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User-guided 3D active contour segmentation of anatomical structures:

Significantly improved efficiency and reliability
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Active contour segmentation and its robust implementation using level

set methods are well-established theoretical approaches that have been

studied thoroughly in the image analysis literature. Despite the

existence of these powerful segmentation methods, the needs of clinical

research continue to be fulfilled, to a large extent, using slice-by-slice

manual tracing. To bridge the gap between methodological advances

and clinical routine, we developed an open source application called

ITK-SNAP, which is intended to make level set segmentation easily

accessible to a wide range of users, including those with little or no

mathematical expertise. This paper describes the methods and software

engineering philosophy behind this new tool and provides the results of

validation experiments performed in the context of an ongoing child

autism neuroimaging study. The validation establishes SNAP intra-

rater and interrater reliability and overlap error statistics for the

caudate nucleus and finds that SNAP is a highly reliable and efficient

alternative to manual tracing. Analogous results for lateral ventricle

segmentation are provided.
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Introduction

Segmentation of anatomical structures in medical images is a

fundamental task in neuroimaging research. Segmentation is used

to measure the size and shape of brain structures, to guide spatial

normalization of anatomy between individuals and to plan medical

intervention. Segmentation serves as an essential element in a great

number of morphometry studies that test various hypotheses about
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the pathology and pathophysiology of neurological disorders. The

spectrum of available segmentation approaches is broad, ranging

from manual outlining of structures in 2D cross-sections to cutting-

edge methods that use deformable registration to find optimal

correspondences between 3D images and a labeled atlas (Haller et

al., 1997; Goldszal et al., 1998). Amid this spectrum lie

semiautomatic approaches that combine the efficiency and

repeatability of automatic segmentation with the sound judgement

that can only come from human expertise. One class of

semiautomatic methods formulates the problem of segmentation

in terms of active contour evolution (Zhu and Yuille, 1996;

Caselles et al., 1997; Sethian, 1999), where the human expert must

specify the initial contour, balance the various forces which act

upon it, as well as monitor the evolution.

Despite the fact that a large number of fully automatic and

semiautomatic segmentation methods has been described in the

literature, many brain research laboratories continue to use manual

delineation as the technique of choice for image segmentation.

Reluctance to embrace the fully automatic approach may be due to

the concerns about its insufficient reliability in cases where the

target anatomy may difference from the norm, as well as due to

high computational demands of the approach based on image

registration. However, the slow spread of semiautomatic segmen-

tation may simply be due to the lack of readily available simple

user interfaces. Semiautomatic methods require the user to specify

various parameters, whose values tend to make sense only in the

context of the method’s mathematical formulation. We suspect that

insufficient attention to developing tools that make parameter

selection intuitive has prevented semiautomatic methods from

replacing manual delineation as the tool of choice in the clinical

research environment.

ITK-SNAP is a software application that brings active contour

segmentation to the fingertips of clinical researchers. Our goals in

developing this tool were (1) to focus specifically on the problem

of segmenting anatomical structures, not allowing the kind of

feature creep which would make the tool’s learning curve

prohibitively steep; (2) to construct a friendly and well-docu-
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mented user interface that would break up the task of initialization

and parameter selection into a series of intuitive steps; (3) to

provide an integrated toolbox for manual postprocessing of

segmentation results; and (4) to make the tool freely accessible

and readily available through the open source mechanism. SNAP is

a product of over 6 years of development in academic and

corporate environments, and it is the largest end-user application

bundled with the Insight Toolkit (ITK), a popular library of image

analysis algorithms funded under the Visible Human Project by the

U.S. National Library of Medicine (Ibanez et al., 2003). SNAP is

available free of charge both as a stand-alone application that can

be installed and executed quickly and as source code that can be

used to derive new software.1

This paper provides a brief overview of the methods

implemented in SNAP and describes the tool’s core functionality.

However, the paper’s main focus is on the validation study, which

we performed in order to demonstrate that SNAP is a viable

alternative to manual segmentation. The validation was performed

in the context of caudate nucleus segmentation in an ongoing child

autism MRI study. Each caudate was segmented using both

methods in multiple subjects by multiple highly trained raters

and with multiple repetitions. The results of volume and overlap-

based reliability analysis indicate that SNAP segmentation is very

accurate, exceeding manual delineation in terms of efficiency and

repeatability. We also demonstrate high reliability of SNAP in

lateral ventricle segmentation.

The remainder of the paper is organized as follows. A short

overview of automatic image segmentation, as well as some

popular medical imaging tools that support it, is given in Section 2.

A brief summary of active contour segmentation and level set

methods appears in Section 3.1. Section 3.2 highlights the main

features of SNAP’s user interface and software architecture.

Validation in the context of caudate and ventricle segmentation is

presented in Section 4. Finally, Section 5 discusses the challenges

of developing open-source image processing software, notes the

limitations of SNAP segmentation, and brings up the need for

complimentary tools, which we plan to develop in the future.
Previous work

In many clinical laboratories, biomedical image segmentation

involves having a trained expert delineate the boundaries of

anatomical structures in consecutive slices of 3D images. Although

this approach puts the expert in full control of the segmentation, it

is time consuming as well as error-prone. In the absence of

feedback in 3D, contours traced in subsequent slices may become

mismatched, resulting in unnatural jagged edges that pose a

difficulty to applications such as shape analysis. Studies have

demonstrated a frequent occurrence of significant discrepancies

between the delineations produced by different experts as well as

between repeated attempts by a single expert. For instance, a

validation of caudate nucleus segmentation by Gurleyik and

Haacke (2002) reports the interrater reliability of 0.84. Other

studies report higher interrater reliability for the caudate, such as

0.86 in Naismith et al. (2002), 0.94 in Keshavan et al. (1998),

0.955 in Hokama et al. (1995), and 0.98 in Levitt et al. (2002). The

reliability of lateral ventricle segmentation tends to be high, with
1 SNAP binaries are available for download at www.itksnap.org; source

code is managed at www.itk.org.
Blatter et al. (1995), for example, reporting intraclass correlations

of 0.99.

