
Appeared in Proc. CVPR'92, Champaign, Illinois, pp. 63{69, June 1992Voronoi Skeletons: Theory and ApplicationsR. Ogniewicz and M. IlgCommunication Technology LaboratorySwiss Federal Institute of Technology ETHCH-8092 Zurich, SwitzerlandAbstractThe paper presents a novel method of robust skele-tonization based on the Voronoi diagram (VD) ofboundary points, which is characterized by correct Eu-clidean metrics and inherent preservation of connec-tivity. The regularization of the Voronoi medial axis(VMA) in the sense of Blum's prairie �re analogy isdone by attributing each component of the VMA witha measure of prominence and stability. The resultingVoronoi skeletons (VSK) appear largely invariant withrespect to typical noise conditions in the image and ge-ometric transformations. Hierarchical clustering of theskeleton branches, the so-called skeleton pyramid, leadsto further simpli�cation of the skeleton. Several applica-tions demonstrate the suitability of the Voronoi skeletonto higher order tasks such as object recognition.1 IntroductionDuring the last decades, skeletonization or thinninghas been a constant research topic. The concept ofskeletonization denotes a process, which transforms a2D object into a 1D line representation, similar to astick �gure. A concise de�nition of the skeleton or me-dial axis (MA) in the continuum was given by Blum [1],who postulated the well-known prairie �re analogy. Inspite of its apparent simplicity, the implementation ofBlum's de�nition in the discrete world without losingimportant properties such as connectivity or Euclideanmetrics has turned out to be surprisingly tedious (fora survey, see [2]). Recently, an implementation of the�re front propagation in the discrete plane was proposedin [3]. However, this algorithm is based on regular met-rics and therefore inherits several of the typical draw-backs of common thinning methods. Basically, we candistinguish between two substantially di�erent variantsof generic (i.e., which do not presume a very speci�c ob-ject representation, e.g., polygonal shapes) skeletoniza-tion algorithms: Topological thinning and medial axisextraction from a distance map.A large class of thinning algorithms examine thetopological relevance of object pixels rather than themetric properties of the shape. Typically, object pixelsare repetitively tested and subsequently deleted, when-

ever their removal does not alter the topology of thethinned shape. While working fast and relatively reli-ably for elongated silhouettes, thinning of shapes char-acterized by a large diameter can often strike the hu-man observer by counterintuitive results. The topologyof the rectangular grid implies that this sort of thinningleads to regular metrics. On one hand, topological thin-ning can guarantee connected skeletons, on the otherhand, we pay for retaining connectivity with the loss ofEuclidean metrics.The alternative approach requires the evaluation ofa distance map. The use of regular metrics leads tovery simple algorithms, but the resulting skeletons areusually incongruous with the �re front paradigm. Onthe other hand, e�cient methods to obtain correct Eu-clidean distance maps have been published (e.g., [4]).However, the next step, namely the extraction ofthe MA imposes severe di�culties. If we compute theskeleton as the set of endpoints of shortest intrusionpaths [5], the skeleton will be characterized by a largenumber of redundant elements. Conversely, the compu-tation of the centers of largest inscribed disks leads to askeleton consisting of more or less sparsely distributedpoints. Therefore, other methods apply di�erential ge-ometry to extract the skeleton. In that case, pseudo-Euclidean or Euclidean metrics may be used, but theproblem of connectivity remains unsolved. A promis-ing approach seemed to be the combination of thinningand a method, which explicitly extracts skeletal pix-els [6]. Although it was possible to let the thinningprocess make the connections between disjoint actualskeleton points, the previously mentioned de�ciencies ofthinning algorithms inuenced the quality of the results.Still, the outcome was only a rough approximation ofBlum's concept. So other approaches try to completethe skeleton by tracking the ridges in the distance map(e.g., [7]). However, even in case of regular metrics, thealgorithms have to handle speci�c situations such as theoccurrence of saddle-points.In [8], it is pointed out that a major weakness of the\symmetric (or medial) axis transform (SAT or MAT)"is its sensitivity to details of the boundary. Severalmethods have been proposed to avoid this de�ciency.A pruning approach used in [9] is based on the analysis



