Solution of Linear Systems

Application: To be used for calculation of linear transformation
based on sets of landmarks, e.g.

M aterials and M atlab

- http://audition.ens.fr/brette/calculscientifique /lecture6.pdf
- http://en.wikipedia.org/wiki/Overdetermined system
- http://www.mathworks.com/help/toolbox/op tim/ug/brhkghv-18.html
- http://www.mathworks.com/help/techdoc/m ath/f4-2224.html\#4-2282

Linear Systems

Square system:

- unique solution
- Gaussian elimination

Rectangular system ??

- underconstrained: infinity of solutions
- overconstrained: no solution M inimize $|A x-b|$

How do you solve overconstrained linear equations??

- Define $E=|\boldsymbol{e}|^{2}=\boldsymbol{e} \cdot \boldsymbol{e}$ with

$$
\begin{aligned}
\boldsymbol{e} & =A \boldsymbol{x}-\boldsymbol{b}=\left[\boldsymbol{c}_{1}\left|\boldsymbol{c}_{2}\right| \ldots \left\lvert\, \begin{array}{c}
\boldsymbol{c}_{n}
\end{array}\right.\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]-\boldsymbol{b} \\
& =x_{1} \boldsymbol{c}_{1}+x_{2} \boldsymbol{c}_{2}+\cdots x_{n} \boldsymbol{c}_{n}-\boldsymbol{b}
\end{aligned}
$$

- At a minimum,

$$
\begin{aligned}
\frac{\partial E}{\partial x_{i}} & =\frac{\partial \boldsymbol{e}}{\partial x_{i}} \cdot \boldsymbol{e}+\boldsymbol{e} \cdot \frac{\partial \boldsymbol{e}}{\partial x_{i}}=2 \frac{\partial \boldsymbol{e}}{\partial x_{i}} \cdot \boldsymbol{e} \\
& =2 \frac{\partial}{\partial x_{i}}\left(x_{1} \boldsymbol{c}_{1}+\cdots+x_{n} \boldsymbol{c}_{n}-\boldsymbol{b}\right) \cdot \boldsymbol{e}=2 \boldsymbol{c}_{i} \cdot \boldsymbol{e} \\
& =2 \boldsymbol{c}_{i}^{T}(A \boldsymbol{x}-\boldsymbol{b})=0 \\
& \bullet \text { or }
\end{aligned}
$$

$$
0=\left[\begin{array}{l}
\boldsymbol{c}_{i}^{T} \\
\vdots \\
\boldsymbol{c}_{n}^{T}
\end{array}\right](A \boldsymbol{x}-\boldsymbol{b})=A^{T}(A \boldsymbol{x}-\boldsymbol{b}) \Rightarrow A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}
$$

where $\boldsymbol{x}=A^{\dagger} \boldsymbol{b}$ and $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$ is the pseudoinverse of A !

Overconstrained Problems in M atlab

Problem: solve \mathbf{A} for $\mathbf{X}^{*} \mathrm{~A}=\mathbf{Y}$:

- if full rank: unique solution
- if overconstrained: This means we want to find the solution that minimizes \sum_\{(x, y) pairs $\}(y-x A)^{\wedge} 2$
- Solution 1: Left M atrix Divide: $\mathbf{A}=\mathbf{X} \mid \mathbf{Y}$ is the matrix division of X into Y, which is roughly the same as $\operatorname{INV}(X)^{*} Y$, except it is computed in a different way.
- Solution 2: Use pseudoinverse: $\mathbf{X = A + *} \mathbf{Y}$. The pseudoinverse is calculated as: $A=Y * \operatorname{pinv}(X)$. However, it may be easier to write out the system as $X^{*} A=Y$ and then do $A=X \backslash Y$ (solution 1) which is pretty standard.