On the other side of the segmentation spectrum lie fully

automated methods based on probabilistic models of image

intensity, atlas deformation, and statistical shape models. Intensi-

ty-based methods assign tissue classes to image voxels (Wells et

al., 1995; Alsabti et al., 1998; Van Leemput et al., 1999a,b) with

high accuracy, but they cannot identify the individual organs and

anatomical regions within each tissue class. Methods based on

elastic and fluid registration can identify anatomical structures in

the brain by deforming a labeled probabilistic brain atlas onto the

subject brain (Joshi and Miller, 2000; Avants et al., in press;

Davatzikos et al., 2001; Thirion, 1996). This type of registration

assumes one-to-one correspondence between subject anatomies,

which is not always the case, considering high variability in

cortical folding and potential presence of pathology. In full-brain

registration, small structures may be poorly aligned because they

contribute a small portion to the overall objective function

optimized by the registration. When augmented by expert-defined

landmarks, registration methods can achieve very high accuracy in

structures like the hippocampus (Haller et al., 1997), but without

effective low-cost software tools, they may lose their fully

automatic appeal. Methods based on registration are also very

computationally intensive, which may discourage their routine use

in the clinical environment. Yet another class of deformable

template segmentation methods uses a statistical model of shape

and intensity to identify individual anatomical structures (Cootes et

al., 1998; Joshi et al., 2002; Davies et al., 2002). The statistical

prior model allows these methods to identify structure boundaries

in absence of edges of intensity. However, shape priors must be

learned from training sets that require a significant independent

segmentation effort, which could benefit from a tool like SNAP.

In the field of biomedical image analysis software, SNAP

stands out as a full-featured tool that is specifically devoted to

segmentation. A number of other software packages provide semi-

automatic segmentation capability, but these packages tend to be

either very broad or very specific in the scope of functionality that

they provide. For instance, large-scale packages such as Mayo

Analyze (Robb and Hanson, 1995) and the open-source 3D Slicer

(Gering et al., 2001) include 3D active contour segmentation

modules, and the NIH MIPAV tool (McAuliffe et al., 2001)

provides in-slice active contour segmentation. These tools carry a

steep learning curve, due to the large number of features that they

provide. More specific tools include GIST (Lefohn et al., 2003),

which has a very fast level set implementation but a limited user

interface. In contrast, SNAP is both easy to learn, since it is

streamlined towards one specific task, and powerful, including a

full set of complimentary editing tools and a user interface that

provides live feedback mechanisms intended to make parameter

selection easier for non-expert users.
Materials and methods

Active contour evolution

SNAP implements two well-known 3D active contour segmen-

tation methods: Geodesic Active Contours by Caselles et al. (1993,

1997) and Region Competition by Zhu and Yuille (1996). In both

methods, the evolving estimate of the structure of interest is

represented by one or more contours. An evolving contour is a

http:www.itksnap.org
http:www.itk.org.
http:www.itksnap.org
http:www.itk.org.
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closed surface C(u, v; t) parameterized by variables u, v and by the

time variable t. The contour evolves according to the following

partial differential equation (PDE):

B

Bt
C t;u;vð Þ ¼ F N

!
; ð1Þ

N
!

is the unit normal to the contour, and F represents the sum of

various forces that act on the contour in the normal direction. These

forces are characterized as internal and external: internal forces are

derived from the contour’s geometry and are used to impose

regularity constraints on the shape of the contour, while external

forces incorporate information from the image being segmented.

Active contour methods differ in the way they define internal and

external forces. Caselles et al. (1997) derive the external force from

the gradient magnitude of image intensity, while Zhu and Yuille

(1996) base it on voxel probability maps. Mean curvature of C is

used to define the internal force in both methods.

In the Caselles et al. method, the force acting on the contour has

the form

F ¼ agI þ bjgI þ c 3gI IN
!� �

; ð2Þ

where gI is the speed function derived from the gradient magnitude

of the input image I, j is the mean curvature of the contour, and a,
b, c are weights that modulate the relative contribution of the three

components of F. The speed function must take values close to 0 at

edges of intensity in the input image, while taking values close to 1

in regions where intensity is nearly constant. In SNAP, the speed

function is defined as follows:

gI xð Þ ¼ 1

1þ NGMI xð Þ=mð Þk

NGMI xð Þ ¼ �3 Gr4Ið Þ�
maxI �3 Gr4Ið Þ� ð3Þ

where NGMI is the normalized gradient magnitude of I; Gr*I

denotes convolution of I with the isotropic Gaussian kernel with
Fig. 1. An illustration of the parameters j and k that determine the shape of the fu

range [0, 1]. The top row shows the shapes of the mapping function under differe

images.
aperture r; and r and k are user-supplied parameters that

determine the shape of the monotonic mapping between the

normalized gradient magnitude and the speed function, illustrat-

ed in Fig. 1. Note that since the speed function is non-negative,

the first term in (2) acts in the outward direction, causing the

contour to expand. This outward external force is counter-

balanced by the so-called advection force c (3gI IN
Y
), which acts

inwards when the contour approaches an edge of intensity to

which it is locally parallel. An illustration of Caselles et al.

(1997) evolution in 2D with and without the advection force, is

given in Fig. 2.

