Lecture: Shape Analysis Moment Invariants

Guido Gerig
CS 7960, Spring 2010

References

- Cho-Hua Teh, Roland T. Chin, On Image Analysis by the Methods of Moments, IEEE T-PAMI, 1988
- Ming-Kuei Hu, Visual Pattern Recognition by Moment Invariants, IEEE Transactions on Information Theory, 1962
- M.R. Teague, Image analysis via the general theory of moments, J. Opt. Soc. Am. Vol. 70, No. 8, Aug 1980, pp. 920ff
- Materials Erik W. Anderson, SCI PhD student

Motivation

Reconstruction of letter E by a) Legendre Moments, b) Zernike Moments, and c) pseudo Zernike Moments (from Teh/Chin 1988)

Basic Concept

Extract set of Features

Invariant Features

Basic Concept ctd.

Extract set of Features

Invariant Features

Basic Concept ctd.

: 0	-0acosolo
	$30 \rightarrow 0 \mathrm{mccc}$
	-17x -
,	$-1-1+1$
,	

Classify (recognize) each shape into one of the shape classes

Method

- Moments m_{pq} : projection of image $\varrho(\mathrm{x}, \mathrm{y})$ to basis $x^{p} y^{q}$.
- $\varrho(x, y)$: piecewise continuous function with nonzero values in a portion of the plane = image.

$$
m_{p q}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{p} y^{q} \rho(x, y) d x d y
$$

- Raw image moments:

$$
m_{p q}=\sum_{x} \sum_{y} x^{p} y^{q} f(x, y)
$$

Raw Moments

$$
m_{p q}=\sum_{x} \sum_{y} x^{p} y^{q} f(x, y)
$$

- M_{00} :??
- M_{10} : ??
- M_{01} : ??
- Centroid coordinates: ??

Raw Moments

$$
m_{p q}=\sum_{x} \sum_{y} x^{p} y^{q} f(x, y)
$$

- M_{00} : area/volume, \#pixels if binary image
- M_{10} : sum over x
- M_{01} : sum over y
- Centroid coordinates:

$$
\bar{x}=\frac{M_{10}}{M_{00}} \quad \bar{y}=\frac{M_{01}}{M_{00}}
$$

Translation Invariance

- Statistics: $\mathrm{n}^{\text {th }}$ moment about the mean, or $n^{\text {th }}$ central moment of a random variable X is defined as:

$$
\mu_{n}=E\left[(X-E[X])^{n}\right]=\int_{-\infty}^{\infty}(x-\mu)^{n} f(x) d x
$$

Translation Invariance

- Statistics: $\mathrm{n}^{\text {th }}$ moment about the mean, or $n^{\text {th }}$ central moment of a random variable X is defined as:

$$
\mu_{n}=E\left[(X-E[X])^{n}\right]=\int_{-\infty}^{\infty}(x-\mu)^{n} f(x) d x
$$

- Extension to 2D, discrete sampling:

$$
\begin{array}{r}
\mu_{p q}=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}(x-\bar{x})^{p}(y-\bar{y})^{q} f(x, y) \\
\bar{x}=\frac{M_{10}}{M_{00}} \quad \bar{y}=\frac{M_{01}}{M_{00}}
\end{array}
$$

Central Moments

$$
\begin{aligned}
\mu_{p q} & =\iint(x-\bar{x})^{p}(y-\bar{y})^{q} f(x, y) d x d y \\
& * \iint \sum_{r=0}^{p}\binom{p}{r} x^{r}\left(-\bar{x}^{-(p-r}\right) \sum_{s=0}^{\alpha}\binom{q}{s}-\bar{y}^{(p-s)} f(x, y) d x d y \\
& =\sum_{r=0}^{p} \sum_{s=0}^{\alpha}\binom{p}{r}\binom{q}{s}(-\bar{x})^{p-r}(-\bar{y})^{q-s} \cdot \underbrace{\text { Mrs }}_{\text {absolute Moment }} \\
*(a+b)^{k} & =\sum_{r=0}^{k}\binom{k}{r} a^{r} \cdot b^{(k-r)} \quad\binom{k}{r}=\frac{k!}{r!(k-r)!}
\end{aligned}
$$

Central Moments std.

$$
\begin{aligned}
& \mu_{00}=M_{00} \\
& {\left[\begin{array}{l}
\mu_{10}=\iint(x-\bar{x}) f(x, y) d x d y=\underbrace{\iint x \cdot f(x, y) d x d y-\bar{x}}_{M_{10}}-\underbrace{\int}_{M_{00}} f(x, y) d x d y \\
\mu_{01}
\end{array}=\emptyset\right.} \\
& \mu_{20}=M_{20}-\bar{x} M_{10}
\end{aligned}
$$

