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Overview 

• Correlation and convolution 
• Linear filtering 

– Smoothing, kernels, models 
– Detection 
– Derivatives 

• Nonlinear filtering 
– Median filtering 
– Bilateral filtering 
– Neighborhood statistics and nonlocal filtering 
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  0.0*95 + 0.1*103 + 0.0*150 
+ 0.1*36 + 0.6*150 + 0.1*104 
+ 0.0*47 + 0.1*205 + 0.0*77 = 134.8 

 .   .   .   . 
 .   .   .   . 
 .   .   .   . 
 .   .   .   . 

100 130  104   99 … 
 87  95  103  150 … 
 50  36  150  104 … 
 20  47  205   77 … 
 .   .    .    . 
 .   .    .    . 

Filter 

0.0 0.1 0.0 
0.1 0.6 0.1 
0.0 0.1 0.0 

Input image Output image 

  0.0*87 + 0.1*95 + 0.0*103 
+ 0.1*50 + 0.6*36 + 0.1*150 
+ 0.0*20 + 0.1*47 + 0.0*205 = 55.8 

Cross Correlation 
• Operation on image neighborhood and small … 

– “mask”, “filter”, “stencil”, “kernel” 
• Linear operations within a moving window 

 

55.8 134.8 
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Cross Correlation 

• 1D 
 

• 2D 
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Correlation: Technical Details 

• How to filter boundary? 
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Correlation: Technical Details 
• Boundary conditions 

– Boundary not filtered (keep it 0) 
– Pad image with amount (a,b) 

• Constant value or repeat edge values 
– Cyclical boundary conditions 

• Wrap or mirroring 
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Correlation: Technical Details 

• Boundaries 
– Can also modify kernel – no longer 

correlation 
• For analysis 

– Image domains infinite 
– Data compact (goes to zero far away from 

origin) 
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Correlation: Properties 

• Shift invariant 
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Correlation: Properties 

• Shift invariant 
 
 
 

• Linear 

Compact notation 
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Filters: Considerations 

• Normalize 
– Sums to one 
– Sums to zero (some cases, see later) 

• Symmetry 
– Left, right, up, down 
– Rotational 

• Special case: auto correlation 
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0 0 0 
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1 1 1 
1 1 1 
1 1 1 
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Examples 1 
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1 1 1 
1 1 1 
1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

1/9 * 

1/25 * 

Examples 2 
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Smoothing and Noise 
Noisy image 5x5 box filter 
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Other Filters 

• Disk 
– Circularly symmetric, jagged in discrete 

case 
• Gaussians 

– Circularly symmetric, smooth for large 
enough stdev 

– Must normalize in order to sum to one 
• Derivatives – discrete/finite differences 

– Operators 



Gaussian Kernel 
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Gaussian Kernel 
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Normalization to 1.0  
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Pattern Matching 
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Pattern Matching/Detection 

• The optimal (highest) response from a filter is 
the autocorrelation evaluated at position zero 
 
 

• A filter responds best when it matches a 
pattern that looks itself 

• Strategy 
– Detect objects in images by correlation with 

“matched” filter 
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Matched Filter Example 

Trick: make 
sure kernel 
sums to zero 
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Matched Filter Example: 
Correlation of template with image 
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Matched Filter Example: 
Thresholding of correlation results 
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Matched Filter Example: High 
correlation → template found 



Digital Images: Boundaries 
are “Lines” or “Discontinuities” 

Example: Characterization of discontinuities? 
29 
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Derivatives: Finite Differences 
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 0 -1  0 
 0  0  0 
 0  1  0 

 0  0  0 
-1  0  1 
 0  0  0 

Derivative Example 



I GOT UP TO HERE ON 
9/15/2010 (GUIDO) 

32 
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• Discrete 
 
 

• Continuous 
 
 

• Same as cross correlation with kernel transposed 
around each axis 

• The two operations (correlation and convolution) are 
the same if the kernel is symmetric about axes 

Convolution 

reflection of w 

Java demo: http://www.jhu.edu/signals/convolve/ 
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Convolution: Properties 

• Shift invariant, linear 
• Commutative 

 
 

• Associative 
 
 

• Others (discussed later): 
– Derivatives, convolution theorem, spectrum… 
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Computing Convolution 

• Compute time 
– MxM mask 
– NxN image 

O(M2N2) “for” loops are nested 4 deep  
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Computing Convolution 

