Mathematical Morphology: Grevscale, Recursive Operations

Mathematical Morphology: Grevscale, Recursive Operations Greyscale Morphology

Umbras and Greyscale Morphology

Umbras, Functions, and Images

The *umbra* of a 1-D function/signal f(x) is the set of all positions/values (x, v) such that value v is less than or equal to *f*(*x*):

$$\{(x,v) \mid v \leq f(x)\}$$

or for 2-D images I:

Mathematical Morphology: Greyscale, Recursive Operations	Mathematical Morphology: Greyscale, Recursive Operations
Greyscale Morphology	Greyscale Morphology
Umbras and Greyscale Morphology	Greyscale Dilation and Erosion

Greyscale Morphology

Greyscale morphology involves binary morphology of the umbras:

Mathematical Morphology: Greyscale, Recursive Operations

CS 650: Computer Vision

Umbra
$$(A \oplus_g B) =$$
 Umbra $(A) \oplus$ Umbra (B)

$$\mathsf{Umbra}\,(\mathsf{A}\ominus_{\mathsf{g}}\mathsf{B})=\mathsf{Umbra}\,(\mathsf{A})\ominus\mathsf{Umbra}\,(\mathsf{B})$$

Example (3-wide structuring element of all 1s):

	f(x)	f(x)
Original	Dilatior	n Erosion

Mathematical Morphology: Greyscale, Recursive Operations Greyscale Morphology

f(x)

Greyscale Dilation and Erosion

Greyscale Dilation

FIGURE 9.27 (a) A simple function. (b) Structuring element of height A. (c) Result of dilation for various positions of sliding b past f. (d) Complete result of dilation (shown solid).

Greyscale Dilation

$$f \oplus_g g = \max\left\{f(x-z) + g(z)\right\}$$

- 1. reflect the structuring element,
- 2. position the structuring element at position x
- 3. pointwise add the structuring element over the neighborhood, and
- 4. take the maximum of that result over the neighborhood.

Mathematical Morphology: Greyscale, Recursive Operations Greyscale Morphology Greyscale Dilation and Erosion

Greyscale Erosion

$$f \ominus_g g = \min \left\{ f(x+z) - g(z) \right\}$$

- 1. position the structuring element at position x
- 2. pointwise subtract the structuring element over the neighborhood, and
- 3. take the minimum of that result over the neighborhood.

Mathematical Morphology: Greyscale, Recursive Operations Greyscale Morphology Greyscale Dilation and Erosion

Greyscale Erosion

FIGURE 9.28 Erosion of the function shown in Fig. 9.27(a) by the structuring element shown in Fig. 9.27(b).

Mathematical Morphology: Greyscale, Recursive Operations Greyscale Morphology Greyscale Dilation and Erosion

Greyscale Dilation and Erosion: Images

For two-dimensional images, these become

$$f \oplus_g g = \max_{a,b} \left\{ f(x-a, y-b) + g(a, b) \right\}$$

$$f \ominus_g g = \min_{a,b} \left\{ f(x+a,y+b) - g(a,b) \right\}$$

Mathematical Morphology: Greyscale, Recursive Operations	Mathematical Morphology: Greyscale, Recursive Operations
L Greyscale Morphology	Greyscale Morphology
Greyscale Dilation and Erosion	Greyscale Dilation and Erosion

Example: Greyscale Dilation

Mathematical Morphology: Greyscale, Recursive Operations Greyscale Morphology L-Greyscale Opening and Closing

Greyscale Opening and Closing

FIGURE 9.30 (a) A gray scan line. (b) Positic rolling bal opening. (c) Result of (d) Positions of rolling ball for closing. (e) Result of closing.

Example: Greyscale Dilation and Erosion

a b c c FIGURE 9.29 (a) Original image. (b) Result of dilation. (c) Result of erosion. (Courtesy of Mr. A. Morris, Leica Cambridge, Ltd.)

Mathematical Morphology: Greyscale, Recursive Operations LGreyscale Morphology Greyscale Opening and Closing

Greyscale Opening

Erosion followed by dilation:

$$f \circ_g g = (f \ominus_g g) \oplus_g g$$

or for a constant structuring element:

$$f \circ_g g = \max_{(a \in g)} \min_{(b \in g)} f(x - a + b)$$

Example:

	6	7	9	5	6	6	6	4	5	6	7	2
min	0	6	5	5	5	6	4	4	4	5	2	0
max	6	6	6	5	6	6	6	4	5	5	5	2

Mathematical Morphology: Greyscale, Recursive Operations

Greyscale Closing

Dilation followed by erosion:

$$f \bullet_g g = (f \oplus_g g) \ominus_g g$$

or for a constant structuring element:

$$f \bullet_g g = \min_{(a \in g)} \max_{(b \in g)} f(x + a - b)$$

Example:

	6	7	9	5	6	6	6	4	5	6	7	2
max	7	9	9	9	6	6	6	6	6	7	7	7
min	6	7	9	6	6	6	6	6	6	6	7	2

Mathematical Morphology: Greyscale, Recursive Operations

Greyscale Opening and Closing

a b FIGURE 9.31 (a) Opening and (b) closing of Fig. 9.29(a). (Courtesy of Mr. A. Morris, Leica Cambridge, Ltd.)

