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A Tutorial on Probability Theory

1. Probability and Uncertainty

Probability measures the amount of uncertainty of an event: a fact whose occurrence is uncertain.
Consider, as an example, the event R “Tomorrow, January 16th, it will rain in Amherst”. The
occurrence of R is difficult to predict — we have all been victims of wrong forecasts made by the
“weather channel” — and we quantify this uncertainty with a number p(R), called the probability
of R. It is common to assume that this number is non-negative and it cannot exceed 1. The two
extremes are interpreted as the probability of the impossible event: p(R) = 0, and the probability
of the sure event: p(R) = 1. Thus, p(R) = 0 asserts that the event R will not occur while, on the
other hand, p(R) = 1 asserts that R will occur with certainty.

Suppose now that you are asked to quote the probability of R, and your answer is p(R) = 0.7.
There are two main interpretations of this number. The ratio 0.7/03 represent the odds in favor of
R. This is the subjective probability that measures your personal belief in R. Objective probability
is the interpretation of p(R) = 0.7 as a relative frequency. Suppose, for instance, that in the last
ten years, it rained 7 times on the day 16th January. Then 0.7 = 7/10 is the relative frequency of
occurrences of R, also given by the ratio between the favorable cases (7) and all possible cases (10).

There are other interpretations of p(R) = 0.7 arising, for instance, from logic or psychology (see
Good (1968) for an overview.) Here, we will simply focus attention to rules for computations with
probability.

2. Basic Definitions

Definition 1 (Sample Space) The set of all possible events is called the sample space and is
denoted by S.

If we denote events by capital letters A,B, . . ., we write S = {A,B, . . .}. The identification of the
sample space depends on the problem at hand. For instance, in the exercise of forecasting tomorrow
weather, the sample space consists of all meteorological situations: rain (R), sun (S), cloud (C),
typhoon (T ) etc.

The sample space is a set, on which we define some algebraic operations between events.

Definition 2 (Algebraic Operations) Let A and B be two events of the sample space S. We will
denote

“A does not occur” by Ā;

“either A or B occur” by A ∪B;

“both A and B occur” by A,B;

“A occurs and B does not” by A\B ≡ A, B̄.

The events A and B are exhaustive if A∪B = S, in other words we are sure that either A or B will
occur. Thus, in particular A∪ Ā = S. The events A and B are exclusive if A,B = ∅, where ∅ is the
impossible event, that is the event whose occurrence is known to be impossible. In this case, we are
sure that if A occurs then B cannot. Clearly, we have A, Ā = ∅.
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Figure 1: Graphical representation of operations with events.

These operations with events are easily represented via Venn’s diagrams. Conventionally, we will
represent events as rectangles, whose area is their probability. Because S is the union of all possible
events, its probability is p(S) = 1 and we represent S as a square of side 1. Under this conventional
representation, we will call Ā the complementation of A, that is Ā = S\A. Similarly, the events
A ∪B, A,B and A\B will be called the union, the intersection and the difference of A and B.

Example 1 (Venn’s Diagrams) Figure 1 gives an example of a Venn’s diagram. The rectangle
of height 1.0 and basis 0.0 − 0.6 — of area 0.6 — represents the event A, with p(A) = 0.6. The
rectangle of height 1.0 and basis 0.2 − 0.7 represents the event B, with p(B) = 0.5. The event Ā
is the rectangle with basis 0.6 − 1.0, and B̄ is given by union of the rectangles with bases 0.0 − 0.2
and 0.7 − 1.0. The intersection of A and B is given by the rectangle with basis 0.2 − 0.6, so that
p(A,B) = 0.4. The union A ∪ B is given by the rectangle with basis 0.0− 0.7 with p(A ∪ B) = 0.7.
The event A\B is represented by the rectangle with basis 0.0 − 0.2, and B\A by the rectangle with
basis 0.6− 0.7. Thus, we have p(A\B) = 0.2 and p(B\A) = 0.1.

3. Basic Axioms

In Example 1 the probability of an event is the area of the rectangle that represents the event, and
the sample space is the union of all events. This representation can be generalized to more abstract
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spaces and leads to an axiomatic definition of probability (Kolmogorov, 1950) in terms of measure
over a collection of subsets. This collection is assumed to contain the empty set, and to be closed
under the complementation and countable union (i.e. ∪∞i=1Ai ∈ S.)

Theorem 1 Let S denote the sample space. A set function p(·) defined in S is a probability function
if:

1. For any event A in S, then p(A) ≥ 0;

2. p(S) = 1;

3. If A1, A2, . . . are exclusive events in S and hence Ai, Aj = ∅ for all i, j, then p(∪∞i=1Ai) =∑∞
i=1 p(Ai).

From these axioms, the following elementary properties can be derived. See Karr (1992, page 25)
for details.