Zhu and Yuille (1996) compute the external force by estimating

the probability that a voxel belongs to the structure of interest and

the probability that it belongs to the background at each voxel in

the input image. In SNAP, these probabilities are estimated using

fuzzy thresholds, as illustrated in Fig. 3. Alternatively, SNAP users

can import tissue probability maps generated by atlas-based and

histogram-based tissue class segmentation programs. In the SNAP

implementation, the external force is proportional to the difference

of object and background probabilities, and the total force is given

by

F ¼ a Pobj � Pbg

� �
þ bj: ð4Þ

This is a slight deviation from Zhu and Yuille (1996), who

compute the external force by taking the difference between

logarithms of the two probabilities. An example of contour

evolution using region competition is shown in Fig. 4. Region

competition is more appropriate when the structure of interest

has a well-defined intensity range with respect to the image

background. In contrast, the Caselles et al. (1997) method is

well suited for structures bounded by strong image intensity

edges.

Active contour methods typically solve the contour evolution

equation using the level set method (Osher and Sethian, 1988;

Sethian, 1999). This approach ensures numerical stability and

allows the contour to change topology. The contour is represented
nction g that inversely maps the values of image gradient magnitude to the

nt values of the parameters, and the bottom row shows the resulting feature



Fig. 2. Examples of edge-based contour evolution before (top) and after (bottom) adding the advection term. Without advection, the contour leaks past the

boundaries of the caudate nucleus because the external force is non-negative.
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as the zeroth level set of some function f, which is defined at every

voxel in the input image. The relationship N
!

¼ 3/=�3/� is

used to rewrite the PDE (1) as a PDE in /:

B

Bt
/ x;tð Þ ¼ F3/: ð5Þ

Typically, such equations are not solved over the entire domain

of / but only at the set of voxels close to the contour / = 0. SNAP

uses the highly efficient Extreme Narrow Banding Method by

Whitaker (1998) to solve (5).

Software architecture

This section describes SNAP functionality and highlights some

of the more innovative elements of its user interface architecture.

SNAP was designed to provide a tight but complete set of features

that focus on active contour segmentation. It includes tools for

viewing and navigating 3D images, manual labeling of regions of

interest, combining multiple segmentation results, and postprocess-

ing them in 2D and 3D. Built on the ITK backbone, SNAP can

read and write many image formats, and new features can be added

easily.
Fig. 3. The plot on the left gives an example of three smooth threshold functions wi

the input grayscale image and the feature images corresponding to the three thres
Image navigation and manual segmentation

SNAP’s user interface emphasizes the 3D nature of medical

images. As shown in Fig. 5a, the main window is divided into four

panels, three displaying orthogonal cross-sections of the input

image and the fourth displaying a 3D view of the segmented

structures. Navigation is aided by a linked 3D cursor whose logical

location is at the point where the three orthogonal planes intersect.

The cursor can be repositioned in each slice view by mouse

motion, causing different slices to be shown in the remaining two

slice views. The cursor can also be moved out of the slice plane

using the mouse wheel. This design ensures that the user is always

presented with the maximum amount of detail about the voxel

under the cursor and its neighborhood while minimizing the

amount of mouse motion needed to navigate through the image.

Users can change the zoom in each slice view, and each of the slice

views can be expanded to occupy the entire program window, as

illustrated in Fig. 5b.

SNAP provides tools for manual tracing of regions of interest.

Internally, SNAP represents labeled regions using an integer-

valued 3D mask image of the same dimensions as the input image.

Each voxel in the input image can be assigned a single label or no

label at all. This approach has the disadvantage that partial volume

segmentations cannot be represented, but it allows users to view
th different values of the smoothness parameter j. To the right of the plot are
holds.



Fig. 4. Active contour evolution using the feature image based on region competition. The propagation force acts outwards over the Fforeground_ region (red)

and inwards over the Fbackground_ region (blue), causing the active contour to reach equilibrium at the boundary of the regions. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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and edit regions simultaneously in the three slice views and in the

3D view. To define a region, the user makes a series of clicks,

forming a closed contour, which can then be edited by moving,

inserting and removing vertices. When integrating the contour with

the 3D mask, the user assigns a label to the contour and can choose

to apply the update only to a subset of the labels that are already

present in the mask, e.g., applying only to unlabeled voxels or to

voxels with another label. The manual delineation mode can be

used both to initialize automatic segmentation and to postprocess

the results.

The 3D view is used to render the boundaries of segmented

structures that are computed using the contour extraction,

decimation, and fairing algorithms in the Visualization Toolkit

(VTK) (Lorensen and Cline, 1987; Schroeder et al., 1996). The

user can reposition the 3D cursor by clicking on one of these

surfaces. An arbitrary cut-plane can be defined in the 3D window,

and labels on one side of the cut-plane can be replaced with another

label. The cut-plane tool makes it easy to divide segmentation into

regions and to cut away extraneous tissue from a result that

includes voxels outside of the structure of interest. A sequence of

cut-plane operations can be used to perform complex editing

operations in 3D, as illustrated in Fig. 6, where an automatic

segmentation result is partitioned into the lateral ventricles and the

third ventricle.
Fig. 5. (a) SNAP user interface shows three orthogonal views of a volumetric imag

to view the segmented structures in three dimensions. (b) Alternatively, SNAP can

high resolution images. (For interpretation of the references to colour in this figu
Other notable features of SNAP include the image input wizard,

which allows users to read a number of recognized image file

formats, includes specialized dialogs for DICOM series and raw

data, and provides a graphical user interface for specifying the

mapping between image and anatomical coordinate systems. Once

an image has been loaded using this wizard, the settings associated

with the image are stored so that in the future it can be loaded

without user interaction. SNAP offers linear and spline-based

intensity windowing. SNAP is highly customizable, allowing users

to reconfigure the arrangement and orientation of the slice views,

choosing between radiological and neurological conventions; the

users can change the appearance of various display elements in

order to make them more or less prominent for presentation

purposes.