\rightarrow central moments constructed from raw moments

Scale Invariance

- $f^{\prime}(x, y)$: new image scaled by λ

$$
\Rightarrow f^{\prime}(x, y)=f\left(\frac{x}{\lambda}, \frac{y}{\lambda}\right)
$$

Variablentransformation:

$$
\begin{aligned}
& x^{\prime}=\frac{x}{\lambda} \quad y^{\prime}=\frac{y}{\lambda} \quad d x=\lambda d x^{\prime} \quad d y=\lambda d y^{\prime} \\
& \mu_{p q}^{\prime}=\iint x^{p} y^{q} \cdot f\left(\frac{x}{\lambda}, \frac{y}{x}\right) d x d y \\
&=\int\left(\left(\lambda x^{\prime}\right)^{p}\left(\lambda y^{\prime}\right)^{q} \&\left(x^{\prime}, y^{\prime}\right) \lambda^{2} d x^{\prime} d y^{\prime}\right. \\
&=\lambda^{p} \lambda^{q} \lambda^{2} \iint x^{\prime p} y^{\prime q} f\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \\
&=\lambda^{(p+q+2)} \cdot \mu_{p q}
\end{aligned}
$$

Scale Invariance ct.

- Concept: Set total area to 1

$$
\begin{aligned}
\mu_{00}^{\prime} & =\lambda^{2} \mu_{00} \stackrel{\vdots}{=} 1 \\
& \Rightarrow \lambda=\frac{1}{\sqrt{\mu_{00}}}=\mu_{00}^{-\frac{1}{2}}
\end{aligned}
$$

- Scaling invariant modes:

$$
\underline{\underline{\eta_{p q}}}=\frac{1}{\mu_{o 0}^{\left(\frac{p+q+2}{}\right)}} \cdot \mu_{p q}
$$

Rotation Invariance

- $f^{\prime}(x, y)$: new image rotated by Θ

$$
f^{\prime}(x, y)=f(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta)
$$

Variablentransformation:

$$
\begin{gathered}
x^{\prime}=x \cos \theta+y \sin \theta \\
y^{\prime}=-x \sin \theta+y \cos \theta \quad \underline{x^{\prime}}=R \cdot \underline{x} \\
\underline{x}=R^{-1} \cdot \underline{x}^{\prime} \quad \begin{array}{l}
x=x^{\prime} \cos \theta \\
y=x^{\prime} \cdot \sin \theta+y^{\prime} \cos \theta
\end{array} \quad d x=\cos \theta d x^{\prime} \\
\quad d y=\cos \theta d y^{\prime}
\end{gathered}
$$

Rotation Invariance ct.

$$
\begin{aligned}
& \mu^{\prime}{ }^{\prime p}=\iint x^{p} y^{q} f^{\prime}(x, y) d x d y \\
& =\iint x^{\mathrm{P}} \mathrm{q}^{q} f(x \cos \theta \theta \sin \theta,-x \sin \theta+y \cos \theta) d x d y \\
& =\iint\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta\right)^{p}\left(x^{\prime} \sin \theta+y^{\prime} \cos \theta\right)^{4} f\left(x^{\prime}, y^{\prime}\right)^{\prime} \cos ^{2} \theta d x x^{2} d y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\frac{1}{2} \arctan \left(\frac{2 \mu_{11}}{\mu_{20}-\mu_{02}}\right)
\end{aligned}
$$

Rotation Invariance std.

$$
\begin{aligned}
& \mu_{\underline{p q}}^{\prime}=\iint x^{p} y^{q} d^{\prime}(x, y) d x d y \\
& =\iint x^{p} y^{q} f(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta) d x d y \\
& =\iint\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta\right)^{p}\left(x^{\prime} \sin \theta+y^{\prime} \cos \theta\right)^{\varphi} A\left(x^{\prime}, y^{\prime}\right) \cos ^{2} \theta d x^{\prime} d y^{\prime}
\end{aligned}
$$

- Rotation to first axis of inertia:

$$
\theta=\frac{1}{2} \arctan \left(\frac{2 \mu_{11}}{\mu_{20}-\mu_{02}}\right)
$$

Rotation Invariance ctd.