Properties 1 Let p(·) be a probability function defined over the sample space S. Then p(·) satisfies
the following properties:

1. p(∅) = 0;

2. p(·) is finitely additive: if A1, A2, . . . , An are events in S, such that Ai, Aj = ∅ for all i 6= j,
then

p(∪n
h=1Ah) =

n∑

h=1

p(Ah). (1)

If these events form a partition of S, i.e. they are such that ∪n
h=1Ah = S, then p(∪n

h=1Ah) = 1;

3. p(A ∪ Ā) = p(A) + p(Ā) = 1, so that p(A) ≤ 1 for any A in S;

4. if A ⊂ B then p(B\A) = p(B)− p(A);

Axiom (iii) is known as countable additivity and it is rejected by a school of probabilists who replace
the countable additivity by finite additivity. Further details are in DeFinetti (1972).

Consider now the two events A and B in Figure 1. If we computed p(A ∪ B) as p(A) + p(B)
we would obtain p(A ∪ B) = 1.1 that exceeds 1. The error here is that, in computing p(A ∪ B) as
p(A)+ p(B), the event A,B is counted twice. Indeed, we can decompose A into (A\B)∪ (A,B) and
similarly B into (A,B) ∪ (B\A). Since the intersection (A\B), (A,B) = ∅, the events (A\B) and
(A,B) are exclusive and there follows, from item 3 in Theorem 1, that p(A) = p(A\B)+p(A,B), and
similarly p(B) = p(A,B) + p(B\A). The event A ∪B is given by (A\B) ∪ (A,B) ∪ (B\A), and the
three events are exclusive. Thus, from property (1) we have p(A∪B) = p(A\B)+p(A,B)+p(B\A) =
p(A\B) + p(A,B) + p(B\A) + p(A,B)− p(A,B) = p(A) + p(B)− p(A,B). The rule derived in this
example holds in general:

p(A ∪B) = p(A) + p(B)− p(A,B). (2)

In particular, (2) reduces to (1) when A,B = ∅ and hence p(A,B) = 0.
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4. Conditional Probability

The probabilities considered so far are unconditional probabilities. In some situations, however,
we may be interested in the probability of an event given the occurrence of some other event. For
instance, the probability of R: “Tomorrow, January 16th, it will rain in Amherst” would change, if we
happened to know that tomorrow is a cloudy day. Formally, if we denote by C the event “Tomorrow,
16th of January, will be cloudy”, assuming the occurrence of C is equivalent to restricting our
sample space, because other events as S (sunny day) are ruled out. We thus need to recompute
the probability of R by taking into account this new piece of information. This is formally done by
considering the conditional probability of R given that C occurs. This event is denoted by R|C.

Consider the events A and B in Figure 1. If we limit the scenario of possible events to A, the
occurrence of B would be restricted to A,B. If we knew that A occurs, we would then deduce
p(B|A) = p(A, B). However, since p(A) < 1, we can only state that p(B|A) = kp(A,B), where k
is a proportionality constant that accounts for the uncertainty in the occurrence of A. Clearly, we
have p(A|A) = 1 and also p(A|A) = kp(A,A) = kp(A). From this, we deduce that k = 1/p(A) and
the conditional probability is thus defined as follows.

Definition 3 (Conditional Probability) Let A and B events in S, and suppose that p(A) > 0.
The conditional probability of B given A is:

p(B|A) =
p(B, A)
p(A)

. (3)

To emphasize that p(A) is unconditional, p(A) is called marginal probability.

Example 2 (Conditional Probability) Consider choosing a card from a well-shuffled standard
deck of 52 playing cards. The probability that the first card extracted is an ace is clearly 4/52.
Suppose that, after the first extraction, the card is not reinserted in the deck. What is the probability
that the second card is an ace, given that the first card is an ace? Let A be the event that the first
card is an ace, and let B be the event that the second card is an ace. The probability of A,B is

12
2652

=
possible pairs of aces

all possible pairs of cards

and p(A) = 4/52. On using (3) we have

p(B|A) =
12

2652
4
52

=
3
51

.

Indeed, there are three aces left in a deck of 51 cards.

