Singular Value Decomposition (SVD)

(Trucco, Appendix A.6)

- Definition

- Any real $m x n$ matrix A can be decomposed uniquely as

$$
A=U D V^{T}
$$

U is $m \mathrm{x} n$ and column orthogonal (its columns are eigenvectors of $A A^{T}$)

$$
\left(A A^{T}=U D V^{T} V D U^{T}=U D^{2} U^{T}\right)
$$

V is $n \times n$ and orthogonal (its columns are eigenvectors of $A^{T} A$)

$$
\left(A^{T} A=V D U^{T} U D V^{T}=V D^{2} V^{T}\right)
$$

D is $n \times n$ diagonal (non-negative real values called singular values)
$D=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ ordered so that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ (if σ is a singular value of A, it's square is an eigenvalue of $A^{t} A$)

- If $U=\left(u_{1} u_{2} \cdots u_{n}\right)$ and $V=\left(v_{1} v_{2} \cdots v_{n}\right)$, then

$$
A=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}
$$

(actually, the sum goes from 1 to r where r is the rank of A)

- An example

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 1
\end{array}\right] \text {, then } A A^{T}=A^{T} A=\left[\begin{array}{ccc}
6 & 10 & 6 \\
10 & 17 & 10 \\
6 & 10 & 6
\end{array}\right]
$$

The eigenvalues of $A A^{T}, A^{T} A$ are:

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right]=\left[\begin{array}{c}
28.86 \\
0.14 \\
0
\end{array}\right]
$$

The eigenvectors of $A A^{T}, A^{T} A$ are:

$$
u_{1}=v_{1}=\left[\begin{array}{l}
0.454 \\
0.766 \\
0.454
\end{array}\right], u_{2}=v_{2}=\left[\begin{array}{c}
0.542 \\
-0.643 \\
0.542
\end{array}\right], u_{3}=v_{3}=\left[\begin{array}{c}
-0.707 \\
0 \\
-0.707
\end{array}\right]
$$

The expansion of A is

$$
A=\sum_{i=1}^{2} \sigma_{i} u_{i} v_{i}^{T}
$$

Important: note that the second eigenvalue is much smaller than the first; if we neglect it from the above summation, we can represent A by introducing relatively small errors only:

$$
A=\left[\begin{array}{lll}
1.11 & 1.87 & 1.11 \\
1.87 & 3.15 & 1.87 \\
1.11 & 1.87 & 1.11
\end{array}\right]
$$

- Computing the rank using SVD

- The rank of a matrix is equal to the number of non-zero singular values.

- Computing the inverse of a matrix using SVD

- A square matrix A is nonsingular iff $\sigma_{i} \neq 0$ for all i
- If A is a $n \times n$ nonsingular matrix, then its inverse is given by

$$
\begin{aligned}
& A=U D V^{T} \text { or } A^{-1}=V D^{-1} U^{T} \\
& \text { where } D^{-1}=\operatorname{diag}\left(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, \ldots, \frac{1}{\sigma_{n}}\right)
\end{aligned}
$$

- If A is singular or ill-conditioned, then we can use SVD to approximate its inverse by the following matrix:

$$
\begin{gathered}
A^{-1}=\left(U D V^{T}\right)^{-1} \approx V D_{0}^{-1} U^{T} \\
D_{0}^{-1}=\left\{\begin{array}{cc}
1 / \sigma_{i} & \text { if } \sigma_{i}>t \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

(where t is a small threshold)

- The condition of a matrix

- Consider the system of linear equations

$$
A x=b
$$

If small changes in b can lead to relatively large changes in the solution x, then we call A ill-conditioned.

- The ratio given below is related to the condition of A and measures the degree of singularity of A (the larger this value is, the closer A is to being singular)

$$
\sigma_{1} / \sigma_{n}
$$

(largest over smallest singular values)

- Least Squares Solutions of $m \mathbf{x} n$ Systems

- Consider the over-determined system of linear equations

$$
A x=b,(A \text { is } m \times n \text { with } m>n)
$$

- Let r be the residual vector for some x :

$$
r=A x-b
$$

- The vector x^{*} which yields the smallest possible residual is called a leastsquares solution (it is an approximate solution).

$$
\|r\|=\left\|A x^{*}-b\right\| \leq\|A x-b\| \text { for all } x \in R^{n}
$$

- Although a least-squares solution always exist, it might not be unique !
- The least-squares solution x with the smallest norm $\|x\|$ is unique and it is given by:

$$
A^{T} A x=A^{T} b \text { or } x=\left(A^{T} A\right)^{-1} A^{T} b=A^{+} b
$$

Example:

$$
\left[\begin{array}{cc}
-11 & 2 \\
2 & 3 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
7 \\
5
\end{array}\right]
$$

$$
x=A^{+} b=\left[\begin{array}{ccc}
-.148 & .180 & .246 \\
.164 & .189 & -.107
\end{array}\right]\left[\begin{array}{l}
0 \\
7 \\
5
\end{array}\right]=\left[\begin{array}{c}
2.492 \\
0.787
\end{array}\right]
$$

- Computing A^{+}using SVD

- If $A^{T} A$ is ill-conditioned or singular, we can use SVD to obtain a least squares solution as follows:

$$
\begin{gathered}
x=A^{+} b \approx V D_{0}^{-1} U^{T} b \\
D_{0}^{-1}=\left\{\begin{array}{cc}
1 / \sigma_{i} & \text { if } \sigma_{i}>t \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

(where t is a small threshold)

- Least Squares Solutions of $n \mathbf{x} n$ Systems

- If A is ill-conditioned or singular, SVD can give us a workable solution in this case too:

$$
x=A^{-1} b \approx V D_{0}^{-1} U^{T} b
$$

- Homogeneous Systems

- Suppose $b=0$, then the linear system is called homogeneous:

$$
A x=0
$$

(assume A is $m \times n$ and $A=U D V^{T}$)

- The minimum-norm solution in this case is $x=0$ (trivial solution).
- For homogeneous linear systems, the meaning of a least-squares solution is modified by imposing the constraint:

$$
\|x\|=1
$$

- This is a "constrained" optimization problem:

$$
\min _{\|x\|=1}\|A x\|
$$

- The minimum-norm solution for homogeneous systems is not always unique.

Special case: $\operatorname{rank}(A)=n-1\left(m \geq n-1, \sigma_{n}=0\right)$
solution is $x=a v_{n}(a$ is a constant $)$
(v_{n} is the last column of $V-$ corresponds to the smallest σ)

General case: $\operatorname{rank}(A)=n-k\left(m \geq n-k, \sigma_{n-k+1}=\cdots=\sigma_{n}=0\right)$

$$
\text { solution is } x=a_{1} v_{n-k}+a_{2} v_{n-k-1}+\cdots+a_{k} v_{n}\left(a_{i} \mathrm{~s} \text { is a constant }\right)
$$

$$
\text { with } a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}=1
$$