of disk radii along a skeleton branch (\propagation ve-locity"). However, the pruned skeletons do not preservetheir initial connectivity. Insensitivity to artefacts canbe obtained by smoothing the boundary with a lowpass�lter [10] or by blurring the shape [8]. The drawbacksof these methods are twofold: First, skeletonization hasto be computed afresh for numerous levels of resolution,in order to obtain a hierarchical description. Second,postprocessing is needed to establish correspondencesbetween segments of the MA pertaining to di�erent lev-els. Still another way is to attribute each point of theMA with a measure of \prominence" of the associatedboundary [11]. Consecutively, after thresholding, lessessential sections of the MA are disconnected from the\backbone". However, the straightforward applicationof the above method to complex shapes can lead toseveral disjoint \backbone" sections, which intuitivelyshould be connected. In [12] the local curvature of theboundaries of the original object and successive erosionsthereof controls the preservation of potentially stableskeleton branches. Similarly, in [13], curvature extremalead to the set of initial control points for the simula-tion of the \dynamic grass�re" using the snake model.Two questions arise with respect to the general scopeof this approach. First, a ragged boundary may prema-turely initiate skeleton branches, which at a later stageturn out to be irrelevant to the overall shape descrip-tion. Second, the computation of the correct curvaturecannot be transferred in a straightforward way to thediscrete plane.2 The Voronoi Medial AxisSince the distance map reects the proximity rela-tions among boundary points, the evaluation of a dis-tance map is closely related to the notion of proximalpolygons within a point set. According to [14], suchproblems can be seamlessly solved with the help of theVoronoi diagram (VD) of the boundary points. Thecomputation of a distance map can then be de�ned as amapping of the Voronoi polygons onto the rectangulargrid.It is well-known that the medial axis of polygonalshapes can be obtained by computing the VD of theboundary line segments (e.g., [9], [15]). Such Voronoimedial axes (VMA) consist of segments of straight linesand parabola. However, any convex locus on the bound-ary such as the vertex of a polygon induces an additionalskeleton branch. Thus the proper polygonal approxima-tion of a shape becomes crucial for the complexity andtopology of the skeleton. Unfortunately, robust polyg-onal approximation of arbitrary shapes turned out tobe fairly di�cult. Natural shapes require a rather largenumber of vertices for an accurate polygonal approxima-tion. Numerous additional skeleton branches are thusintroduced, which do not contribute essentially to the

overall representation.Despite these obstacles, the VD of the boundarypoints lays the foundation of the Voronoi skeleton. Inorder to support symmetrical treatment of foregroundand background, the course of the boundary is expressedusing a symbolic description, namely as a chain of pixelraster cracks, i.e., elementary vectors, which separateobject pixel and non-object pixel. The VD is computedbased on the raster crack endpoints.The doubly-connected-edge-list (DCEL) has beenproposed as the data structure of choice for the VDin [14]. We adapt the DCEL to related data struc-tures as the VSK by attributing the DCEL compo-nents with supplementary information, e.g., regulariza-tion data and labeling information.The resulting VMA represents the medial axis in thesense of Blum's proposal, if each point site initiates aconcentric �re front. However, the di�culty lies in thestill huge number of edges, which (a) are not relevantfor the basic form of the skeleton (see, e.g., Figure 3(b))and (b) react very sensitively to even the slightest dis-turbations among the point sites. Consequently, thedescription or identi�cation of shape by means of thecomplete VMA is most likely an ill-posed problem un-less a regularization method is proposed.3 Regularization
(a)

(c)(b)

m
r

b

w

e

p
Bp

A

m

r

b

w

p
p

w*

e
A

B m
r

w

p
A

p
Bs

eFigure 1: Regularization of the VMA: Di�erent Resid-ual Functions. (a) Potential and circularity residual. (b)Bi-circularity residual. (c) Chord residual.We observe that those parts of the medial axis, whichlie deeply inside an object are less sensitive to changesamong the boundary points than are the outer parts.Skeletal segments, which describe rather global topolog-ical relations (and therefore should be preserved) werecreated during the last phase of �re front propagation,when the �re fronts were approaching the quench lociifrom nearly opposite directions. In the case of the VMA,each Voronoi edge represents the local symmetry axisof exactly two boundary point sites, henceforth namedthe anchor points of an edge. The length of the short-est path from one anchor point to the other, measured2



