

Lecture: Shape Analysis Moment Invariants

Guido Gerig CS 7960, Spring 2010

References

- Cho-Hua Teh, Roland T. Chin, On Image Analysis by the Methods of Moments, IEEE T-PAMI, 1988
- Ming-Kuei Hu, Visual Pattern Recognition by Moment Invariants, IEEE Transactions on Information Theory, 1962
- M.R. Teague, Image analysis via the general theory of moments, J. Opt. Soc. Am. Vol. 70, No. 8, Aug 1980, pp. 920ff
- Materials Erik W. Anderson, SCI PhD student

Motivation

Reconstruction of letter E by a) Legendre Moments, b) Zernike Moments, and c) pseudo Zernike Moments (from Teh/Chin 1988)

Basic Concept ctd.

Classify (recognize) each shape into one of the shape classes

Method

- Moments m_{pq}: projection of image g(x,y) to basis x^py^q.
- *ϱ*(x,y): piecewise continuous function with non-zero values in a portion of the plane = image.

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q \rho(x, y) dx dy$$

• Raw image moments:

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

Raw Moments

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

- M₀₀:??
- M₁₀: ??
- M₀₁: ??
- Centroid coordinates: ??

Raw Moments

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

- M₀₀: area/volume, #pixels if binary image
- M₁₀: sum over x
- M₀₁: sum over y
- Centroid coordinates:

$$\overline{x} = \frac{M_{10}}{M_{00}}$$
 $\overline{y} = \frac{M_{01}}{M_{00}}$

Translation Invariance

 Statistics: nth moment about the mean, or nth central moment of a random variable X is defined as:

$$\mu_n = E[(X - E[X])^n] = \int_{-\infty}^{\infty} (x - \mu)^n f(x) dx$$

Translation Invariance

 Statistics: nth moment about the mean, or nth central moment of a random variable X is defined as:

$$\mu_n = E[(X - E[X])^n] = \int_{-\infty}^{\infty} (x - \mu)^n f(x) dx$$

• Extension to 2D, discrete sampling:

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - \bar{x})^p (y - \bar{y})^q f(x, y)$$
$$\overline{x} = \frac{M_{10}}{M_{00}} \qquad \overline{y} = \frac{M_{01}}{M_{00}}$$

Central Moments

$$\underbrace{\mu_{pq}}_{K} = \iint (x - \overline{x})^{p} (y - \overline{y})^{q} f(x_{1}y) dx dy$$

$$\underbrace{\#}_{K} \iint \sum_{r=0}^{p} {p \choose r} x^{r} (-\overline{x})^{p-r} \sum_{s=0}^{q} {q \choose s} - \overline{y}^{(q-s)} f(x_{1}y) dx dy$$

$$= \sum_{r=0}^{p} \sum_{s=0}^{q} {p \choose r} {q \choose s} (-\overline{x})^{p-r} (-\overline{y})^{q-s} M_{rs}$$

$$= \underbrace{\sum_{r=0}^{p} \sum_{s=0}^{q} {p \choose r} {q \choose s} (-\overline{x})^{p-r} (-\overline{y})^{q-s} M_{rs}$$

$$= \underbrace{\sum_{r=0}^{k} {k \choose r} q^{r} \cdot b^{(k-r)}}_{r=0} \left({k \choose r} - \frac{k!}{r! (k-r)!} \right)$$

Central Moments ctd.

$$\mathcal{M}_{00} = \mathcal{M}_{00}$$

$$\mathcal{M}_{10} = \iint (x - \overline{x}) f(x_{1}y) dx dy = \iint (x \cdot f(x_{1}y)) dx dy = \emptyset$$

$$\mathcal{M}_{01} = \emptyset$$

$$\mathcal{M}_{01} = \emptyset$$

$$\mathcal{M}_{20} = \mathcal{M}_{20} - \overline{x} \mathcal{M}_{10}$$

$$\vdots$$

 \rightarrow central moments constructed from raw moments

Scale Invariance

f'(x,y): new image scaled by λ

=)
$$f(x,y) = f(\frac{x}{2},\frac{y}{2})$$

Variablentransformation :

