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Abstract. Knowledge about the biological variability of anatomical ob-
jects is essential for statistical shape analysis and discrimination between
healthy and pathological structures. This paper describes a novel ap-
proach that incorporates variability of an object population into the gen-
eration of a characteristic 3D shape model. The proposed shape represen-
tation is based on a fine-scale spherical harmonics (SPHARM) boundary
description and a coarse-scale sampled medial description. The medial
description is composed of a net of medial samples (m-rep) with fixed
graph properties. The medial model is computed automatically from a
predefined shape space using pruned 3D Voronoi skeletons to determine
the stable medial branching topology. An intrinsic coordinate system and
an implicit correspondence between shapes is defined on the medial man-
ifold. Our novel representation describes shape and shape changes in a
natural and intuitive fashion. Several experimental studies of biological
structures regarding shape asymmetry and similarity clearly demonstrate
the meaningful represesentation of local and global form.

1 Introduction

Shape is one of the most characteristic features of objects in the real world. While
humans have no apparent difficulty dealing with shapes, research in computer
vision faced the usual problem when imitating human perception: humans can
do it, but nobody knows exactly how. Representation and especially analysis
of shape proved to be a rather complex and challenging problem. It has been
shown that a generally applicable solution is not possible and that specific shape
descriptions have to be established. In this paper, we present a novel framework
for building shape models to be used for shape analysis.

Davatzikos et al [8] proposed an analysis of shape morphometry via a spa-
tially normalizing elastic transformation. Inter-subject comparisons were made
by comparing the individual transformations. The method is applied in 2D to
a population of corpora callosa. A similar approach in 3D has been chosen by
Joshi et al [11] to compare hippocampi. Using the viscous fluid transformation
proposed by Miller [6], inter-subject comparisons were made by analyzing the
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Fig. 1. Visualization of a left/right hippocampus pair with its average structure.
Boundary (left), pruned Voronoi skeleton (right) with thickness coloring (same range
for all objects). For the average case the medial axis and grid is shown on the top row.

transformation fields. The analysis of transformation fields in both methods has
to cope with the high dimensionality of the transformation and the sensitivity to
the initial position. Although the number of subjects in the studied populations
is low, both show a relatively stable extraction of shape changes (see Csernansky
[7]). The shape changes provided by the deformation fields are hard to interpret
and cannot be expressed intuitively.

The INRIA group developed a feature based concept based on crest lines
to represent shape variability and to built statistical atlases (Subsol [20]). The
approach results in a point to point correspondence and uses a space spline
transformation to warp 3D image data.

The approach taken by Kelemen [13] evaluates a population of 3D hippocam-
pal shapes based on a boundary description by spherical harmonic basis functions
(SPHARM), which was proposed by Brechbühler [3]. The SPHARM shape de-
scription delivers an implicit correspondence between shapes on the boundary,
which is used in the statistical analysis. As in the approaches discussed before,
this approach has to handle the problem of high dimensional features versus a
low number of subjects. Further, the detected shape changes are expressed as
changes of coefficients that are hard to intreprete.

Golland [10] in 2D and Pizer et al [16] in 3D proposed two different ap-
proaches of applying shape analysis to a medial shape description. Blum [4]
claims that medial descriptions are based on the idea of a biological growth
model and a ’natural geometry for biological shape.’ The medial axis in 2D cap-
tures shape intuitively and can be related to human vision (see Burbeck [5] and
Siddiqui [17]). Both Pizer and Golland propose a sampled medial model that
is fitted to individual shapes. By holding the topology of the model fixed, an
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Fig. 2. Thickness asymmetry along medial axis (tail to head): a: Radius plot. b: Differ-
ence Plot: rright − rleft. c,d: m-rep description (c: left, d: right). e: Difference (R−L)
at medial atoms with proportional radius/color: r ∼ |R− L|; col ∼ (R− L).

implicit correspondence between shapes is given. So far, there was no effort to
automatically construct the medial model but it has been constructed manually.

Kimia and Giblin [9] have proposed a medial hypergraph in 3D. They showed
that the hypergraph completely characterizes the shape of an object. Similar
to work in 2D by Siddiqi et al [18], this hypergraph could be used for shape
recognition and shape design. To our knowledge, no studies have been done
towards using the medial graph/hypergraph directly for shape analysis.