along the boundary B, is a strong probability indicatorfor the location of an edge within the shape. If this dis-tance is large, the edge (and therefore this portion ofthe MA) is very likely to lie deeply inside the object.Based on these observations, the following four variantsof a residual function are derived.Potential Residual: In Figure 1(a), the anchor pointsof edge e are pA and pB. Consequently, e is at-tributed with the length of path w. The distancew = distB(pA; pB) (superscript B denotes that the dis-tance is measured along the boundary) for arbitrarypairs of points can be computed e�ciently, if we in-troduce a boundary potential function W (p) for everyboundary point p. In order to create W (p), it is nec-essary to track each boundary chain and assign to eachpoint the current length of the path relative to an ar-bitrary origin. For example, for a closed boundary, weobtain w fromdistB(pA; pB) = minfjW (pA)�W (pB)j;LB � jW (pA)�W (pB)jg ; (1)where LB denotes the total length of the boundary. IfpA and pB belong to disjoint boundary segments (typi-cal for objects with holes), w is assigned an \in�nitely"large distance value.Since w denotes the length of that fraction of theboundary, which is spanned by the anchor points, wede�ne a potential residual �RP (e) (constant for everypoint of edge e)�RP (e) def= w = distB(pA; pB); (2)which attributes each Voronoi edge. Skeleton extractionthen boils down to simple thresholding. Every edge witha residual value greater than a speci�c threshold T isassumed to be a stable part of the skeleton.The following three variants of residual functions areclosely related to the potential residual.Circularity Residual: According to the de�nition ofthe MA, every point m of an edge e is the center of thelargest inscribed disk. By comparing w with perime-ter b of the disk we obtain a measure for how well theboundary segment is approximated by a circular arc(Figure 1(a)). Again, we assume that if the circular-ity residual �RC(e;m) (di�erent for every disk centerm) �RC(e;m) def= w � b = �RP (e) � b (3)is large, the edge is likely to be a stable part of theskeleton.Bi-circularity Residual: In order to overcome someof the shortcomings of the circularity residual such asthe undue suppression of circular forms, we modify itsde�nition by multiplying w with �=2. The so-called bi-circularity residual �RB(m) expresses the approxima-tion of a chain of semi-circles w� by perimeter b of theinscribed disk (Figure 1(b)). w� itself is an approxi-mation of a vertex-based reconstruction of the shape,

namely by drawing the largest inscribed disk at eachvertex of the VD 1. We de�ne �RB(m) as�RB(e;m) def= 2� (�2w � b) = 2� (�2�RP (e) � b): (4)The factor 2=� assures that for elongated shapes, i.e.,b� w, �RB � �RC � �RP .Chord Residual: The chord residual (Figure 1(c)) isobtained by replacing perimeter b with the length s ofchord pApB:�RH(e) def= w � s = �RP (e) � s: (5)Thus, �RH(e) is a measure for the degree of approxi-mation between the original shape and a subset of itsDelaunay triangulation, the straight line dual of the VD.It can be shown [16] that skeleton extraction bymeans of our residual functions preserves the connectiv-ity of the skeletons. Thus, no additional postprocessingsteps are mandatory to connect disjoint portions of theMA as in [17].Having attributed the edges of the VMA with one ofthe residual functions, we need a reasonable threshold,which suppresses the e�ects of noisy artefacts. With thehelp of Figure 2, we derive such an estimate for the caseof a spike-shaped disturbation along the boundary.
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n = 3Figure 2: Estimation of a Good Threshold.� denotes the spurious skeleton branch induced bythe spike. We would like to suppress � for an arbitrarilylarge extent of the object. First, we obtain l = p2na,where n symbolizes the size of the protrusion in termsof the number of raster cracks and a denotes the lengthof a raster crack. Consequently, for a point Q on �,which lies very far away from the location of the spike,we obtain (de: Euclidean distance)limde(Q;pA)!1�RP (Q) = 2nalimde(Q;pA)!1�RC(Q) = na(2�p2)limde(Q;pA)!1�RB(Q) = na(2� 2�p2)limde(Q;pA)!1�RH(Q) = na(2�p2): (6)This set of estimates can be extended by analogous anal-ysis of other types of artefacts.1Note that we have introduced an additional vertex in the mid-dle of each raster crack. This approach is useful to de�ne a properseparation into exoskeleon and endoskeleton and to explain themeaning of �RB, but not required in practical applications.3