$$x' = \frac{x}{\lambda}$$
 $y' = \frac{y}{\lambda}$ $dx = \lambda dx' dy = \lambda dy'$

$$\underline{\mu}_{pq} = \iint x^{p} y^{q} \cdot \pounds \left(\frac{x}{\lambda}, \frac{y}{\lambda}\right) dx dy$$

$$= \iint \left(\left(\lambda x'\right)^{p} \left(\lambda y'\right)^{q} \cdot \pounds \left(x', y'\right) \cdot \lambda^{2} dx' dy'$$

$$= \lambda^{p} \lambda^{q} \cdot \lambda^{2} \quad \iint \left(x' \cdot p \cdot y'\right)^{q} \cdot \pounds \left(x', y'\right) dx' dy'$$

$$= \lambda^{(p+q+2)} \cdot \mu_{pq}$$

Scale Invariance ctd.

• Concept: Set total area to 1

• Scaling invariant modes:

$$\frac{\eta_{pq}}{M_{00}} = \frac{1}{M_{00}} \left(\frac{p+q+2}{2} \right)^{\circ} M_{pq}$$

Rotation Invariance

• f'(x,y): new image rotated by Θ $f'(x,y) = f(x\cos\theta + y\sin\theta, -x\sin\theta + y\cos\theta)$ Variablestransformation: x' = x cos 0 + y sin 0 $x' = R \cdot X$ $y' = -x \sin \theta + y \cos \theta$ x=x'cos 0 -y'sin0 dx= cost dx' $x = R^{-1} \cdot x'$ y=x' sin 0+ y'cos0 dy = cold dy'

Rotation Invariance ctd.

$$\underline{\mu'_{pq}} = \iint x^{p} y^{q} \pounds'(x, y) dx dy$$

$$= \iint x^{p} y^{q} \pounds(x \cos\theta + y \sin\theta, -x \sin\theta + y \cos\theta) dx dy$$

$$= \iint (x' \cos\theta - y' \sin\theta)^{p} (x' \sin\theta + y' \cos\theta)^{q} \pounds(x', y') \cos^{2}\theta dx' dy'$$

$$= \left(\begin{array}{c} \text{see Teague} \\ \text{p. 925} \end{array} \right) = \sum_{r=0}^{p} \sum_{s=0}^{q} (-\Lambda)^{q-s} \binom{p}{r} \binom{q}{s} \cos\theta & \sin\theta \cdot \mu_{p+q+r+s} r+1 \end{array}$$

$$\Theta = \frac{1}{2} \arctan\left(\frac{2\mu_{M}}{\mu_{20}-\mu_{02}}\right)$$

Rotation Invariance ctd.

$$\underline{\mu' pq} = \iint x^{p} y^{q} \pounds (x, y) dx dy$$

$$= \iint x^{p} y^{q} \pounds (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta) dx dy$$

$$= \iint (x^{l} \cos \theta - y' \sin \theta)^{p} (x' \sin \theta + y' \cos \theta)^{q} \pounds (x', y') \cos^{2} \theta dx' dy'$$

$$= \left(\begin{array}{c} \text{see Teague} \\ p. 925 \end{array} \right) = \sum_{r=0}^{p} \sum_{s=0}^{q} (-\Lambda)^{q-s} \binom{p}{s} \binom{q}{s} \cos^{2} \theta \sin^{2} \theta + y' \sin^{2} \theta \sin$$

• Rotation to first axis of inertia:

Rotation Invariance ctd.

$$\begin{pmatrix} u'_{20} & u'_{11} \\ u'_{20} & u'_{11} \\ u'_{20} & u'_{11} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} u_{20} & u_{20} \\ u_{20}$$

- Discussion Rotation Invariance:
 - Basis {x^py^q} doesn't have simple rotation properties
 - Building of moments that are invariant to rotation is very difficult
- Solution: New function system that has better rotational properties