$\left(\begin{array}{lll}\mu_{20}^{\prime} & \mu_{1}^{\prime} \\ \mu_{1}^{\prime} & \mu_{02}^{\prime}\end{array}\right)=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{ll}\mu_{20} & \mu_{11} \\ \mu_{1} & \mu_{02}\end{array}\right)\left(\begin{array}{ccc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

- Discussion Rotation Invariance:
- Basis \{xpy $\left.{ }^{\text {q }}\right\}$ doesn't have simple rotation properties
- Building of moments that are invariant to rotation is very difficult
- Solution: New function system that has better rotational properties

Orthogonal Invariants by Hu method

$$
\begin{align*}
& \mu_{20}+\mu_{02}, \\
& \left(\mu_{20}-\mu_{02}\right)^{2}+4 \mu_{11}^{2}, \\
& \left(\mu_{30}-3 \mu_{12}\right)^{2}+\left(3 \mu_{21}-\mu_{03}\right)^{2}, \\
& \left(\mu_{30}+\mu_{12}\right)^{2}+\left(\mu_{21}+\mu_{03}\right)^{2}, \\
& \left(\mu_{30}-3 \mu_{12}\right)\left(\mu_{30}+\mu_{12}\right)\left[\left(\mu_{30}+\mu_{12}\right)^{2}-3\left(\mu_{21}+\mu_{03}\right)^{2}\right] \tag{61}\\
& \quad+\left(3 \mu_{21}-\mu_{03}\right)\left(\mu_{21}+\mu_{03}\right) \\
& \quad \cdot\left[3\left(\mu_{30}+\mu_{12}\right)^{2}-\left(\mu_{21}+\mu_{03}\right)^{2}\right] \\
& \\
& \quad \begin{array}{l}
\left(\mu_{20}-\mu_{02}\right)\left[\left(\mu_{30}\right.\right. \\
\left.\left.\quad+\mu_{12}\right)^{2}-\left(\mu_{21}+\mu_{03}\right)^{2}\right] \\
\\
\quad+4 \mu_{11}\left(\mu_{30}+\mu_{12}\right)\left(\mu_{21}+\mu_{03}\right),
\end{array}
\end{align*}
$$

and one skew orthogonal invariants,

$$
\begin{align*}
& \left(3 \mu_{21}-\mu_{03}\right)\left(\mu_{30}+\mu_{12}\right)\left[\left(\mu_{30}+\mu_{12}\right)^{2}-3\left(\mu_{21}+\mu_{03}\right)^{2}\right] \\
& \quad-\left(\mu_{30}-3 \mu_{12}\right)\left(\mu_{21}+\mu_{03}\right)\left[3\left(\mu_{30}+\mu_{12}\right)^{2}-\left(\mu_{21}+\mu_{03}\right)^{2}\right] . \tag{62}
\end{align*}
$$

- Invariants are independent of position, size and orientation
- However: This is not a complete set, and there is no simple way for reconstruction!

Complex Moments

- Abu-Mostafa, Yaser S., and Demetri Psaltis. Image normalization by complex moments; T-PAMIJan 85 46-55

Complex Moments std.

$$
C_{p q}=\int_{0}^{2 \pi} \int_{0}^{\infty} \underbrace{r^{(p+q)} e^{i(p-q) \varphi}}_{" C M-\text { kernels" }} f(r \cos \varphi, r \sin \varphi) r d r d \varphi
$$

Notation: $\mathrm{p}+\mathrm{q}=\mathrm{n}$: Order
$p-q=1: \quad$ Repetition

$$
C_{p q} \rightarrow C_{n}^{l} \quad C_{q p} \rightarrow C_{n}^{l}
$$

Relationship to Raw Moments

$$
\begin{aligned}
C_{3}^{1}=C_{21}: & \begin{array}{l}
(x+i y)^{2}(x-i y) \\
\\
= \\
=\left(x^{3}+x y^{2}\right)
\end{array}+i \underbrace{i\left(x^{2} y+y^{3}\right)}_{\operatorname{Im}\left(C_{21}\right)}=a+i b \\
\operatorname{Re}\left(C_{21}\right) & =M_{30}+M_{12} \\
\operatorname{Im}\left(C_{21}\right) & =M_{21}+M_{03}
\end{aligned}
$$

Properties of CM

$$
\left.\begin{array}{rl}
C_{q p}=C_{r}^{-l} & =\int_{0}^{2 \pi} \int_{0}^{\infty} r^{n} e^{-i l \varphi} f(r, \varphi) r d r d \varphi \\
\Rightarrow C_{r}^{-l} & =C_{r}^{e^{*}} \\
C_{q p} & =C_{p q}^{*}
\end{array}\right\} \text { conjugate complex }
$$