In this paper we present a new approach to shape analysis using both bound-
ary and medial description. The medial description is computed automatically
from a shape space of a population. The topology of the medial description is
calculated by studying the topological changes of pruned 3D Voronoi skeletons.
Voronoi skeletons as a shape representations have been studied intensively in
past. The most influential pruning related studies regarding have been performed
by Ogniewicz [15] in 2D, Naef [14] and Attali [1] in 3D.

This paper is organized as follows. In the next section, the motivation of our
work is discussed guided by an example. Then, we show how a stable sampled
medial description is automatically constructed in the presence of shape vari-
ability. We start with a general description and discuss shape space, common
medial branching topology and minimal sampling in detail. In the result section,
neuroimaging applications of shape analysis are presented.
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Fig. 3. Thickness asymmetry for a left/right hippocampus pair: a,b: M-rep descriptions
(a: right, b: left). Radius/color are proportional to the corresponding radius. c: Differ-
ence (R−L) at medial atoms with proportional radius/color: r ∼ |R−L|; col ∼ (R−L).

2 Motivation: Shape analysis in an asymmetry study

This section describes an example for the intuitive description of shape changes
that is inherent to the medial description. We will show an analysis of left/right
asymmetry in hippocampi, a subcortical human brain structure. Asymmetry
is defined via the interhemispheric plane, therefore the right hippocampus was
mirrored for comparison. The main advantage of medial descriptions is the sepa-
ration of the local shape properties thickness and location. In the presented case
we chose to investigate mainly the thickness information of the medial manifold.

In Fig. 1 the hippocampi are visualized and asymmetry is clearly visible. Vol-
ume and medial axis length measurements indicate the same result that the right
hippocampus is larger than the left: volright = 2184mm3, volleft = 2023mm3;
axisright = 65.7mm, axisleft = 64.5mm. But these measurements do not pro-
vide a localization of the detected asymmetry. This asymmetry can easily be
computed and intuitively visualized using our new medial description.

When analyzing the thickness of the hippocampi along the medial axis (the
intrinsic coordinate system), we get a more localized understanding of the asym-
metry. In Fig. 2 the right hippocampus is thicker over the full length of the axis,
and the difference is most pronounced in the middle part of the axis. In order
to relate this thickness information with the appropriate location, we visualize
it in the medial samples itself. Each medial atom (sample of the medial surface)
is displayed by a sphere of size and color that is proportional to its thickness.
This kind of display can also be used to visualize the thickness difference of cor-
responding locations in the right and left hippocampus. The sphere radius and
color is proportional to the difference: r ∼ |R− L|; col ∼ (R− L) (see Fig. 2).

As a next step, we take into account a grid of medial atoms and perform the
same analysis as for the axis (see Fig. 3). We observe that the right shape is
thicker, but the difference is most pronounced in the middle part.

All parts of the processing are described in the methods section and more
detailed examples are presented in the results section. The applied methods
computed the medial branching topology of one single sheet with volumetric
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Fig. 4. Computation of a medial model from an object population. 1. Shape space
definition. 2. Common medial branching extraction. 3. Compute minimal sampling.

overlap larger than 98% and approximation error less than 10% MADnorm (Mean
Absolute Distance).

It is evident that in the presented hippocampus study the medial description
gives a better understanding of the observed asymmetry than simple measure-
ments like volume or even the length of the medial axis. Limiting ourself to a
coarse scale description does not lessen the power of the analysis and asymmetry
can reliably be detected and localized. In the result section, we present another
example dealing with asymmetry in a lateral ventricles study.

3 Methods

The main problem for a medial shape analysis is the determination of a stable
medial model in the presence of biological shape variability. Given a population of
anatomical objects, how can we determine a stable medial model automatically?
This section describes the methods that were developed to construct such an
medial model. Some parts were described in more detail by Styner [19].

Our scheme is subdivided into 3 steps and visualized in Fig. 4. We first define
a shape space for our computations using Principal Component Analysis. From
this shape space, we generate the medial model in two distinct steps. First,
we compute the common branching topology using pruned Voronoi skeletons.
Secondly, we calculate the minimal sampling of the medial manifold given a
predefined maximal approximation error in the shape space.