Orthogonal Invariants by Hu method

$$\begin{aligned} \mu_{20} + \mu_{02}, \\ (\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2, \\ (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2, \\ (\mu_{30} + \mu_{12})^2 + (\mu_{21} + \mu_{03})^2, \\ (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2] \quad (61) \\ &+ (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03}) \\ &\cdot [3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2], \\ (\mu_{20} - \mu_{02})[(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2] \\ &+ 4\mu_{11}(\mu_{30} + \mu_{12})(\mu_{21} + \mu_{03}), \end{aligned}$$
and one skew orthogonal invariants,
$$(3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2] \\ &- (\mu_{30} - 3\mu_{12})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2]. \end{aligned}$$

• Invariants are independent of position, size and orientation

(62)

• However: This is not a complete set, and there is no simple way for reconstruction!

Complex Moments

 Abu-Mostafa, Yaser S., and Demetri Psaltis. Image normalization by complex moments; T-PAMIJan 85 46-55

Complex Moments ctd.

$$C_{pq} = \iint_{0}^{2\pi} r^{(p+q)} e^{i(p-q)} \int_{0}^{2\pi} f(r\cos \theta, r\sin \theta) r dr d\theta$$

"CM-kernels"

Notation: p+q=n: Order p-q=I: Repetition $C_{pq} \rightarrow C_{n}^{\ell}$ $C_{qp} \rightarrow C_{n}^{-\ell}$

Relationship to Raw Moments

$$C_{3}^{A} = C_{21}: (x + iy)^{2} (x - iy)$$

= (x³ + xy²) + i (x²y + y³) = a + ib
$$\overline{Re(C_{21})} \qquad Tm(C_{21})$$

Re(C₂₄) = M₃₀ + M₄₂
$$Tm(C_{24}) = M_{21} + M_{03}$$

Properties of CM

$$C_{qp} = C_{n}^{-\ell} = \iint_{0}^{2\pi} r^{n} e^{-i\ell y} f(r, y) r dr dy$$

=) $C_{n}^{-\ell} = C_{n}^{\ell*}$ conjugate complex
 $C_{qp} = C_{pq}^{*}$

Translation Invariance

Setting M10 and M01 to 0 makes series translational invariant

Scale Invariance

 $C_0^{\circ} = \iint f(x,y) dx dy \stackrel{!}{=} 1$

(see earlier discussion with raw moments)

CMs have very clear, simple rotational properties

Set of CM's

#coefficients order n: n+1 CM's

#coefficients till order n:
$$\sum_{k=0}^{n} (k+1) = \frac{(n+1)(n+2)}{2}$$

Rotation

CMs with Rotation Invariance

 Building of algebraic combination of CMs, so that rotational component disappears

$$C_{h}^{\ell}|^{ref} \cdot \left(C_{h'}^{\ell'}|^{ref}\right)^{k} = C_{h}^{\ell} \cdot \left(C_{h'}^{\ell'}\right)^{k} \cdot e^{-i\ell \cdot q_{0}} \cdot e^{-i\ell \cdot q_{0} \cdot k}$$

$$= C_{h}^{\ell} \cdot \left(C_{h'}^{\ell'}\right)^{k} \cdot e^{-i\ell \cdot (\ell + \ell' \cdot k) \cdot q_{0}}$$

$$(\text{ Rotation Invariants: } \ell + \ell' \cdot k = \emptyset)$$

$$\text{Invariants: } C_{h}^{\ell} \cdot \left(C_{h'}^{\ell'}\right)^{k} + C_{h}^{-\ell} \cdot \left(C_{h'}^{-\ell'}\right)^{k} \quad \text{fiv } \ell + \ell' \cdot k = \emptyset$$