• Compute time 
– MxM mask 
– NxN image 

• Special case: separable 

O(M2N2) “for” loops are nested 4 deep  

O(M2N2) O(MN2) 

Two 1D kernels 

= * 
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Separable Kernels 

• Examples 
– Box/rectangle 
– Bilinear interpolation 
– Combinations of 

partial derivatives 
• d2f/dxdy 

– Gaussian 
• Only filter that is both 

circularly symmetric 
and separable 

• Counter examples 
– Disk 
– Cone 
– Pyramid 
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Separability 

O 
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Nonlinear Methods For 
Filtering 

• Median filtering 
• Bilateral filtering 
• Neighborhood statistics and nonlocal 

filtering 
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Median Filtering 

• For each neighborhood in image 
– Sliding window 
– Usually odd size (symmetric) 5x5, 7x7,… 

• Sort the greyscale values 
• Set the center pixel to the median 
• Important: use “Jacobi” updates 

– Separate input and output buffers 
– All statistics on the original image old new 
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Median vs Gaussian 

Original + 
Gaussian 

Noise 

3x3 Box 3x3 
Median 
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Median Filter 

• Issues 
– Boundaries 

• Compute on pixels that fall within window 
– Computational efficiency 

• What is the best algorithm? 

• Properties 
– Removes outliers (replacement noise – salt and 

pepper) 
– Window size controls size of structures 
– Preserves straight edges, but rounds corners and 

features 
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Replacement Noise 
• Also: “shot noise”, “salt&pepper” 
• Replace certain % of pixels with samples from pdf 
• Best filtering strategy: filter to avoid outliers 
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Smoothing of S&P Noise 
• It’s not zero mean (locally) 
• Averaging produces local biases 
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Smoothing of S&P Noise 
• It’s not zero mean (locally) 
• Averaging produces local biases 



46 

Median Filtering 

Median 5x5 Median 3x3 
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Median Filtering 

Median 5x5 Median 3x3 
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Median Filtering 
• Iterate 

Median 3x3 2x Median 3x3 
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Median Filtering 

• Image model: piecewise constant (flat) 

Ordering 

Output 

Ordering 

Output 
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Order Statistics 
• Median is special case of order-statistics filters 
• Instead of weights based on neighborhoods, weights 

are based on ordering of data 
Neighborhood Ordering 

Filter 

Neighborhood average (box) Median filter 

Trimmed average (outlier removal) 
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Piecewise Flat Image Models 

• Image piecewise flat -> average only 
within similar regions 

• Problem: don’t know region boundaries 
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Piecewise-Flat Image Models 

• Assign probabilities to other pixels in the 
image belonging to the same region 

• Two considerations 
– Distance: far away pixels are less likely to 

be same region 
– Intensity: pixels with different intensities 

are less likely to be same region 
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Piecewise-Flat Images and Pixel 
Averaging 

Distance (kernel/pdf) Distance (pdf) 

Prob 
pixel 
belongs 
to same 
region 
as i 

Prob 
pixel 
belongs 
to same 
region 
as i 

intensity position 
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• Neighborhood – sliding window 
• Weight contribution of neighbors according to: 

 
 
 
 

• G is a Gaussian (or lowpass), as is H, N is 
neighborhood,  
– Often use G(rij) where rij is distance between pixels 
– Update must be normalized for the samples used in this 

(particular) summation 
• Spatial Gaussian with extra weighting for intensity 

– Weighted average in neighborhood with downgrading of 
intensity outliers 

Bilateral Filter 

Tomasi, Manduchi: http://en.wikipedia.org/wiki/Bilateral_filter 
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html 

normalization: all 
weights add up to 1 



Bilateral Filter 
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When the bilateral filter is centered, say, on a pixel on the bright side of the 
boundary, the similarity function s assumes values close to one for pixels on the 
same side, and values close to zero for pixels on the dark side. The similarity 
function is shown in figure 1(b) for a 23x23 filter support centered two pixels to 
the right of the step in figure 1(a). 