(a) (b) (c) (d)(e) (f) (g) (h)Figure 3: The E�ects of Di�erent Residual Functions. (a) Binary silhouettes (b) VD of \raster crack" endpoints. (c) �RP ,T = 9:0. (d) �RH , T = 3:0. (e) Section of the VD. (f) Same section after regularization, �RC , T = 3:0. (g) �RC , T = 3:0.(h) All 9 skeletons of (g) brought to the same scale and arranged side by side.
Figure 4: 3D Rendering of Circularity Residual.In a typical con�guration, an error on the order of 1pixel results from the binarization of a nonpathologicalgray-valued image and a similar error is introduced byan a�ne transformation of the object. A useful thresh-old is obtained by setting the extent na of the spike toa value of 2a or, for the sake of security, 3a. Since weare working with pixel raster cracks, we set a = 1 ora = p2 (The latter can be used to \cut o�" corners).We insert these values, e.g., into Equation 6 in order toobtain a threshold estimate. The e�ects of thresholdingare exempli�ed in Figures 3(c) to 3(h).Further insight into the properties of the residualfunctions may be gained by using 3D visualization tech-niques. In Figure 4, the values of the circularity residualare rendered as the height of each Voronoi edge. Theillustration is dominated by several high ridges runningalong the object, which can be interpreted as the mainskeleton or the main medial axis of the shape. Appar-ently, the circularity residual discriminates very well be-tween these portions of the skeleton, which are relatedto the general outline of the shape and those, whichstem from tiny details.

4 Endoskeletons & ExoskeletonsThe symbolic (1D) description of the boundaries re-sults in perfect symmetry between foreground and back-ground. Since the de�nition of the VMA does not referto an explicit distinction between foreground and back-ground, the skeletons of the foreground (endoskeletons)and of the background (exoskeletons) can be computedsimultaneously. Endoskeletons describe the topologyand metrics of an object, while exoskeletons depict ad-jacency relations between an object and its neighbors(see, e.g., Figure 6(d)). Thus the exoskeleton can be ex-ploited for operations such as grouping of objects, edgemap completion (gap closing), or path planning.5 The Skeleton PyramidAlbeit the pruning yields fairly stable skeletal rep-resentations, it does not solve a fundamental prob-lem of skeletonization as will be explained next. Ifskeletonization should be able to handle complex com-pound objects, complex scenes, or objects with a signif-icantly ragged boundary, a method to handle the stilllarge number of skeleton branches is mandatory. Abasic example of this problem is depicted in Figure 6,showing the silhouettes of three di�erent maple leaves.After computing their Voronoi diagrams and circular-ity residual values, simple thresholding with T = 3:0does not remove several branches, which appear to beless relevant to the general outline of the shape (Fig-ure 6(b). Increasing further the threshold will causethese branches to disappear eventually, although at thecost of all other branches being trimmed as well. Itshould be noted that neither the distance of the skeletonpoints from the boundary nor the length of a branch arereliable measures to decide whether a skeleton branch is4
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vertex vFigure 5: A Hierarchy Among the Skeleton Branches.an important or rather spurious element.In order to establish a topological hierarchy of theskeleton branches, the complete attributed VMA ispassed on to a skeleton traversal algorithm. In the se-quel, the VMA is split at the locations where it inter-sects with the contours into several endoskeletons andexoskeletons. Each (pruned) skeleton is attributed witha unique label, which in turn is propagated to all of itsedges. Simultaneously, the largest residual value �Rmaxand the corresponding edge is determined. Thereafter,the skeleton is traversed a second time according to thestrategy of least steep descent (Figure 5).Let us assume that the traversal algorithm has pro-ceeded up to edge e1. Next, the algorithm performs acounterclockwise rotation around vertex v. So the edgese2, e3, and e4 are visited in order and both their re-spective residual values at vertex v and their referencenumbers are inserted into the so-called residual table.Afterwards, the table is sorted in descending order withrespect to the residual values, so that the ordering ofthe edge references obeys the criterion of least steep de-scent. Instead of continuing the traversal according tothe originally counterclockwise orientation of the edges,the process is now controlled by the sequence of edge ref-erences in the table. Referring to the values in Figure 5,the traversal will continue in edge e4, then proceed toe2, and �nally to e3.Initially, the starting edge (with maximal residualvalue) is assigned a rank order value of 1. Let us assumethat this value has been propagated up to edge e1. Thenext edge being traversed, namely e4, obtains the iden-tical rank order value. For the subsequent edges e2 ande3, the behavior of the algorithm is controlled by twouser de�ned parameters. Without these additional con-trol mechanisms, the rank order would be incrementedby one for each subsequent edge. So edges e2 and e3would get assigned values of 2 and 3, respectively. Theset of all edges labeled with 1 would result in a singlechain without branching points. Henceforth, we denotethis subset of the whole skeleton as �rst order Voronoiskeleton. Generally, for all n > 1 a VSK of order n de-notes the union of Voronoi edges with label n and theVSK of order n� 1.