CMs with Rotation Invariance

Rotation Invariants:
$$C_{h}^{\ell} \cdot (C_{h'}^{\ell'})^{k} + C_{h}^{-\ell} \cdot (C_{h'}^{-\ell'})^{k}$$
 for $\ell + \ell^{1}k = d$
 $k=\phi : \ell=\phi \Rightarrow C_{h}^{\circ} + C_{h}^{\circ}$ Bsp: $C_{o}^{\circ} ; C_{q}^{\circ}$
 $k=\Lambda : \ell=-\ell^{1} \Rightarrow C_{h}^{\ell} \cdot C_{h'}^{-\ell} + C_{h}^{-\ell} \cdot C_{h'}^{\ell}$
 $a) n=n^{1} \Rightarrow 2C_{h}^{\ell} \cdot C_{h'}^{-\ell} = 2C_{h}^{\ell} \cdot C_{h}^{\ell^{*}}$ Bsp: $C_{3}^{\ell} \cdot C_{3}^{-\ell}$ (Betree
 $b) n \neq n^{1} \Rightarrow C_{h}^{\ell} \cdot C_{h'}^{-\ell} + C_{h'}^{-\ell} \cdot C_{h'}^{\ell}$ Bsp: $C_{q}^{\ell} \cdot C_{2}^{-\ell} + C_{2}^{-\ell} \cdot C_{2}^{\ell^{*}}$
 $k=2 : \ell=-2\ell^{1} \Rightarrow C_{h}^{\ell} \cdot (C_{h'}^{-\frac{\ell}{2}})^{2} + C_{h}^{-\ell} \cdot (C_{h'}^{-\frac{\ell}{2}})^{2}$
 $a) n=n^{1}$ Bsp: $C_{q}^{\ell} \cdot (C_{2}^{-2})^{2} + C_{q}^{-q} (C_{2}^{-2})^{2}$ (Linearkomb.)
 $b) n \neq n^{1}$ Psp: $C_{q}^{\ell} \cdot (C_{2}^{-2})^{2} + C_{q}^{-q} (C_{2}^{-2})^{2}$

-

٠

CMs with Rotation Invariance

Order n	
0	$C_{\circ}^{\circ} = 1$ Normalization to standard
1	$C_{1}^{\prime} = C_{1}^{\prime} \doteq \phi$ (representation
2	$\begin{bmatrix} C_{2}^{2} \cdot C_{2}^{-2} & C_{2}^{-2} = \phi \end{bmatrix}$
3	$\left[\left[C_{3}^{3} \cdot C_{3}^{-3} \right] \left[\left[C_{3}^{\prime} \cdot C_{3}^{-\prime} \right] \right] \left[\left[\left(C_{3}^{\prime} \right)^{2} \cdot C_{2}^{-2} + \left(C_{3}^{-\prime} \right)^{2} \cdot C_{2}^{2} \right] \left[C_{3}^{3} \cdot \left(C_{4}^{\prime} \right)^{3} + C_{3}^{-3} \cdot \left(C_{4}^{\prime} \right)^{3} \right] \right]$
4	$\begin{bmatrix} C_{4}^{\circ} \end{bmatrix} \begin{bmatrix} C_{4}^{\circ} \cdot C_{4}^{\circ} \end{bmatrix} \begin{bmatrix} C_{4}^{2} \cdot C_{4}^{\circ} \end{bmatrix} \begin{bmatrix} C_{4}^{2} \cdot (C_{3}^{\circ})^{2} + C_{4}^{\circ 2} (C_{3}^{\circ})^{2} \end{bmatrix}$
5	$\begin{bmatrix} C_{4}^{4} \cdot (C_{2}^{2})^{2} + C_{4}^{-4} \cdot (C_{2}^{2})^{2} \end{bmatrix}$
•	•

Rotation to invariant position

$$\begin{aligned} C_{2}^{2} &= C_{20} = \iint r^{2} \cdot e^{i2 \cdot \mathcal{G}_{2}^{2}} f(r, \mathcal{G}) \operatorname{rdrd}\mathcal{G} \\ &= \iint (x + iy)^{2} f(x, y) \operatorname{dxdy} \\ &= \iint ((x^{2} - y^{2}) + i(2xy)) f(x, y) \operatorname{dxdy} \end{aligned}$$