Automatic segmentation workflow

The outcome of active contour segmentation depends on a

number of parameters, including the choice of method, the way in

which the input image is converted into a probability map or speed

function, the initial contour, and the weights assigned to various

internal and external forces that drive contour evolution. Even for

users familiar with level sets, finding the right set of parameters can

be difficult. To simplify this task, SNAP organizes parameter

specification into a wizard-like workflow and relies extensively on
e, linked by a common cursor (light blue crosshairs). A fourth panel is used

be focused on a single slice, and zoom facilities are provided for segmenting

re legend, the reader is referred to the web version of this article.)



Fig. 6. An example of using cut-plane operations to relabel a segmentation into three components (left lateral ventricle, right lateral ventricle and third

ventricle).
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live feedback mechanisms. The workflow is divided into three

logical stages.

In the first stage, the user chooses between Zhu and Yuille

(1996) and Caselles et al. (1997) methods and, depending on

the method chosen, computes the probability map Pobj � Pbg or

the speed function gI. Probability maps are computed, as shown

in Fig. 7a, by applying a smooth threshold, which can be one-

sided or two-sided, depending on whether the intensity range of

the structure of interest lies at one of the ends or in the middle

of the histogram. Taking advantage of the flexible ITK

architecture that can apply image processing filters to arbitrary

image subregions, the orthogonal slice views in SNAP provide

immediate feedback in response to changes in parameter values.

Alternatively, the user may import an external image, such as a

tissue class segmentation, as the probability map or speed

image.

In the second stage, the user initializes the segmentation by

placing one or more spherical Fseeds_ in the image (Fig. 7b). The

user can also initialize the active contour with a result of an earlier

manual or automatic segmentation. Level set methods allow

contours to change topology, and it is common to place several

seeds within one structure, letting them merge into a single contour

over the course of evolution.

The last stage of the segmentation workflow is devoted to

specifying the weights of the various terms in the active contour

evolution PDE and running the evolution interactively. In order

to accommodate a wider range of users, SNAP provides two

separate modes for choosing weights. In the casual user mode,

weights a, b, and c from the active contour equations are
Fig. 7. (a) User interface for feature image specification: the user is setting the valu

the orthogonal slice views using a color map. (b) User interface for active conto

nucleus. (For interpretation of the references to colour in this figure legend, the r
described verbally in terms of their impact on the behavior of

the evolving contour, accompanied by an interactive, dynami-

cally updated 2D curve evolution illustration that shows the

effect of each of the parameters on the total force acting on the

interface (Fig. 8). The other mode is for users familiar with the

mathematics of active contours and allows them to specify the

weights in a generic evolution formulation that incorporates

both (2) and (4):

F ¼ aha � bhbj � chc 3hIN
Y

� �
: ð6Þ

By setting h = gI, a = 1, b = 1, c = 0, the user arrives at the

Caselles et al. (1997) formulation, and with h = Pobj � Pbg, a = 1,

b = 0, c = 0, the Zhu and Yuille (1996) formulation is obtained.

Formulation (6) corresponds to SNAP’s internal representation of

the evolution equation.

The actual contour evolution is controlled by a VCR-like

interface. When the user clicks the Fplay_ button, the contour

begins to evolve, and the slice views and, optionally, the 3D

view is updated after each iteration. The user can use Fstop_,
Frewind_, and Fsingle step_ buttons to control and terminate

contour evolution. Fig. 9 shows SNAP before and after contour

evolution.

Before entering the automatic segmentation mode, the user

may choose to restrict segmentation to a 3D region of interest

in order to reduce computational cost and memory use. An

option to resample the region of interest using nearest neighbor,

linear, cubic, or windowed sinc interpolation is provided; this is
es of the smooth threshold parameters, and the feature image is displayed in

ur initialization: the user has placed two spherical bubbles in the caudate

eader is referred to the web version of this article.)



Fig. 8. User interface for specifying contour evolution parameters, including the relative weights of the forces acting on the contour. The intuitive interface is

shown on the left and the mathematical interface on the right. The parameter specification window also shows how the forces interrelate in a two-dimensional

example.
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recommended for images with anisotropic voxels. When

returning from automatic mode to the manual mode, SNAP

converts the level set segmentation result to a binary mask and

merges it with the 3D mask image. In the process, the subvoxel

accuracy of the segmentation is compromised. Before merging,

the user has the option to export the segmentation as a real-

valued image.
Results

The new SNAP tool, with its combination of user-guided 3D

active contour segmentation and postprocessing via manual tracing

in orthogonal slices or using the 3D cut-plane tool, is increasingly

replacing conventional 2D slice editing for a variety of image

segmentation tasks. SNAP is used in several large neuroimaging

studies at UNC Chapel Hill, Duke University, and the University of

Pennsylvania. Segmentation either uses the soft threshold option

for the definition of foreground and background, e.g., for the

segmentation of the caudate nucleus in head MRI, or employs

existing tissue probability maps that define object to background

probabilities. This option is used for the segmentation of ventricles

based on cerebrospinal fluid probabilistic segmentations.
Fig. 9. The user interface for contour evolution. The image on the left shows SNAP

runs for a few seconds. In this example, an edge based feature image is used.
An ongoing child neuroimaging autism study serves as a

testbed for validation of the new tool as a prerequisite to its use in a

large clinical study. In particular, we chose the segmentation of the

caudate nucleus to establish intrarater and interrater reliability of

applying SNAP and also to test validity in comparison to manual

rater segmentation. The following sections describe validation of

SNAP versus manual rater contour drawing in more details. In

addition, we provide reliability results for the lateral ventricle

segmentation in SNAP but without a comparison to manual

segmentation.
Validation of SNAP: caudate segmentation

From our partnership with the UNC Psychiatry department, we

have access to a morphologic MRI study with a large set of autistic

children (N = 56), developmentally delayed subjects (N = 11), and

control subjects (N = 17), scanned at age 2. SNAP was chosen as

an efficient and reliable tool to segment the caudate nucleus from

high-resolution MRI. Before replacing conventional manual out-

lining by this new tool, we designed a validation study to test the

difference between methods, the difference between operators, and

the variability for each user.
before evolution is run, and the image on the right is taken after the contour



Fig. 10. Two and three-dimensional views of the caudate nucleus. Coronal slice of the caudate: original T1-weighted MRI (left) and overlay of segmented

structures (middle). Right and left caudate are shown shaded in green and red; left and right putamen are sketched in yellow, laterally exterior to the caudates.