(a) (b)(c) (d)Figure 6: The Skeleton Pyramid: Two First Order VSKfor Di�erent Parameter Settings. (a) \maple leaves". (b)Voronoi skeletons, �RC , T = 3:0. The complex boundaryintroduces numerous rather irrelevant branches. The shadedarea (as in (c) and (d)) depicts the result of a vertex-basedreconstruction of the shape, namely by drawing the largestinscribed disk at each vertex of the VSK. (c) The �rst or-der VSK of \maple leaf" shapes. Parameters �H = 0:10,�C = 0:10. (d) First order VSK with �H = 0:02, �C = 0:10.Two new parameters are introduced to experimentwith the clustering behavior of the skeleton branches,which otherwise would have been assigned di�erent rankorder values. First, parameter TH denotes a trigger levelfor the build-up of the hierarchy. As long as the residualof an edge is greater than TH , a rank order value of 1is attached to it. It proved reasonable to adapt TH tothe individual residual maximum of each skeleton byde�ning TH = �Rmax�H . The second parameter �Ccontrols the granularity of clustering within a residualtable. A value of 0.1 for �C denotes that clusters of edgescharacterized by residual values within a ten percentinterval of relative deviation are assigned the same rankorder value. It is conceivable that better estimates for�H and �C can be derived by analyzing the distributionof the values of �R.The e�ect of hierarchical clustering, namely the re-liable segmentation of the skeleton into signi�cant andless signi�cant portions is depicted in Figure 6. Thesecond order skeleton is not shown, since it is basicallyequivalent to the skeleton in Figure 6(b).Notably, the outermost branches point at salient fea-tures on the boundary. Together with the complemen-tary skeleton of the background, this observation canbe employed to �nd a reliable simpli�ed approximationof the shape by primitive geometric curves. An objectrecognition algorithm could preprocess the skeleton in-put by sorting all branches, which do not belong to the5



(a) (b) (c) (d)Figure 7: Object Recognition. (a) Rigid objects. Left: gray-valued image of Christmas cookies. Right: thresholded image.(b) Result of the recognition. Circularity residual. (c) Flexible, overlapping objects: �RC , T = 2:0. (d) Result of subgraphmatching. The skeletal branches shown were successfully matched with a model skeleton.�rst order skeleton according to their individual max-imal residual values. The identi�cation process �rstanalyzes the �rst order VSK, which was obtained bynoncritical parameter settings and then proceeds by ex-amining the branches at lower hierarchical levels.6 Applications6.1 Separation of Abutting or OverlappingObjectsClusters of abutting or overlapping objects may beseparated into single objects without explicit objectidenti�cation. For simple geometric shapes, i.e., with-out characteristic narrowings, the presence of abuttingor overlapping neighbors results in typical bottlenecks,which connect both neighboring shapes. Such locationsmay be identi�ed as local minima of the disk radii alonga skeleton branch. An application of this type of isola-tion was done in [18]. It helped to avoid a combinatorialexplosion within an object recognition algorithm.6.2 Object RecognitionThe attributes of the VSK (disk radii, proximity in-formation, additional contour labels) constitute a goodfoundation for the recognition of both geometricallyrigid and exible objects. Three implementations [18]of increasing complexity have been tested on variousshapes. The fastest method only exploits the propertiesof the skeleton at branching points (nodes). A moresophisticated method considers the entire VMA (Fig-ures 7(a) and (b)). The relevance and stability of each ofits vertices is derived from their circularity residuals. In\critical" cases, the algorithm proceeds from the insidetowards the less stable parts (boundary) and ends up incontour matching. The most elaborate version performsa subgraph matching on skeleton branches (Figures 7(c)and (d)). Each branch is attributed with additionalglobal information like overall length, tendency of thechange of disk dimensions etc.. Missing parts withinthe object are replaced by so{called \joker"{branches.6.3 Extraction of Line GraphsImage understanding is largely based on line pat-terns. Vectorization is therefore an important process at