$$Re(C_{2}^{2}) = \mu_{20} - \mu_{02}$$

$$Im(C_{1}^{2}) = 2\mu_{11}$$

$$ton(Q_{2}^{2}) = \frac{2\mu_{11}}{\mu_{20} - \mu_{02}}$$

 $(\mathcal{G}_2^2 \stackrel{!}{\doteq} \phi)$ Eliminate rotational part of 2nd order ellipsoid

$$\mathcal{M}_{11} \stackrel{!}{=} O$$

$$\mathcal{M}_{20} > \mathcal{M}_{02}$$

Reconstruction

- Inverse generation of representative shape from normalized moments.
- Building of normal model as shape template for equivalence class.
- Procedure: Systematic reconstruction of phase and coefficients of normalized shape from invariant moments.

Example: Reconstruction from invariant CMs (20th order)

1. A. A.		15	M3 .	M4	M5 .	M6
	0 4026	ก็มีสการ	0 4023	0.1490	0:0361	0.0427
U degree	0.4030	0.1617	0 4842	0.2108	0.0670	0.0794
45 degree	0.4849	0,1047	0.4022	0.1400	0 3610	0.0427
90 degree	0.4036	0.1440	0,4045	1 2170	2 4730	0.5160
scale 2X	0,4831	0.1840.	2.2020	1-115		
			1. Jan 1 1	· · · ·		
			F 104		1.1.1.	
						이상 위험 가슴을 가운 것을 수 없다.
Contra De	A Sec.					
				1. 1 1	Sec. 2. 19	44
	M1	M2	M3	M4	M.D	0.0020
0 degree	0.3390	0.0727	0.0742	0.0111	0.0003	0.0020
45 deprée	0.4296	0.1207	0.1920	0.0470	0.0044	0.0160
OD deares	0.1390	0.0727	0.0742	0.0111	0.0003	0.0020
i yo uugree	0 1322	0.0660	0.5063	0.1250	0.0310	0.0325
scale 24	0.5525	0.0000			1342 (M. 1	A 12
			Phantom			
				1.1	4.1.1.1.1.1.1	
				- 11 e - 1	a se pr	
				1.		
	1.44		3121	MA	M.5	M6
이 옷 많이 많이 많이 많이 많이 많이 많이 했다.	MI	ML5	2 5066	1 2080	3.9139	1.1642
; Q degree,∧	0.6973	0,4453	2,3900	2.3510	6 6320	1.8720
- 45 degree	0.8623	0.6836	3,4007	2.3310	2.0130	1 1642
90 degree	0.6973	0.4453	2,2000	1.3069	101	4.0036
scale 2X.	0.6362	0.3661	9.8817	0.9918	.90,104	4.0755
in a star	ang an A	5 1 A 1	1.11	1 - E - E	Sec. Contraction	· · · · · ·
			Mirage III			

Classification

- Image I(x,y) \rightarrow set of invariants = feature vector **v**
- Statistical pattern recognition: Clustering in multi-dimensional feature space

Image space

Feature space

 Criteria: good discrimination, small set of features (→ Zernike, pseudo Zernika, Teh/Chin)

Zernike Polynomials

So far: Non-orthogonal basis: Set of moments is complete, but new higher orders influence lower orders.. **Solution:** Orthogonal basis: Zernike Polynomials: Teh & Chin, 1988

Zernicke Polynomials: $V_{h}^{\ell}(r, \Theta) = R_{h}^{\ell}(r) \cdot e^{j\ell\Theta}$ Orthogonality: $\iint_{0}^{2\overline{\iota},1} V_{h}^{\ell^{*}}(r, \Theta) \cdot V_{m}^{k}(r, \Theta) r dr d\Theta = \frac{T}{n+1} S_{mn} S_{k\ell}$ $A_{h}^{\ell} = \frac{n+1}{T} \iint_{0}^{2\overline{\iota},\infty} R_{h}^{\ell}(r) e^{-j\ell\Theta} f(r, \Theta) r dr d\Theta$

Same rotational properties as CMs, building of invariants is equivalent

Zernike Polynomials

Fig. 6. Original image and reconstructions using different orders of Zernike moments.