Singular Value Decomposition (SVD)

(Trucco, Appendix A.6)

Definition

- Any real mxn matrix A can be decomposed uniquely as

$$A = UDV^T$$

U is *m*x*n* and column orthogonal (its columns are eigenvectors of AA^{T}) ($AA^{T} = UDV^{T}VDU^{T} = UD^{2}U^{T}$)

V is *n*x*n* and orthogonal (its columns are eigenvectors of $A^T A$) ($A^T A = VDU^T UDV^T = VD^2V^T$)

D is *n*x*n* diagonal (non-negative real values called *singular* values)

 $D = diag(\sigma_1, \sigma_2, \dots, \sigma_n)$ ordered so that $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n$ (if σ is a singular value of A, it's square is an eigenvalue of $A^T A$)

- If $U = (u_1 \ u_2 \cdots u_n)$ and $V = (v_1 \ v_2 \cdots v_n)$, then

$$A = \sum_{i=1}^{n} \sigma_i u_i v_i^T$$

(actually, the sum goes from 1 to *r* where *r* is the rank of *A*)

• An example

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \text{ then } AA^{T} = A^{T}A = \begin{bmatrix} 6 & 10 & 6 \\ 10 & 17 & 10 \\ 6 & 10 & 6 \end{bmatrix}$$

The eigenvalues of AA^T , A^TA are:

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 28.86 \\ 0.14 \\ 0 \end{bmatrix}$$

The eigenvectors of AA^T , A^TA are:

$$u_1 = v_1 = \begin{bmatrix} 0.454 \\ 0.766 \\ 0.454 \end{bmatrix}, u_2 = v_2 = \begin{bmatrix} 0.542 \\ -0.643 \\ 0.542 \end{bmatrix}, u_3 = v_3 = \begin{bmatrix} -0.707 \\ 0 \\ -0.707 \end{bmatrix}$$

The expansion of *A* is

$$A = \sum_{i=1}^{2} \sigma_{i} u_{i} v_{i}^{T}$$

Important: note that the second eigenvalue is much smaller than the first; if we neglect it from the above summation, we can represent *A* by introducing relatively small errors only:

$$A = \begin{bmatrix} 1.11 & 1.87 & 1.11 \\ 1.87 & 3.15 & 1.87 \\ 1.11 & 1.87 & 1.11 \end{bmatrix}$$

• Computing the rank using SVD

- The rank of a matrix is equal to the number of non-zero singular values.

Computing the inverse of a matrix using SVD

- A square matrix A is nonsingular iff $\sigma_i \neq 0$ for all i

- If A is a n x n nonsingular matrix, then its inverse is given by

$$A = UDV^{T} \text{ or } A^{-1} = VD^{-1}U^{T}$$

where $D^{-1} = diag(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, \dots, \frac{1}{\sigma_{n}})$

- If A is singular or ill-conditioned, then we can use SVD to approximate its inverse by the following matrix:

$$A^{-1} = (UDV^{T})^{-1} \approx VD_{0}^{-1}U^{T}$$
$$D_{0}^{-1} = \begin{cases} 1/\sigma_{i} & \text{if } \sigma_{i} > t \\ 0 & otherwise \end{cases}$$

(where *t* is a small threshold)

• The condition of a matrix

- Consider the system of linear equations

Ax = b

If small changes in b can lead to relatively large changes in the solution x, then we call A *ill-conditioned*.

- The ratio given below is related to the *condition* of A and measures the degree of singularity of A (the larger this value is, the closer A is to being singular)

 σ_1/σ_n

(largest over smallest singular values)

• Least Squares Solutions of mxn Systems

- Consider the over-determined system of linear equations

$$Ax = b$$
, (A is mxn with $m > n$)

- Let *r* be the residual vector for some *x*:

$$r = Ax - b$$

- The vector x^* which yields the smallest possible residual is called a *least-squares* solution (it is an approximate solution).

$$||r|| = ||Ax^* - b|| \le ||Ax - b||$$
 for all $x \in \mathbb{R}^n$

- Although a least-squares solution always exist, it might not be unique !

- The least-squares solution x with the smallest norm ||x|| is unique and it is given by:

$$A^T A x = A^T b$$
 or $x = (A^T A)^{-1} A^T b = A^+ b$

Example:

[-11	2	Γ]	$\begin{bmatrix} 0 \end{bmatrix}$
2	3	$\begin{vmatrix} x_1 \\ - \end{vmatrix} =$	7
2	-1	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$	5

$$x = A^{+}b = \begin{bmatrix} -.148 & .180 & .246 \\ .164 & .189 & -.107 \end{bmatrix} \begin{bmatrix} 0 \\ 7 \\ 5 \end{bmatrix} = \begin{bmatrix} 2.492 \\ 0.787 \end{bmatrix}$$

• Computing A⁺ using SVD

- If $A^T A$ is ill-conditioned or singular, we can use SVD to obtain a least squares solution as follows:

$$x = A^{+}b \approx VD_{0}^{-1}U^{T}b$$
$$D_{0}^{-1} = \begin{cases} 1/\sigma_{i} & \text{if } \sigma_{i} > t\\ 0 & otherwise \end{cases}$$

(where *t* is a small threshold)

• Least Squares Solutions of nxn Systems

- If A is ill-conditioned or singular, SVD can give us a workable solution in this case too:

$$x = A^{-1}b \approx VD_0^{-1}U^T b$$

• Homogeneous Systems

- Suppose *b*=0, then the linear system is called homogeneous:

Ax = 0

(assume A is mxn and $A = UDV^T$)

- The minimum-norm solution in this case is x=0 (trivial solution).

- For homogeneous linear systems, the meaning of a least-squares solution is modified by imposing the constraint:

||x|| = 1

- This is a "constrained" optimization problem:

 $\min_{||x||=1} ||Ax||$

- The minimum-norm solution for homogeneous systems is not always unique.

Special case: $rank(A) = n - 1 \ (m \ge n - 1, \sigma_n = 0)$

solution is $x = av_n$ (*a* is a constant) (v_n is the last column of *V* -- corresponds to the smallest σ)

<u>General case</u>: $rank(A) = n - k \ (m \ge n - k, \ \sigma_{n-k+1} = \dots = \sigma_n = 0)$

solution is $x = a_1 v_{n-k} + a_2 v_{n-k-1} + \dots + a_k v_n$ (a_i s is a constant) with $a_1^2 + a_2^2 + \dots + a_k^2 = 1$