of objects by translation and rotation of voxel coordinates.
Correspondence between surfaces is therefore defined as the
point-to-point correspondence established by points with the
same parameter vector(θi, φi). Although our scheme does
not use explicit surface features to determine correspon-
dence, visual assessment of meridian lines overlayed on sur-



fces and comparison of coordinates at salient surface loca-
tions demonstrate a surprisingly good quality of correspon-
dence. A quantitative evaluation study against manual land-
marking and more complex schemes for correspondence op-
timization is currently in progress.

2.1.3. Shape space

We define a shape space via the population average and
its major deformation modes (eigenmodes) determined by
a principal component analysis (PCA, Fig 3). We compute
the SPHARM shape representations~ci for a population and
apply PCA to the coefficients as described by Kelemen [2].
The eigenmodes(λi, ~pi) in the shape space cover at least
95% of the variability in the population:

Σ =
1

n− 1

∑
i

(~ci − ~̄c) · (~ci − ~̄c)T (3)

0 = (Σ− λi · In) · ~pi; i = 1 . . . n− 1 (4)

Spaceshape = {~̄c± 2 ·
√

λi · ~pi}; i = 1 . . . k95% (5)

Since the shape space is continuous, we need to determine
a shape set by a representative sampling of the shape space,
either statistically or deterministic. All computations are
then applied to this sampled shape set. The number of shapes
in this set can be considerably higher than the original num-
ber of shapes.

−2 λ1 average +2 λ1

Fig. 3. Shape space defined by PCA: First eigenmode of
deformation. The middle, left and right images display the
average shape and shape deformations with±2 standard de-
viations. Most evident are the thickness change of the cau-
date body and the change of bending of the caudate tail.

2.2. Medial Representation

The medial description is computed from a shape space of
a training population of objects, represented by surface pa-
rameterizations. The topology of the medial description is
calculated by studying the topological changes of pruned
3D Voronoi skeletons and establishing a common topol-
ogy satisfying all the shapes sampled from the shape space.
Voronoi skeletons as shape representations have been stud-
ied intensively in past by Ogniewicz [11] in 2D, and Naef
[12] and Attali [13] in 3D. The major problem for modeling
template shapes representative for a population of shapes is

the determination of a stable medial model. Besides prob-
lems related to biological shape variability, skeletonization
schemes are well known to be unstable and sensitive to bound-
ary noise. The new processing scheme developed by Styner
et al. [14, 15] presents a novel concept to overcome these
limitations. The following description does only summa-
rize the scheme but details can be found in the referenced
papers.

The new scheme uses a set of objects sampled from the
shape space 2.1.3 and and performs the two steps of com-
puting a common branching topology for pruned Voronoi
skeletons and a minimal sampling of the resulting medial
manifolds given a predefined maximal approximation error.

2.2.1. Computing a common medial branching topology

The procedure computes the individual branching topology
for each member of the shape set and determines the com-
mon topology via a spatial matching criterion.

Branching topology of a single shape -The branching
topology for a single shape is derived via Voronoi skele-
tons (see Attali [13]), calculated from a finely sampled PDM
representation derived from SPHARM boundary represen-
tations. An algorithm for grouping Voronoi faces into sets
of medial sheets was developed based on an early concept
proposed by Naef [12]. A new merging step follows this ini-
tial grouping, merging similar sheets according to a mixed
radial and geometric continuity criterion. The computed
medial sheets are weighted by their volumetric contribu-
tion to the overall object volume:Csheet = (volskel −
volskel\sheeti

)/volskel and pruned using a topology pre-
serving deletion scheme.

Common spatial frame for branching topology com-
parison - The problem of comparing branching topologies
has already been adressed before in 2D by Siddiqi [16] and
others, mainly via matching medial graphs. So far, there is
little work done in 3D. Own results in 2D and presented by
August [17] have shown that the medial branching topology
is quite unstable, which is even more pronounced in 3D.
In 3D, the medial branching topology is even more unsta-
ble and ambiguous than in 2D. Thus, we chose to develop a
matching algorithm that does matching based on spatial cor-
respondence. Our choice for a common spatial frame is the
average object of the shape space. We warp each member
of the shape set into the common frame using the boundary
correspondence given by the PDM. A thin plate spline warp-
ing provides a perfect match of the corresponding boundary
points while interpolating the warp of the interior skeletons.

Extraction of a common topology -The point sets of
the warped skeletons are compared using an overlap crite-
rion based on spatial statistics (mean and second order dis-
tribution). Skeleton sheets with high degree of overlap are
declared as common sheets, whereas sheets with low degree
of overlap among all objects are declared as new sheets of



the common topology model. Iteratively, a common topol-
ogy model is constructed that represents the topologies of
all objects in shape space.

2.2.2. Computing the sampling of the medial manifold

From the common branching topology we compute the sam-
pling of the associated sheets by a grid of medial atoms. To
calculate the sampling, we start with the longest 1D axis on
the 3D medial sheet and propagate grid points outwards in
normal directions to the boundary [15]. The optimal sam-
pling is determined by specifying a maximum approxima-
tion error forall shapesin the shape space, here the Mean
Absolute Distance (MAD) between the implied and origi-
nal object boundaries. The procedure steps through various
sampling grids to finally converge in an optimum. The fi-
nal m-rep model is then described by the common branch-
ing topology and the set of parameters that specify the grid
sampling for the medial sheet (see Fig. 1c).

3. RESULTS

We present a processing scheme to build statistical paramet-
ric surface and discrete medial models that incorporate in-
formation about the population variability, given by a PCA
analysis of a training population. Statistical models are es-
sential for segmentation by model-based deformation, as
they help to constrain the solution space based on a shape
prior. The SPHARM model has been demonstrated with
the segmentation of the hippocampus ([2] and for shape de-
scription and comparison of brain ventricles in twin stud-
ies ([18]). Currently, we are studying the shape variabil-
ity of the caudate in treatment studies of schizophrenia and
are modeling the kidney and liver structures for radiotreat-
ment planning purposes. Whereas SPHARM provides an
elegant solution to object alignment and surface correspon-
dence, the set of coefficients is neither intuitive nor robust
with respect to local shape changes.

A medial representation captures local width and local
curvature separately. Clinicians can thus ask for the na-
ture and intuitive description of shape changes as opposed
to global shape changes described by SPHARM. The model
building as described above starts from a shape space repre-
sented by SPHARM and PDM and derives a medial model
that captures the sheet topology of the whole sample set.
This is a very important property since the skeleton is sub-
ject to topology changes with deformation. The model build-
ing on shape populations provides a statistical models for
large sets of objects, in our studies up to 200 objects per
study, which are used for discriminating healthy versus patho-
logic or shape change due to aging or treatment, for exam-
ple. Most encouraging are our studies that show similar
shape discrimination of the hippocampus in schizophrenia

with SPHARM and M-rep, providing evidence that shape
changes, although subtle, are real effects and not artifacts
caused by the complex procedure [19, 15].
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