Mathematical Morphology: Greyscale, Recursive Operations	Mathematical Morphology: Greyscale, Recursive Operations
Greyscale Morphology	Greyscale Morphology
Greyscale Opening and Closing	Application

Duality of Greyscale Opening and Closing

Opening a greyscale image is the same as closing its inverse image, and vice versa:

$$-(f \circ_g g) = -f \bullet_g \check{g}$$
$$-(f \bullet_g g) = -f \circ_g \check{g}$$

Noise Removal - Approximating Median Filtering

 $g(x) = \begin{cases} (f \circ_g k)(x) & \text{if } \left| (f \circ_g k)(x) - f(x) \right| \ge \left| (f \bullet_g k)(x) - f(x) \right| \\ (f \bullet_g k)(x) & \text{otherwise} \end{cases}$

- If in a monotonic neighborhood, use opening or closing because neither have any effect.
- If at a neighborhood maximum, trim it off using an opening.
- ► If at a neighborhood minimum, fill it in using a closing.

Mathematical Morphology: Greyscale, Recursive Operations	Mathematical Morphology: Greyscale, Recursive Operations
Recursive Morphology	Recursive Morphology

Thickening

- One can thicken a binary object by finding targeted missing points and adding them:
 - Use hit-and-miss to find them
 - Union them into the object

$$A \odot (J, K) = A \cup (A \otimes (J, K))$$

Example: Thickening to Produce a Convex Hull

- The convex hull of an object is the minimal convex shape that encompasses the object
 - Design hit-and-miss operators to detect concavities, and use thickening to fill them in
 - Apply recursively until convergence (no more concavities)
- Structuring element for a 45-degree convex hull: (plus the seven other rotations/reflections of this)

1	1	Х
1	0	Х
1	Х	0

Example: Thickening to Produce a Convex Hull

Before

After

Mathematical Morphology: Greyscale, Recursive Operations Recursive Morphology

LThickening

Example: Thickening to Produce a Convex Hull

Mathematical Morphology: Grevscale. Recursive Operations	Mathematical Morphology: Grevscale, Recursive Operations
	-Recursive Morpholoay

Thinning

One can thin a binary object by finding targeted object points and removing them:

$$A \oslash (J, K) = A - (A \otimes (J, K))$$

(Finds target points $A \otimes (J, K)$ and removes them)

Example: Thinning to Produce a Skeleton

- A skeleton is a structure that is
 - Single-pixel thin
 - Lies in the "middle" of the object
 - Preserves the topology of the object

(We'll come back to this more when we discuss shape representations.)

Mathematical Morphology: Greyscale, Recursive Operations	Mathematical Morphology: Greyscale, Recursive Operations
L Recursive Morphology	Recursive Morphology

Example: Thinning to Produce a Skeleton

- > You can derive a *skeleton* of an object morphologically as follows:
 - Design hit-and-miss operators that find boundary points that can safely be removed without breaking the object in two
 - Apply recursively to strip layer by layer from the exterior of • the shape until convergence
- Structuring element:

(plus the four other rotations of this pair)

0	0	0	Х	0	0
х	1	х	1	1	0
1	1	1	Х	1	Х

Example: Thinning to Produce a Skeleton

Mathematical Morphology: Greyscale, Recursive Operations

Example: Thinning to Produce a Skeleton

Thresholded

Mathematical Morphology: Greyscale, Recursive Operations

Conditional Dilation

Conditional dilation involves dilating shapes in one image A then masking it by another image I:

$$A \oplus |_I B = (A \oplus B) \cap I$$

- Application: finding specific points, then "growing" back their original connected components.
 - I original image
 - A morphologically-reduced image that you want to "grow back"
 - *B* 3×3 structuring element containing all 1s.

$$J_0 = A;$$
 $J_i = J_{i-1} \oplus |_I B = (J_{i-1} \oplus B) \cap I$

Mathematical Morphology: Greyscale, Recursive Operations	Mathematical Morphology: Greyscale, Recursive Operations
Recursive Morphology	Recursive Morphology
Conditional Dilation	

Example: Conditional Dilation

Recursive Morphology

- We've seen three separate algorithms that each involve
 - 1. Apply a morphological operator to make some desired change
 - 2. Repeat until convergence (no more change)
- ► These are called *recursive* operators:
 - Convex hull (thickening)
 - Skeletonization (thinning)
 - Connected component finding from target point (conditional dilation)