(a) (b) (c) (d)Figure 8: Graph Compilation. (a) Topologically non-deletable pixels of a line drawing. (b) Graph of (a). (c) Afterdeletion of extra edges. (d) The VSK adequately representsthe topology and metrics without additional postprocessing.early stages. It transforms the raster pixel strings into aline graph. The limitations of the raster line generatingalgorithms or the inherent resolution of the underlyinggrid often hinder the vectorization and require costlypostprocessing for structural simpli�cation (e.g., [19]).In contrast to the above, the (vector based) VSK di-rectly yields very appealing results (Figure 8).6.4 Interpretation of Road Maps(a) (b)Figure 9: Understanding of Road Maps. (a) Section from aroad map. (b) Corresponding �rst order VSK. The arrowspoint at skeleton branches that were used for the groupingof `dashed' and `para-dashed' lines.In map recognition a scene model can not be soclear-cut but stores rather general information pertain-ing to all maps of interest. As a consequence, percep-tual grouping is an essential activity during the transi-tion from domain-independent image primitives to morecompound entities (structured lines) representing di�er-ent road types. Figure 9 shows how the information con-tained in both the endo- and exoskeleton of a very smallportion of a map can be used e�ectively to assemble lin-early and/or laterally structured (curved) lines (parallellines of di�erent width, dashed and \parallel-dashed"lines) according to the drawing rules. The interpretationof entire road maps has been described elsewhere ([20]).6



Operation Data Complex. Computation Time\Cracks" 11104 points 0.96 s � 11600 points/sVD 11104 points 2.70 s � 4100 points/s31381 edges20303 vertices�RP " 1.14 s (� 27500 edges/s)�RC " 2.74 s (� 11400 edges/s)�RB " 2.89 s (� 10800 edges/s)�RH " 1.66 s (� 18900 edges/s)Skel. Pyr. �RC , T = 3:0 0.62 s (� 50600 edges/s)Table 1: Computation times on a SPARCstation-2 for the\buck" silhouettes of Figure 3 (512x512 image).7 Summary and OutlookThe drawbacks of conventional raster-based thinningalgorithms can be avoided by replacing the discretedistance map with the Voronoi diagram of boundarypoints. The introduction of residual functions allows toassign to each Voronoi edge a measure of prominenceand stability. The resulting skeletons are characterizedby true Euclidean metrics and correct topology. Fur-ther exploration of the properties of the residual func-tions leads to a hierarchical clustering of the skeletoncomponents, the skeleton pyramid. Consequently, it ispossible to extract a main medial axis, which representsthe most signi�cant features of the underlying shape.Further analysis of the skeleton may then turn its focustowards skeleton fragments at lower hierarchical levels.Therefore, our regularization methods and the skeletonpyramid establish a multi-resolution skeletal represen-tation of a shape. The most important advantage ofthis structure is that the selection of the skeleton per-taining to a speci�c resolution level boils down to merethresholding. This clearly sets it apart from other ap-proaches such as described in [10] and [8]. Voronoi skele-tons were already used in several applications as shownin Section 6.The performance �gures in Table 1 illustrate thatthe evaluation and intelligent handling of complex datastructures such as Voronoi skeletons is not necessarily atime consuming task.The notion of VSK has been already extended tononclosed object boundaries of arbitrary complexity.Therefore, it is possible to pass the (symbolic ratherthan pixel-oriented) output of an edge detector to theVSK apparatus. Moreover, the Voronoi skeletons areeminently suitable to derive a semantic description ofobjects and object relations. The ongoing research isdirected towards this goal and the results will be thetopics of following publications.References[1] H. Blum, \A transformation for extracting new descrip-tors of shape," in Models for the Perception of Speechand Visual Form (W. Wathen-Dunn, ed.), CambridgeMA: MIT Press, 1967.
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