Translation Invariance

$$
\begin{aligned}
& C_{1}^{1}=C_{1}^{-1} \stackrel{!}{=} 0 \\
& C_{1}^{1}=\iint r \cdot e^{i \varphi} f(r, y) r d r d \varphi=\iint(x+i y) f(x, y) d x d y \\
& \left.\begin{array}{l}
\operatorname{Re}\left(C_{1}^{1}\right)=M_{10} \\
\\
\\
\operatorname{Im}\left(C_{1}^{1}\right)=M_{01}
\end{array}\right\} \Rightarrow M_{10}=M_{01}=\phi .
\end{aligned}
$$

Setting M10 and M01 to 0 makes series translational invariant

Scale Invariance

$$
C_{0}^{0}=\iint f(x, y) d x d y \stackrel{!}{=} 1
$$

(see earlier discussion with raw moments)

CM under Rotation

$$
\left.C_{h}^{\ell}\right|^{\text {ot }}=\iint r^{n} e^{i \ell \varphi} f^{\prime}(r, \varphi) r d r d \varphi
$$

Rotation

$$
\left.\begin{array}{c}
\text { Rotation } \quad \begin{array}{l}
\quad \begin{array}{l}
f_{0}^{\prime}(r, \varphi)=f\left(r, \varphi+\varphi_{0}\right) \\
\varphi_{0}^{\prime}=\varphi+\varphi_{0} \quad d \varphi^{\prime}=d \varphi
\end{array} \\
r^{\prime}=r
\end{array} \quad d r^{\prime}=d r
\end{array}\right)
$$

OMs have very clear, simple rotational properties

Set of CM's

Order n	$\mathrm{C}_{p q}$	C_{n}^{e}
0	C_{∞}	C_{0}°
1	$\mathrm{C}_{10} \mathrm{C}_{01}$	$C_{1}^{1} C_{1}^{-1}$
2	$\mathrm{C}_{20} \mathrm{C}_{11} \mathrm{C}_{02}$	$\begin{array}{llll}\mathrm{C}_{2}^{2} & \mathrm{C}_{2}^{0} & \mathrm{C}_{2}^{-2}\end{array}$
3	$C_{30} C_{21} C_{12} C_{03}$	$\mathrm{C}_{3}^{3} \mathrm{C}_{3}^{1} \mathrm{C}_{3}^{-1} \mathrm{C}_{3}^{-3}$
4	$C_{40} C_{31} C_{22} C_{13} C_{04}$	$\mathrm{C}_{4}^{4} \mathrm{C}_{4}^{2} \mathrm{C}_{4}^{0} \mathrm{C}_{4}^{-2} \mathrm{C}_{4}^{-4}$
5		

\#coefficients order n : $\mathrm{n}+1$ CM's
\#coefficients till order $\mathrm{n}: \sum_{k=0}^{n}(k+1)=\frac{(n+1)(n+2)}{2}$

CMs with Rotation Invariance

- Building of algebraic combination of OMs, so that rotational component disappears

$$
\begin{aligned}
\left.\left.C_{h}^{l}\right)^{\text {ot }} \cdot\left(C_{h^{\prime}}^{l^{\prime}}\right)^{\text {ot }}\right)^{k} & =C_{h}^{l} \cdot\left(C_{h^{\prime}}^{l^{\prime}} \cdot \cdot^{-i l \varphi_{0}} \cdot e^{-i l^{\prime} \varphi_{0} \cdot k}\right. \\
& =C_{h}^{l} \cdot\left(C_{h^{\prime}}\right)^{k} \cdot e^{-i\left(l^{\prime}+l^{\prime} \cdot k\right) \varphi_{0}}
\end{aligned}
$$

(Rotation Invariants: : $l+l^{\prime} \cdot k=\phi$)
Rotation Invariants: $\quad C_{h}^{l} \cdot\left(C_{h^{\prime}}^{\ell^{\prime}}\right)^{k}+C_{h}^{-l} \cdot\left(C_{h^{\prime}}^{-\ell^{\prime}}\right)^{k} \quad$ fü $l+l^{\prime} k=\phi$