From the definition of conditional probability in (3), we derive the probability of the intersection of
two events, called their joint probability in terms of conditional and marginal probabilities:

p(A, B) = p(B|A)p(A). (4)

This rule can be applied to a larger number of events and produces the multiplication rule or
factorization rule.
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Definition 4 (Multiplication Rule) The joint probability of a set of events A1, A2, . . . , An can
be expressed as

p(A1, A2, . . . , An) = p(A1)p(A2|A1)p(A3|A1, A2) . . . p(An|A1, A2, . . . , An)

Consider again the events A and B represented in Figure 1. The events A and Ā form a partition
of S, so that we can decompose B into the union of the two exclusive events A,B and Ā, B. Thus,
if we use (4) and the third axiom of probability — item 3 in Theorem 1 — we have:

p(B) = p(A, B) + p(Ā, B) = p(B|A)p(A) + p(B|Ā)p(Ā). (5)

Formula (5) is known as the Total Probability Theorem and expresses the marginal probability of
B as a weighted average of the conditional probabilities p(B|A) and p(B|Ā) with weights given by
p(A) and p(Ā). The importance of the Total Probability Theorem is that, sometimes, expressing
conditional probabilities can be easier than expressing marginal probabilities, and (5) can be used
to “break down” an event in more specific events, on which a more precise knowledge is available.
Suppose, as an example, that B is the event that the result of a test to diagnose the presence of
a disease A is positive. Quantifying the incidence of false positive (B|Ā) and false negative (B̄|A)
can be easier than quantifying the marginal probability of B. If, further, the incidence rate of A is
known, then (5) can be used to derive p(B).

The multiplication rule and the Total probability theorem can be extended to conditional prob-
abilities. So,

p(A1, A2, . . . , An|C) = p(A1|C)p(A2|A1, C)p(A3|A1, A2, C) . . . p(An|A1, A2, . . . , An, C)

and

p(B|C) = p(B|A, C)p(A|C) + p(B|Ā, C)p(Ā|C).

5. Bayes’ Theorem

From p(A|B) = p(B, A)/p(B) we can also write p(A, B) = p(A|B)p(B). Putting these relations
together, we derive the Bayes’ Theorem:

p(A|B) =
p(A,B)
p(B)

=
p(B|A)
p(B)

p(A) =
p(B|A)p(A)

p(B|A)p(A) + p(B|Ā)p(Ā)
. (6)

Bayes’ Theorem can be regarded as a rule to update an initial probability p(A), also called the
prior probability, into an revised probability p(A|B), called the posterior probability, that takes into
account the updated knowledge currently available. In the example above Bayes’ Theorem can be
used to revise the probability that an individual has the disease, if the result of the test turns out
to be positive. The next example is adapted from Casella and Berger (1990, page 21).

Example 3 (Bayes’ Theorem) Morse code uses “dots” and “dashes”, which are known to occur
in the proportion 3:4. Let D denote the event “a dot is sent”, and let D̄ denote the event “a dash
is sent”. Thus, we have p(D) = 3/7. When coded messages are sent, there can be errors in the
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transmission. Suppose that, with probability 1/8, a dot sent is erroneously received as a dash and
vice-versa. If a dot is received, what is the probability that a dot was sent?

Let R denote the event “a dot is received”, we wish to calculate the posterior probability p(D|R),
which, by Bayes’ Theorem, is:

p(D|R) =
p(R|D)p(D)

p(R)
.

The probabilities p(R|D) and p(D) are known. We only need to compute the marginal probability
p(R). We know that p(R̄|D) = 1/8 as well as p(R|D̄) = 1/8. Thus, we can compute p(R̄|D̄) = 7/8,
and

p(R) = p(R|D)p(D) + p(R|D̄)p(D̄) =
7
8

3
7

+
1
8

4
7

=
25
56

.

Thus, p(D|R) = 21/25.

6. Independence and Conditional Independence

When we apply Bayes’ Theorem, we assume that the occurrence of an event B changes the probability
of A. If, on the other hand, occurrence of B does not change the probability of A, then A and B
are independent events. Thus, by definition we have

p(A) = p(A|B) =
p(A,B)
p(B)

from which we derive that p(A,B) = p(A)p(B).

Definition 5 (Independence) Two events A and B, with p(A) > 0 and p(B) > 0 are independent
if

p(A,B) = p(A)p(B).

In words, the joint probability of two independent events factorizes into the product of the marginal
probabilities. If A and B are independent, so are A and B̄, Ā and B, as well as Ā and B̄. For
example, p(Ā, B̄) = p(S − (A ∪ B)), where S denotes the sample space, and p(S − (A ∪ B)) =
1− p(A ∪B) = (1− p(A))(1− p(B)). The proof of the other properties is left as an exercise. Note
also that exclusive events cannot be independent because 0 = p(A,B) = p(A)p(B) if and only if
either p(A) = 0 or p(B) = 0.