The nucleus accumbens is sketched in red outline. Note the lack of contrast at the boundary between the caudate and the nucleus accumbens, and the fine-scale

cell bridges between the caudate and the putamen. At right is a 3D view of the caudate and putamen relative to the lateral ventricles. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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Gray-level MRI data

Caudate segmentation uses high-resolution T1-weighted MRI

with voxel size 0.78 � 0.78 � 1.5 mm3. The protocol established

by the UNC autism image analysis group rigidly aligns these

images to the Talairach coordinate space by specifying anterior and

posterior commissure (AC–PC) and the interhemispheric plane.

The transformation also interpolates the images to the isotropic

voxel size of 1 mm3. Automatic atlas-based tissue segmentation

using EMS (Van Leemput et al., 1999a,b) results in a hard

segmentation and separate probability maps for white matter, gray

matter, and cerebrospinal fluid. These three-tissue maps are used

for SNAP ventricle segmentation, but not for the caudate nucleus,

because in some subjects, the intensity distribution of the

subcortical gray matter is different from the cortex.

Reliability series and validation

Five MRI datasets were arbitrarily chosen from the whole set of

100+ images. Data were replicated three times and blinded to form

a validation database of 15 images. Three highly trained raters
Table 1

Caudate volumes (in mm3) from the validation study comparing SNAP

reliability to manual segmentation

Case Right caudate volumes Left caudate volumes

SNAP Manual SNAP Manual

Rater

A B A C A B A C

gr1a 3720 3738 3690 3724 3734 3781 3621 3529

gr1b 3713 3780 3631 3551 3715 3826 3552 3482

gr1c 3790 3786 3735 3749 3758 3790 3521 3510

Mean (gr1) 3741 3768 3685 3675 3735 3799 3565 3507

gr2a 4290 4353 4267 4120 4087 4141 4137 4262

gr2b 4229 4247 4254 4164 4083 4103 4189 4179

gr2c 4233 4232 4303 4253 4025 4143 4168 4149

Mean (gr2) 4251 4277 4275 4179 4065 4129 4165 4196

gr3a 4211 4250 4263 4397 4590 4495 4416 4482

gr3b 4289 4155 4221 4149 4562 4506 4444 4417

gr3c 4264 4257 4354 4174 4416 4583 4323 4332

Mean (gr3) 4255 4221 4279 4240 4523 4528 4394 4410

gr4a 4091 4105 4063 4122 3967 4129 4006 4066

gr4b 4151 4150 4144 4116 4058 4135 3934 4029

gr4c 4081 4149 4103 4037 4081 4141 4001 3995

Mean (gr4) 4108 4134 4103 4092 4036 4135 3980 4030

gr5a 4112 4197 4167 4125 4355 4295 4278 4321

gr5b 4165 4226 4143 4039 4326 4273 4253 4317

gr5c 4191 4237 4089 4226 4311 4288 4127 4087

Mean (gr5) 4156 4220 4133 4130 4330 4285 4219 4242
participated in the validation study; rater A segmented each image

manually and in SNAP, while rater B only used SNAP and rater C

only performed manual segmentation. Segmentation results be-

tween pairs of raters or methods were analyzed using common

intraclass correlation statistics (ICC) as well as using overlap

statistics.

Caudate nucleus segmentation

At first sight, the caudate seems easy to segment since the

largest fraction of its boundary is adjacent to the lateral ventricles

and white matter. Portions of the caudate boundary can be localized

with standard edge detection. However, the caudate is also adjacent

to the nucleus accumbens and the putamen where there are no

visible boundaries in MRI (see Fig. 10). The caudate, nucleus

accumbens, and putamen are distinguishable on histological slides,

but not on T1-weighted MRI of this resolution. Another ‘‘trouble-

spot’’ for the caudate is where it borders the putamen; there are

‘‘fingers’’ of cell bridges adjacent to blood vessels which span the

gap between the two.

Manual boundary drawing

Using the drawing tools in SNAP, we have developed a highly

reliable protocol for manual caudate segmentation using slice-by-

slice boundary drawing in all three orthogonal views. In addition to

boundary overlays, the segmentation is supported by a 3D display

of the segmented structure. The coupling of cursors between 2D

slices and the 3D display help significantly reduce slice-by-slice

jitter that is often seen in this type of segmentations. Segmentation
Table 2

Intrarater and interrater reliability of caudate segmentation

Validation type Side Intra A Intra B Intra AB Inter AB

Intra-/interrater manual

(A Manual, B Manual)

Right 0.963 0.845 0.902 0.916

Left 0.970 0.954 0.961 0.967

Manual vs. SNAP

(A Manual, B SNAP)

Right 0.963 0.967 0.964 0.967

Left 0.970 0.969 0.969 0.907

Intra-/interrater SNAP

(A SNAP, B SNAP)

Right 0.967 0.958 0.962 0.958

Left 0.969 0.990 0.978 0.961

Reliability was measured based on 3 replications of 5 test datasets by two

raters. Reliability values for (1) manual segmentation by two experts; (2)

manual vs. SNAP segmentation by the same expert; and (3) SNAP

segmentation by two experts show the excellent reliability of both methods

and the excellent agreement between manual expert’s segmentation and

SNAP. SNAP reduced segmentation time from 1.5 h to 30 min, while the

training period to establish reliability was several months for the manual

method and significantly shorter for SNAP.