CMs with Rotation Invariance

Rotation Invariants: $C_{h}^{l} \cdot\left(C_{h^{\prime}}^{l^{\prime}}\right)^{k}+C_{h}^{-l} \cdot\left(C_{h^{\prime}}^{l^{\prime}}\right)^{k} \quad$ fü $l+l^{\prime} k=\phi$
$k=\phi: \ell=\phi \Rightarrow C_{n}^{0}+C_{h}^{0} \quad \quad$ Bsp: $C_{0}^{0} ; C_{4}^{0}$
$k=1 \quad: l=-l^{\prime} \Rightarrow C_{n}^{l} \cdot C_{n^{\prime}}^{-l}+C_{n}^{-l} \cdot C_{n^{\prime}}^{l}$
a) $n=n^{\prime} \Rightarrow 2 C_{n}^{e} \cdot C_{n}^{-l}=2 C_{n}^{l} \cdot C_{n}^{e^{*}} B_{n p:} C_{3}^{1} \cdot C_{3}^{-1}$ (Betreg
b) $n \neq n^{\prime} \Rightarrow C_{n}^{l} \cdot C_{n^{-1}}^{-1}+C_{n}^{-l} \cdot C_{n^{\prime}}^{l} \quad B_{89} \cdot C_{4}^{2} \cdot C_{2}^{-2}+C_{4}^{-2} \cdot C_{2}^{2}$
$k=2 \quad: l=-2 l^{\prime} \Rightarrow C_{h}^{l} \cdot\left(C_{n^{\prime}}^{-\frac{l}{2}}\right)^{2}+C_{n}^{-l} \cdot\left(C_{h^{\prime}}^{\frac{l}{2}}\right)^{2}$
a) $n=n^{1} \quad B_{s \rho}: C_{4}^{4} \cdot\left(C_{4}^{-2}\right)^{2}+C_{4}^{-4}\left(C_{4}^{2}\right)^{2}$ (Linearkomb.! ! $)$
b) $n \neq n^{\prime} \quad P_{s p}: C_{4}^{4} \cdot\left(C_{2}^{-2}\right)^{2}+C_{4}^{-4} \cdot\left(C_{2}^{2}\right)^{2}$
$C_{2}^{2} \cdot\left(C_{3}^{-1}\right)^{2}+C_{2}^{-2}\left(C_{3}^{1}\right)^{2}$

CMs with Rotation Invariance

Rotation to invariant position

$$
\begin{aligned}
C_{2}^{2}=C_{20} & =\iint r^{2} \cdot e^{i 2 \varphi_{2}^{2}} f(r, \varphi) r d r d \varphi \\
& =\iint(x+i y)^{2} f(x, y) d x d y \\
& =\iint\left(\left(x^{2}-y^{2}\right)+i(2 x y)\right) f(x, y) d x d y
\end{aligned}
$$

$$
\operatorname{Re}\left(C_{2}^{2}\right)=\mu_{20}-\mu_{02}
$$

$$
\operatorname{Im}\left(C_{2}^{2}\right)=2 \mu_{n}
$$

$$
\tan \left(\varphi_{2}^{2}\right)=\frac{2 \mu_{1}}{\mu_{20}-\mu_{02}}
$$

$\varphi_{2}^{2} \stackrel{!}{=} \phi \quad$ Eliminate rotational part of $2^{\text {nd }}$ order ellipsoid

$$
\Rightarrow \mu^{\mu_{11}} \begin{aligned}
& ! \\
& \mu_{20}>\mu_{02}
\end{aligned}
$$

Reconstruction

- Inverse generation of representative shape from normalized moments.
- Building of normal model as shape template for equivalence class.
- Procedure: Systematic reconstruction of phase and coefficients of normalized shape from invariant moments.

5

Example: Reconstruction from invariant CMs (20 th order)

Example: Airplane Recognition

Classification

- Image $\mathrm{I}(\mathrm{x}, \mathrm{y}) \rightarrow$ set of invariants = feature vector v
- Statistical pattern recognition: Clustering in multi-dimensional feature space

Image space
Feature space

- Criteria: good discrimination, small set of features (\rightarrow Zernike, pseudo Zernika, Teh/Chin)

Zernike Polynomials

So far: Non-orthogonal basis: Set of moments is complete, but new higher orders influence lower orders.. Solution: Orthogonal basis: Zernike Polynomials: Teh \& Chin, 1988
Zernicke Polynomials: $V_{h}^{\ell}(r, \theta)=R_{h}^{\ell}(r) \cdot e^{j \ell \theta}$

$A_{h}^{\ell}=\frac{n+1}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} R_{h}^{\ell}(r) e^{-j l \theta} A(r, \theta) r d r d \theta$
Same rotational properties as CMs, building of invariants is equivalent

Zernike Polynomials

Fig. 6. Original image and reconstructions using different orders of Zernike moments.