Replaces the pixel value at x with an average of similar and nearby 
pixel values. 
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Bilateral Filtering 

Bilateral Gaussian Blurring 

Replaces the pixel value at x with an average of similar and nearby 
pixel values. 
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Bilateral Filtering 

 

Bilateral Gaussian Blurring 
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Nonlocal Averaging 

• Recent algorithm 
– NL-means, Baudes et al., 2005 
– UINTA, Awate & Whitaker, 2005 

• Different model 
– No need for piecewise-flat 
– Images consist of some set of pixels with similar 

neighborhoods → average several of those 
• Scattered around 

– General area of a pixel 
– All around 

• Idea 
– Average sets of pixels with similar neighborhoods 



UINTA: Unsupervised Information-Theoretic 
Adaptive Filtering : Excellent Introduction and 

Additional Readings (Suyash P. Awate) 
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http://www.cs.utah.edu
/~suyash/pubs/uinta/ 

Suyash P. Awate, Ross T. Whitaker 
Unsupervised, Information-Theoretic, Adaptive Image Filtering with 
Applications to Image Restoration 
IEEE Trans. Pattern Analysis & Machine Intelligence (TPAMI) 2006, Vol. 28, 
Num. 3, pp. 364-376 

http://www.cs.utah.edu/~suyash/pubs/uinta/Awate_UINTA_PAMI.pdf
http://www.cs.utah.edu/~suyash/pubs/uinta/Awate_UINTA_PAMI.pdf
http://www.cs.utah.edu/~suyash/pubs/uinta/Awate_UINTA_PAMI.pdf
http://www.cs.utah.edu/~suyash/pubs/uinta/Awate_UINTA_PAMI.pdf
http://www.cs.utah.edu/~suyash/pubs/Awate_UINTA_PAMI.pdf
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Nonlocal Averaging 

• Strategy: 
– Average pixels to alleviate noise 
– Combine pixels with similar neighborhoods 

• Formulation 
– ni,j – vector of pixels values, indexed by j, 

from neighborhood around pixel i 

= 
– vector 



61 

Nonlocal Averaging 
Formulation 

• Distance between neighborhoods 
 
 

• Kernel weights based on distances 
 
 

• Pixel values of k neighborhoods: fk 
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Averaging Pixels Based on 
Weights 

• For each pixel, i, choose a set of pixel 
locations k: 
– k = 1, …., M 
– Average them together based on 

neighborhood weights (prop. to intensity 
pattern difference) 

k

M

k
kiwi fwg M

k ki
å

=å
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Nonlocal Averaging 
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Some Details 

• Window sizes: good range is 5x5-
>11x11 

• How to choose samples: 
– Random samples from around the image 

• UINTA, Awate&Whitaker 
– Block around pixel (bigger than window, 

e.g. 51x51) 
• NL-means 

• Iterate 
– UNITA: smaller updates and iterate 
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NL-Means Algorithm 

• For each pixel, p 
– Loop over set of pixels nearby 
– Compare the neighorhoods of those pixels 

to the neighborhood of p and construct a 
set of weights 

– Replace the value of p with a weighted 
combination of values of other pixels 

• Repeat… but 1 iteration is pretty good 
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Results 

 

Noisy image (range 0.0-1.0) Bilateral filter (3.0, 0.1) 
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Results 

 

Bilateral filter (3.0, 0.1) NL means (7, 31, 1.0) 
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Results 

 

Bilateral filter (3.0, 0.1) NL means (7, 31, 1.0) 

Presenter
Presentation Notes
7x7: neighborhood31: std for Gaussian kernel 1.0: one iteration
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Less Noisy Example 
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Less Noisy Example 

Presenter
Presentation Notes
Fine structures like hair are preservedTextures on hat and face are enhanced while preserving edges
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Results 

Original Noisy Filtered 
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Checkerboard With Noise 

Original Noisy Filtered 

Presenter
Presentation Notes
Edges		Corners	Same pattern repeats
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Quality of Denoising 

• s, joint entropy, and RMS- error vs. 
number of iterations 
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MRI Head 
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MRI Head 

Presenter
Presentation Notes
Structure enhancing
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Fingerprint 

Presenter
Presentation Notes
Structure enhancingSome data lost at top left corner because there was no structure there, also very low contrast
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Fingerprint 
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Results 

Original Noisy Filtered 
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Results 

Original Noisy Filtered 

Presenter
Presentation Notes
Curves are not sharp 
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Results 

Original Noisy Filtered 
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Fractal 

Original Noisy Filtered 
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Piecewise Constant 
• Several 10s of Iterations 
• Tends to obliterate rare events (e.g. corners) 
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Texture, Structure 
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