3.1 SPHARM and m-rep shape description

Two shape description are of importance in this work: a) the boundary descrip-
tion using SPHARM and b) the medial description using m-rep.

The SPHARM description (see Brechbühler [3]) is a global, fine scale de-
scription that representa shapes of sphere topology. The basis functions of the
parameterized surface are spherical harmonics, which have been demonstrated
by Kelemen [13] to be non-critical to shape deformations. SPHARM is a smooth,
accurate surface shape representation given a sufficiently small approximation
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error. Based on a uniform icosahedron-subdivision of the spherical parameteriza-
tion, we obtain a Point Distribution Model (PDM) directly from the coefficients
via a linear mapping x = A · c. Correspondence of SPHARM is determined by
normalizing the parameterization to the first order ellipsoid.

M-rep is a local medial shape description. It is a set of linked samples, called
medial atoms, m = (x, r, F , θ) (see Pizer et al [16]). Each atom is composed of: 1)
a position x, 2) a width r, 3) a frame F implying the tangent plane to the medial
manifold and 4) an object angle θ. A figure is a non-branching medial sheet.
Figures are connected via inter-figural links. The medial atoms form a graph
with edges representing either inter- or intra-figural links. In the generic case,
this medial graph is non-planar, i.e. overlapping when displayed in a 2D diagram.
The sampling is sparse and leads to a coarse scale description. Correspondence
between shapes is implicitly given if the medial graphs are equivalent. We express
every shape by the same medial graph varying only the parameters of the medial
atoms. For every population of similar shapes there is a specific medial graph.

3.2 Shape space

We define a shape space via the population average and its major deformation
modes (eigenmodes) determined by a principal component analysis (PCA). We
compute the SPHARM shape representations ci for a population and apply PCA
to the coefficients as described by Kelemen [13]. The eigenmodes (λi,pi) in the
shape space cover at least 95% of the variability in the population:

Σ =
1

n− 1

∑
i

(ci − c̄) · (ci − c̄)T (1)

0 = (Σ − λi · In) · pi; i = 1 . . . n− 1 (2)

Spaceshape = {c̄± 2 ·
√
λi · pi}; i = 1 . . . k95% (3)

Since the shape space is continuous, we need to determine a shape set by a
representative sampling of the shape space. All computations are then applied
to the shape set. The number of shapes in this set can be considerably higher
than the original number of shapes (see section 4.1 for an example).

3.3 Computing a common medial branching topology

In this section, we describe how the common medial branching topology is com-
puted in a three step approach. First, we compute for each member of the shape
set its branching topology. Then we establish a common spatial frame in order
to compare the topology of different shapes. As a last step we determine the
common topology via a spatial matching criterion in the common frame.

Branching topology of a single shape - The branching topology for a
single shape is derived via Voronoi skeletons (see Attali [1]). In order to calculate
the 3D Voronoi skeleton from the SPHARM description, we first calculate a finely
sampled PDM. From the PDM, the inside 3D Voronoi diagram is calculated. The
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Fig. 5. Voronoi skeleton pruning scheme applied to a lateral ventricles (side views). a.
Original ventricle. b: Original Voronoi skeleton (∼ 1600 sheets). d: Pruned skeleton (2
sheets). c: Reconstruction from pruned skeleton (Eoverlap = 98.3%).

Voronoi diagram is well behaved due to the fact that the PDM is a fine sampling
of the smooth SPHARM. The medial manifold of a Voronoi skeleton is described
by Voronoi vertices connected by Voronoi edges forming planar Voronoi faces. A
face-grouping algorithm was developed that is based on the grouping algorithm
proposed by Naef [14]. The algorithm groups the Voronoi faces into a set of
medial sheets. It is a graph algorithm that uses a cost function weighted by a ge-
ometric continuity criterion. Additionally a merging step has been implemented,
which merges similar sheets according to a mixed radial and geometric continuity
criterion. The computed medial sheets are weighted by their volumetric contri-
bution to the overall object volume: Csheet = (volskel − volskel\sheeti

)/volskel.
The medial sheet are then pruned using a topology preserving deletion scheme.
An example of the scheme is presented in Fig. 5. We are aware that this pruning
scheme has to be adapted when dealing with very complex objects like the whole
brain cortex.