Table 3

Overlap statistics between pairs of caudate segmentations, categorized by

different methods and raters

Category lLeft rLeft lRight rRight n

1. SNAP A vs. SNAP A 97.5 0.836 97.7 0.598 15

2. SNAP B vs. SNAP B 98.8 0.291 98.7 0.679 15

3. SNAP intrarater average 98.1 0.931 98.2 0.823 30

4. SNAP A vs. SNAP B 97.3 0.810 97.5 0.686 45

5. Manual A vs. Manual A 94.0 0.802 94.2 0.617 15

6. Manual C vs. Manual C 93.4 0.568 93.1 0.504 15

7. Manual intrarater average 93.7 0.752 93.6 0.783 30

8. Manual A vs. Manual C 92.5 0.913 91.9 0.697 45

9. SNAP A vs. Manual A 92.2 0.991 92.6 0.515 45

10. SNAP A vs. Manual C 91.3 0.602 91.0 0.893 45

11. SNAP B vs. Manual A 91.9 1.11 92.5 0.421 45

12. SNAP B vs. Manual C 91.2 0.635 91.1 0.733 45

13. SNAP vs. Manual

interrater average

91.5 0.860 91.5 0.999 135

Letters A, B, and C refer to individual raters. Overlap values are given in

percent, i.e., overlap (S1, S2) = 100%*DSC (S1, S2). The number of pairs in

each category is given in the last column (n).
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time for left and right caudate is approximately 1.5 h for

experienced experts.

3D active contour segmentation

We developed a new segmentation protocol for caudate

segmentation based on the T1 gray level images with emphasis

on efficiency and optimal reliability. The caudate nucleus is a

subcortical gray matter structure. T1 intensity values of the

caudate regions in the infant MRI showed significant differences

among subjects and required individual adjustment. We place

sample regions in four axial slices of the caudate, measure the

intensity and standard deviation of the sample regions, then use

those values to guide the setting of the upper and lower

thresholds in the preprocessing step of SNAP. This results in

foreground/background maps which guide the level set evolu-

tion. Parameters for smoothness and speed were trained in a

pilot study and were kept constant for the whole study. The

same regions were used as initialization regions. Evolution was

stopped after the caudate started to bleed into the adjacent

putamen. Optimal intensity window selection and active contour

evolution take only about 5 min for the left and right caudate.

In some caudate segmentation protocols, the inferior boundary
Fig. 11. Box and whisker plots showing order statistics (minimum, 25% quantile, m

of the caudate nucleus. The horizontal axis represents 13 different categories of pa

Dice Similarity Coefficient (DCS). Columns 1–4 are SNAP-to-SNAP comparison

mixed-method comparisons. Orange boxes represent intrarater comparisons for spe

raters; light blue boxes are interrater comparisons for specific pairs of raters; and d

(For interpretation of the references to colour in this figure legend, the reader is
is cut off by the selection of an axial cut plane, which only

takes a few additional seconds using the cut-plane feature in

SNAP. In our autism project, we decided to add a precise

separation from the putamen and a masking of the left and right

nucleus accumbens. This is a purely manual operation since

there are no visible boundaries between caudate and nucleus

accumbens in the MR image. This step added another 30 min

to the whole process. The total segmentation time was reduced

from originally 1.5 h for slice-by-slice contour drawing to 35

min, with the option to be reduced to only 5 min if simple cut-

planes for inferior boundaries would be sufficient for the given

task, which is similar to the protocol applied by Levitt et al.

(2002). The raters also reported that they felt much more

comfortable with the SNAP tool since they could focus their

effort on a small part of the boundary that is most difficult to

trace.

Volumetric analysis

Table 1 lists the left and right caudate volumes for manual

segmentation (slice by slice contouring) and user-assisted 3D

active contour segmentation (SNAP). Results of the reliability

analysis using one-way random effects intraclass correlation

statistics (Shrout and Fleiss, 1979) are shown in Table 2.

The table shows not only the excellent reliability of SNAP

segmentation but also reflects the excellent reliability of the

manual experts trained over several months. Therefore, reliabil-

ity between methods is not significantly different. On the basis

of volume comparisons, the SNAP segmentation, which requires

much less training and is significantly more efficient, is shown

equivalent to the manual expert, both with respect to intra-

method reliability and intermethod validity. However, this is to

be compared with the significantly reduced segmentation time

and short rater training time of SNAP.

Overlap analysis

In addition to volume-based reliability analysis, we compare

SNAP and manual methods in terms of overlap between different

segmentations of each instance of the caudate. Overlap is a more

accurate measure of agreement between two segmentations than

volume difference because the latter may be zero for two

completely different segmentations. For every subject–caudate

combination, we measure the overlap between all ordered pairs of

available segmentations. There are 10 structures (5 subjects, left

and right), and for each structure, there are 12 different
edian, 75% quantile, maximum) of overlaps between pairs of segmentations

irwise comparisons that are listed in Table 3, and the vertical axis plots the

s, columns 5–8 are manual-to-manual comparisons, and columns 9–13 are

cific raters; red boxes stand for intrarater comparisons pooled over available

ark blue boxes are interrater comparisons pooled over available rater pairs.

referred to the web version of this article.)