A common spatial frame for branching topology comparison - The
problem of comparing branching topologies has already been adressed before in
2D by Siddiqi [18] and others, mainly via matching medial graphs. So far, there
is little work done in 3D. The results in 2D and August [2] have shown that the
medial branching topology is quite unstable. In 3D, the medial branching topol-
ogy is even more unstable and ambiguous as in 2D. Thus, we chose to develop
a matching algorithm that does matching based on spatial correspondence. In
order to apply such an algorithm, we first have to define a common spatial frame.

Our choice for a common frame is the average case of the shape space. We
map each member of the shape set into the common frame using the corre-
spondence that is given on the boundary. The SPHARM description defines a
boundary correspondence via the first order ellipsoid. This correspondence is car-
ried through to the derived PDM, which is the basis of the branching topology
computation. By mapping every PDM into the PDM of the common frame, we
perfectly overlap the sampled boundaries of every object. To map the whole 3D
space, we use a Thin-Plate-Spline warp algorithm. Thus, we warp every skeleton
into the common frame, where all their boundaries match perfectly.

Extraction of a common topology - Given that all objects were mapped
into a common spatial frame, we can define a matching criterion between the
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m-rep

Grid 2x6 3x6 3x7 3x12 4x12

I.MADnorm 0.159 0.116 0.109 0.066 0.051

II.MADnorm 0.146 0.076 0.075 0.053 0.048

Fig. 6. Sampling approximation errors of the implied surface from a hippocampus
structure in the initial position (I) and after deformation (II). The Mean Absolute
Distance (MAD) is normalized with the average radius: ravg = 2.67 mm. The images
show the m-rep (red lines), points of the implied boundary (dark blue dots) and the
original boundary (light blue transparent).

medial sheets. We visually observed a very high degree of overlap between match-
ing sheets in the common frame. Thus, we chose to use the spatial distribution
of the Voronoi vertices of every sheet. The matching criterion is defined as the
paired Mahanolobis distance. It is a non-Euclidean distance measure that takes
into account the non-isotropic distribution of the vertices. We determined an
empirical threshold that represents the rejection of a match if the centers of the
spatial distributions are further away than 2 standard deviations.

fdist({µ1, Σ1}, {µ2, Σ2}) = (M(µ1, Σ1, µ2) +M(µ2, Σ2, µ1))/2 (4)
M(µ,Σ,x) = ‖ Σ−1 · (µ− x) ‖2 (5)

The matching procedure starts by assigning the topology of the average case
as the initial common topology. The common topology is step by step refined
by comparing it to every member in the shape set. All medial sheets that were
judged to be non-matching are incorporated into the common topology. This
matching procedure does a one-to-many match, since due to skeletal instabili-
ties a single medial sheet in one shape can have two or more corresponding sheets
in another shape. The resulting common topology is a set of medial sheets orig-
inating from members of the shape set.

3.4 Computing the minimal sampling of the medial manifold

From the common branching topology we compute the sampling of the associated
sheets by a grid of medial atoms. The m-rep model is determined by the common
branching topology and a set of parameters that specify the grid dimensions for
each sheet. The sampling algorithm is based on the longest 1D thinning axis
of the edge-smoothed 3D medial sheet. A detailed description of the algorithm
would exceed the scope of this paper and thus is omitted here.
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c̄ +2λ1 −2λ1 +2λ2 −2λ2 +2λ3 −2λ3 +2λ4 −2λ4 +2λ5 −2λ5 +2λ6 −2λ6

Fig. 7. Subset of the shapeset from a PCA shape space for a pooled Control-
Schizophrenia population: Average case with deformations along eigenmodes.

The set of grid parameters is optimized to be minimal while the corresponding
m-rep deforms into every member of the shape set with a predefined maximal
approximation error. The approximation error is computed as Mean Absolute
Distance (MAD) of the implied and the original boundary. In order to have
an error independent of the object size, we normalize with the average radius
of the skeleton: MADnorm = MAD/ravg. In Fig. 6 we show the error of various
sampling parameters. The limiting error was chosen at 10% of the average radius.

3.5 Deforming the m-rep into an individual shape

Once a m-rep model is computed, we want to fit it into individual shapes. This
fit is done in two steps. First we obtain a good initial estimate which is then
refined in a second step to fit to the boundary. The initial estimate is obtained
by warping the m-rep model from the common frame into the frame of the
individual shape using the correspondence on the boundary given by the PDM.

From that position we run an optimization that changes the features of the
m-rep atoms to improve the fit to the boundary (see Joshi [12]). Local similarity
transformations as well as rotations of the local angulation are applied to the
medial atoms. The fit to the boundary is constrained by an additional Markov
random field prior that guarantees the smoothness of the medial manifold.

3.6 Issues of Stability

We consider the stability of the common medial branching topology to be good.
Several experiments with various anatomical objects confirmed this hypothesis.
The least stable part of the common topology is its dependency on the bound-
ary correspondence for the topology matching procedure. Although we did not
yet experience problems with the quality of the boundary correspondence, it
is evident that for objects with a high degree of rotational symmetry our first
order ellipsoid correspondence is not appropriate. The borders of the Voronoi
skeleton are sensitive to small perturbations on the boundary, unlike the center
part of the skeleton which is quite stable. Thus, the sampled medial grid is quite
stable in its center, but rather unstable at the edges. The parameters of the grid
sampling (rows, columns) are neither very stable, nor unstable.
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a b c d e f

Fig. 8. Topology matching scheme applied to the shape space of hippocampus-
amygdala objects. a: Final topology with 3 medial sheets as clouds of Voronoi Vertices.
b-f: Examples of members from the shape set.

If we compute the common medial model for 2 similar populations (e.g. 2
different studies of the same object regarding the same disease), we expect the
same medial branching topology, similar grid parameters, and very similar m-rep
properties in the center, but unlikely similar m-rep properties at the boundaries
of the grid. We are currently verifying this hypothesis. Because we construct the
model only once and its extraction is deterministic and repeatable, the stability
of a medial model for a single population is regarded as stable.

4 Results

4.1 Medial model for a hippocampus-amygdala population

The main contribution in this paper is the scheme to extract a medial model that
incorporates biological variability. This section presents the scheme applied to a
hippocampus-amygdala population from a schizophrenia study (30 subjects).

The SPHARM coefficients were determined and normalized regarding rota-
tion and translation using the first order ellipsoid. The scale was normalized
with the individual volume. The first 6 eigenmodes λi of the PCA shape space
contain 97% of the variability in the population and thus the shape space is
defined as {c̄± 2 ·

√
λi;i = 1 . . . 6} . The shape set was computed by uniformly

sampling 5 shapes along each eigenmode (see Fig. 7 for a subset).
The 3D Voronoi skeletons were computed from the PDM’s and pruned. No

member of the shape set had a branching topology comprised by more than 4
medial sheets. In Fig. 8 the individual medial topology of several members of
the shape set are displayed together with the common medial topology, which
consists of only three medial sheets. Every member of the shape set had a vol-
umetric overlap larger than 98% of the reconstruction with the original object.
The minimal sampling of the medial topology was computed with an maximal
MADnorm ≤ 0.1. The application of the m-rep model to all individual cases did
not produce a MADnorm larger than 0.1 (see also Fig. 9). This highly encourag-
ing result strengthens the validity of our assumptions in the proposed scheme.
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Boundary Skeleton Eoverlap Init. m-rep EMAD Def. m-rep EMAD

c̄

6mm

0mm

98.64% 0.081 0.069

c̄
+

2 · λ2

6mm

0mm

98.35% 0.118 0.099

Case

6mm

0mm

98.02% 0.185 0.096

Fig. 9. Approximation errors: The common model applied to the average (top), a shape
set member (middle) and an individual case (bottom). The pruned Voronoi skeletons
and the volumetric overlap is presented. In the middle columns, the initial m-rep (after
the warp) and its MADnorm error is displayed (ravg = 3.6mm). On the right, one can
see the deformed m-rep and the corresponding MADnorm. After deformation, the lower
boundary for the MADnorm error (≤ 0.10) was satisfied for all shapes.

4.2 Asymmetry analysis of lateral ventricles of twins

This section presents our scheme applied to a population of lateral ventricles,
a fluid filled structure in the center of the human brain. The data is from a
Mono/Di-zygotic twin study and consists of 20 twin subjects (10 pairs, 5 each).