Table 5

Ventricle volumes (in mm3) from the SNAP reliability experiment

Case Left Right Case Left Right

A B A B A B A B

gr1a 2935 2942 3375 3389 gr4a 1605 1581 1719 1752

gr1b 2954 2953 3363 3404 gr4b 1578 1605 1719 1725

gr1c 2955 2936 3380 3386 gr4c 1606 1607 1719 1725

Mean

(gr1)

2948 2944 3373 3393 Mean (gr4) 1596 1598 1719 1734

gr2a 5565 5572 6833 6824 gr5a 3687 3562 7776 7436

gr2b 5561 5579 6825 6830 gr5b 4178 3511 7725 7541

gr2c 5564 5577 6830 6824 gr5c 3871 3561 7758 7389

Mean

(gr2)

5563 5576 6829 6826 Mean (gr5) 3912 3544 7753 7455

gr3a 2775 2781 6778 6963

gr3b 2682 2780 7307 6971

gr3c 2734 2772 7217 6982

Mean

(gr3)

2730 2778 7101 6972

Five test cases, replicated three times (column one) have been segmented by

two raters (A, B), who were blinded to the cases.
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segmentations (2 raters, 2 methods, 3 repetitions) and
12

2

� �
¼

6 ordered pairs. For each pair, we count the number 2 of voxels in

the input image that belong to both segmentations. Following the

statistical approach described in (Zou et al., 2004), we define the

overlap between segmentations S
1
and S

2
as the Dice Similarity

Coefficient (DSC):

DSC S1; S1ð Þ ¼ 2Vol S17S2ð Þ
Vol S1ð Þ þ Vol S2ð Þ : ð7Þ

This symmetric measure of segmentation agreement lies in the

range [0, 1], with larger values indicating greater overlap.

Table 3 lists means and standard deviations of the overlaps for

the left and right caudate within 13 different categories of

comparisons. These categories fall into three larger classes:

SNAP-to-SNAP comparisons (i.e., pairs where both segmentations

were generated with SNAP), manual-to-manual comparisons, and

mixed SNAP-to-manual comparisons. Within each class, categories

include (1) all pairs where both segmentations were performed by a

given rater, (2) all pairs where both segmentations were performed

by the same rater, and (3) all pairs where segmentations were

performed by different raters. Fig. 11 displays box and whisker plots

of the same 13 categories. It is immediately noticeable that the

comparisons in the SNAP-to-SNAP group yield significantly better

overlaps than other types of comparisons; in fact, the worst overlap

between any pair of SNAP segmentations is still better than the best

overlap between any pair of manual segmentations or any pair where

both methods are used. This indicates that SNAP caudate

segmentation exhibits significantly better repeatability than manual

segmentation.

To confirm this finding quantitatively, we perform an ANOVA

experiment adopted from Zou et al. (2004), who studied repeatabil-

ity in the context of pre- and postoperative prostate segmentation.

Variance components in the ANOVA model include the method

(M Z {SNAP, Manual}), case (i.e., subject; C Z {1, 2, 3, 4, 5}),

anatomy A Z {l. caudate, r. caudate}, and repetition pair P Z {(a,

b), (b, c), (a, c)}, i.e., one of the three possible ordered pairs of

segmentations performed by a given rater in a given case on a given

structure (symbols a, b, c correspond to the order in which the rater

performed the segmentations). Zou et al. (2004) pools the model

over all raters, but in our case, since only rater A performed

segmentation using both methods, we just include segmentations by

rater A in the model. Following Zou et al. (2004), the model

includes two interaction terms:M � S and C � S, and the outcome
Table 4

Results of ANOVA experiment to determine whether segmentation

repeatability measured in terms of overlap varies according to method

(M), rater (R), case (C), anatomical structure (A) or the pair of

segmentations involved in the overlap computation ( P)

Variance

components

D.o.F. Sum

square

Mean

square

F statistics P value

Method (M) 1 13.886 13.886 220.639 –

Segmentation

pair ( P)

2 0.027 0.013 0.214 0.808

Case (C) 4 0.759 0.190 3.015 0.029

Anatomical

structure (A)

1 0.033 0.033 0.520 0.475

M � P 2 0.117 0.059 0.931 0.402

C � P 8 0.167 0.021 0.337 0.947

Residuals 41 2.580 0.063 – –
variable is derived by standardizing the DSC using the logit

transform:

LDSC S1; S2ð Þ ¼ ln
DSC S1; S2ð Þ

1� DSC S1; S2ð Þ

��
ð8Þ

Our ANOVA results are listed in Table 4. We conclude that

SNAP segmentations are significantly more reproducible than

manual segmentation (F = 1066, P b 0.001). We observe a

significant effect of case on repeatability (F = 5.176, P = 0.001),

implying that reproducibility varies by subject. There is no evidence

to support the hypothesis that repeatability improves with training,

as the choice of repetition pair has no significant effect on the

overlap (P = 0.287). We also do not find a significant difference in

repeatability between left and right caudates. A limitation of the

above analysis is that segmentations from only one rater are included

in the ANOVA. The other two raters could not be included because

rater B used SNAP for all caudate segmentations, and all

segmentations by rater C were manual. A stronger case could have

been made if each of these raters had used both methods, allowing us

to treat rater as a random effect. However, visual analysis of box

plots in Fig. 11 suggests that while repeatability varies by rater

within each method, this difference is smaller than the overall

difference in repeatability between the methods.

Lateral ventricle segmentation

Unlike the caudate, which has a simple shape but lacks clearly

defined MRI intensity boundaries, the lateral ventricles are complex

geometrically yet have an easily identifiable boundary. To demon-

strate the breadth of SNAP segmentation, we present the results of a
Table 6

Intrarater and interrater reliability of lateral ventricle segmentation in SNAP

Validation type Side Intra A Intra B Intra AB Inter AB

Intra-/interrater SNAP Right 0.9942 0.9999 0.9970 0.9917

(A SNAP, B SNAP) Left 0.9977 0.9998 0.9987 0.9976

Reliability was measured based on 3 replications of 5 test datasets by two

raters.



Table 7

Overlap statistics for left and right lateral ventricle segmentations

Category lLeft sLeft lRight sRight n

1. SNAP A vs. SNAP A 99.5 0.481 99.5 0.482 15

2. SNAP B vs. SNAP B 99.0 1.16 98.6 1.69 15

3. SNAP intrarater average 99.3 0.898 99.1 1.31 30

4. SNAP A vs. SNAP B 98.9 0.914 98.3 2.20 45

Overlap values are given as percentages, i.e., overlap (S1, S2) = 100%*DSC

(S1, S2).
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repeatability experiment for lateral ventricle segmentation. As for

the caudate, we randomly selected five MRI images from the child

autism database and applied our standard image processing pipeline,

including tissue class segmentation using EMS. Our ventricle

segmentation protocol involves placing three initialization seeds in

each ventricle and running the active contour segmentation until

there is no more expansion into the horns. Afterwards, the 3D cut-

plane tool is used to separate the left ventricle from the right. In some

cases, active contour segmentation will bleed into the third ventricle,

which can be corrected using the cut-plane tool or by slice-by-slice

editing. If the ventricles are very narrow, the evolving interface may

not reach the inferior horns, and there also are rare cases where parts

of the ventricles are so narrow that they are misclassified by EMS.

These problems are corrected by postprocessing, which involves

reapplying active contour segmentation to the trouble regions or

correcting the segmentation manually. Nevertheless, the approxi-

mate average time to segment a pair of lateral ventricles is 15 min,

including initialization, running the automatic pipeline, reviewing,

and editing.

Using SNAP, each of the five selected images was segmented

three times by two blinded raters; in contrast to caudate validation,

manual segmentation was not performed. The volumes of the

ventricle segmentations are listed in Table 5, and the volume-based

reliability statistics are given in Table 6. SNAP interrater reliability

coefficients exceed 0.99 for both ventricles, matching the reliability

of manual segmentation, as reported by Blatter et al. (1995).

Overlap statistics are summarized in Table 7 and Fig. 12. Despite

the ventricles’ complex shape, the average DSC values (0.989 for

the left ventricle and 0.983 for the right) are higher than for caudate

segmentation.
Discussion

The caudate segmentation validation, which compares the

SNAP tool to manual segmentation by highly trained raters,

demonstrates the excellent reliability of the tool for efficient three-
Fig. 12. Box and whisker plots of overlaps between pairs of segmentations

comparisons; columns 1 and 2 represent intrarater comparisons for specific raters; c

4 shows interrater comparisons.
dimensional segmentation. While the volume-based reliability

analysis shows a similar range of intramethod reliability for both

segmentation approaches, overlap analysis reveals that SNAP

segmentation exhibits significantly improved repeatability. SNAP

cut the segmentation time by a factor of three and also significantly

reduced the training time to establish expert reliability. Besides

repeatability and efficiency, our experts preferred using SNAP over

slice contouring due to the tool’s capability to display 3D

segmentations in real time and due to the simple option to

postprocess the automated segmentation using 3D tools.

In addition to brain structure extraction in MRI, SNAP has

found a variety of uses in other imaging modalities and anatomical

regions. For example, in radiation oncology applications, SNAP

has proven useful for segmenting the liver, kidneys, bony

structures, and tumors in thin-slice computer tomography (CT)

images. In emphysema research involving humans and mice,

SNAP has been used to extract lung cavities in CT, as well as

pulmonary vasculature in MRI. SNAP has also proven invaluable

as a supporting tool for developing and validating medical image

analysis methodology. It has found countless uses in our own

laboratories, such as to postprocess the results of automatic brain

extraction, to identify landmarks that guide image registration and

to build anatomical atlases for template deformation morphology

(Yushkevich et al., 2005).

Despite SNAP’s versatility, its automatic segmentation pipeline

is limited to a specific subset of segmentation problems where the

structure of interest has a different intensity distribution from most

of the surrounding tissues. Future development of SNAP will focus

on simplifying the segmentation of structures whose intensity

distribution is indistinguishable from some of its neighbors. This

will be accomplished by (1) preventing the evolving interface from

entering certain regions via special seeds placed by the user, which

push back on the interface, similar to the ‘‘volcanoes’’ in the

seminal paper by Kass et al. (1988), and (2) providing additional

3D postprocessing tools that will make it easier to cut away parts of

the interface that has leaked. These postprocessing tools will be

based on graph-theoretic algorithms. One such tool will allow the

user to trace a closed path on the surface of the segmentation result,

after which the minimal surface bounded by that path will be

computed and used to partition the segmentation in two. Another

future feature of SNAP will be an expanded user interface for

defining object and background probabilities in the Zhu and Yuille

(1996) method, where the user will be able to place a number of

sensors inside and outside of the structure in order to estimate the

intensity distribution within the structure. In order to account for

intensity inhomogeneity in MRI, SNAP will include an option to

let the estimated distribution vary spatially. Finally, we plan to
of the lateral ventricles nucleus. All columns represent SNAP-to-SNAP

olumn 3 plots intrarater comparisons pooled over the two raters; and column
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tightly integrate SNAP will external tools for brain extraction,

tissue class segmentation, and inhomogeneity field correction.
Conclusion

ITK-SNAP is an open source medical image processing

application that fulfills a specific and pressing need of biomedical

imaging research by providing a combination of manual and

semiautomatic tools for extracting structures in 3D image data of

different modalities and from different anatomical regions.

Designed to maximize user efficiency and to provide a smooth

learning curve, the user interface is focused entirely on segmen-

tation, parameter selection is simplified using live feedback, and

the number of features unrelated to segmentation kept to a

minimum. Validation in the context of caudate nucleus and lateral

ventricle segmentation in child MRI demonstrates excellent

reliability and high efficiency of 3D SNAP segmentation and

provides strong motivation for adopting SNAP as the segmentation

solution for clinical research in neuroimaging and beyond.
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