In order to do asymmetry analysis, we mirrored the left objects at the in-
terhemispheric plane. The SPHARM coefficients were determined and normal-
ized regarding rotation and translation using the first order ellipsoid. The scale
was normalized by the individual volume. In Fig. 11 the SPHARM correspon-
dence is shown. The first 8 eigenmodes λi of the PCA shape space contain
96% of the variability in the population and thus the shape space is defined
as {c̄ ± 2 ·

√
λi;i = 1 . . . 8} . The PDM of the shape set was computed and a

common medial branching topology for all objects using Voronoi skeletons was
determined. The medial branching topology consisted of one to three medial
sheets with an volumetric overlap of more than 98% for each. The common
medial topology was computed to be a single sheet.

The minimal sampling of the medial topology was computed with an max-
imal MADnorm ≤ 0.1 in the shape space. The application of the medial model
to all individual cases did not produce a MADnorm larger than 0.1, which is
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Twin case 1 L R
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Fig. 10. Visualization of the lateral ventricles of two monozygotic twins and its cor-
responding m-reps. Radius/color is proportional to the thickness. The figure shows a
clear asymmetry in both cases of the boundary display.

about 0.35mm. Since the lateral ventricle is a thin, long structure (medial axis
∼ 115mm), this is a very small error for a coarse scale description.

We examined a monozygotic twin pair more closely for an asymmetry and
similarity analysis (see Fig. 10). An asymmetry is clearly present, also in the vol-
ume measurements: twin 1 L/R = 9365/12442mm3; twin 2 L/R = 8724/6929mm3.
An analysis of the thickness is shown in Fig. 12. It is obvious, that the asymme-
try in the twin 1 is considerably higher than in twin 2. Moreover, the similarity
is much higher on the left side than on the right.

5 Conclusions and Discussion

We present a new approach to the description and analysis of shape for objects
in the presence of biological variability. The proposed description is based on a
boundary and a medial description. Using the medial description we can visu-
alize and quantitate locally computed shape features regarding asymmetry or
similarity. Since a correspondence is given on both the boundary and the medial
manifold a statistical analysis can be directly applied. We showed several shape
analysis examples of the medial description and the results are very encouraging.

The choice of a fixed topology for the m-rep has several advantages, e.g. en-
abling an implicit correspondence for statistical analysis. On the other hand, a
fixed topology m-rep model cannot precisely capture the topology of an individ-
ual object. The determined m-rep is therefore always an approximation, which
emphasizes our decision of a coarse scale m-rep description.

The SPHARM description and thus also the derived m-rep is constrained to
objects of sphere topology. The SPHARM boundary correspondence has shown
to be a good approach in the general case, but it has inherent problems e.g. in
case of rotational symmetry.

This paper describes a scheme which is work in progress. All parts of the
scheme have already been implemented, applied and tested. The scheme has been
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Twin 1 - left Twin 1 - right Twin 2 - left Twin 2 - right

Fig. 11. Visualization of the normalization SPHARM parameterization net using the
first order ellipsoid for the lateral ventricle example. The top row shows a top view and
the bottom row a side view. The three axes are in corresponding colors.

1.5mm

-0.3mm

a: R1 − L1 b: R2 − L2 c: R1 −R2 d: L1 − L1

Fig. 12. Asymmetry/similarity analysis of the thickness. M-rep radius and color is
proportional to the difference (the same range has been applied to all objects). Maximal
differences: a) 1.5mm, b) 0.28mm, c) 1.7mm, d) 0.42mm. In the first twin there is a
higher degree of asymmetry. The similarity of the left side is higher than the right side.

applied to populations of several structures of neurological interest: amygdala-
hippocampus(60 cases), hippocampus(20), thalamus(56), globus pallidus(56),
putamen(56) and lateral ventricles(40). The generation of the medial description
takes into account the biological variability of a set of training shapes, which is a
novel concept. We have shown that we can compute a stable medial description
for a population of shapes. The biological variability is captured efficiently, and
therefore it is a step further towards a natural shape representation.

As next steps, we have to study the robustness of our scheme and to apply
shape statistics for discrimination and similarity studies. Methods for statisti-
cal shape analysis of medial structures have been performed at our lab in 2D
(Yushkevich [21]). Applications to clinical studies in Schizophrenia and other
neurological diseases are in progress.
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