Example 4 (Independence) Consider an urn, containing r red balls and b black balls. A ball is
drawn at random and then replaced, then a second ball is drawn at random. Let Ri be the event:
“the i-th ball drawn is red”, and let Bi be the event: “the i-th ball drawn is black”. Since, at each
drawning, the composition of the urn is unchanged, we have

p(B1) =
b

r + b
= p(B2|B1)

from which there follows that B1 and B2 are independent. For fixed i, the events Ri and Bi are
exhaustive. We thus have independence of R1 and B2, R1 and R2, and B1 and R2.
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The events A1, A2, . . . , An are called pair-wise independent, if p(Ai, Aj) = p(Ai)p(Aj) for all possible
pairs. When the factorization rule applies for all intersection of subsets of events, then A1, A2, . . . , An

are called mutually independent. Pair-wise independence does not generally imply mutual indepen-
dence. For example, suppose that A1, A2, A3 are pair-wise independent, p(Ai) > 0 for all i and
A1, A2, A3 = ∅, then p(A1, A2, A3) = 0 and the factorization rule does not apply.

Definition 6 (Conditional Independence) Two events A and B, with p(A) > 0 and p(B) > 0
are independent, given C, if

p(A,B|C) = p(A|C)p(B|C).

Independence does not imply conditional independence, so that it may happen that two events A
and B are independent given C, but they are not independent when considered alone.

Example 5 (Conditional Independence and Marginal Dependence) Let A, B conditional
independent events given C, and suppose that p(C) = 1/2, p(A|C) = 1/3, p(A|C̄) = 1/2, and
p(B|C) = 1/2, p(B|C̄) = 1/3. By the total probability theorem, we have p(A) = p(A|C)p(C) +
p(A|C̄)p(C̄) = 5/12 and, similarly, p(B) = 5/12. Now, we compute the joint probability p(A,B) as

p(A, B) = p(A,B|C)p(C) + p(A,B|C̄)p(C̄)

and by the conditional independence of A and B given C,

p(A,B|C)p(C) + p(A,B|C̄)p(C̄) = p(A|C)p(B|C)p(C) + p(A|C̄)p(B|C̄)p(C̄) = 1/6.

There follows that p(A, B) 6= p(A)p(B) and hence the two events are not independent.

It may also happen that two events A and B are independent, but they are not independent given
C.

Example 6 (Marginal Independence and Conditional Dependence) Let A, B independent
events, with p(A) = 1/2 and p(B) = 2/3. By independence, there follows that p(A,B) = 1/3. Let
now C be an event with p(C) = 1/4, and suppose that p(A|C) = p(B|C) = 1/3, and p(A|C̄) = 5/9
and p(B|C̄) = 7/9. It is easy to check that this conditional probabilities are such that p(A) =
p(A|C)p(C) + p(A|C̄)p(C̄) and p(B) = p(B|C)p(C) + p(B|C̄)p(C̄). Suppose now that p(A,B|C) =
1/6 and that p(A, B|C̄) = 7/18. By the total probability theorem, we have p(A,B|C)p(C)+p(A, B|C̄)p(C̄) =
1/24+7/24 = 1/3 = p(A, B), so that the conditional probabilities are consistently defined. However,
p(A,B|C) = 1/6 6= 1/9 = p(A|C)p(B|C). There follows that A and B are independent by definition
but we have found an event C such that A|C and B|C are not independent.

7. Discrete Random Variables

Suppose the events A1, A2, . . . , An form a partition of S, hence p(Ai) ≥ 0 and
∑n

i=1 p(Ai) = 1. We
can associate each event Ai with the value of a discrete variable X, for instance, by setting X = i
if Ai occurs. In this way, we construct a variable which maps the sample space S into the integer
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xi p(X = xi)
0 1− p
1 p

Table 1: Probability mass function of the binary variable X

numbers 1, 2, . . . , n. The uncertain occurrence of the events A1, A2, . . . , An is then inherited by the
variable X, and we can write p(X = i) = p(Ai), or p(X = xi) = p(Ai). Because this variable X
takes on values with some probability, it is called a random variable. A random variable is defined
by the values xi — they are also called categories, or states — and the probabilities p(X = xi).
The set of pairs xi, p(X = xi) defines the probability mass function of X (p.m.f.). Note that,
since A1, A2, . . . , An form a partition of S, then p(A1 ∪ A2 ∪ . . . ∪ An) = 1. We then have that∑n

i=1 p(X = i) = 1 and the p.m.f. is normalized. Random variables that take a finite (or countable)
number of states are referred to as discrete random variables.

Example 7 (Bernoulli Trials) During an opinion poll, British people are asked to whether they
favor a common European market or not. Let E denote the event that the answer of a person is yes,
and let p(E) = p. By coding the two types of answers into 1 (yes) and 0 (no), we define the binary
variable X. The p.m.f. is reported in Table 1. Experiments as the one described in this example, in
which the outcome is binary, are called Bernoulli trials.

Associating events with values of a random variable enables us to compute summaries — description
— of the phenomenon under investigation. For example, in the opinion poll described in Example 7,
a sample of n people may be interviewed, and the interest of the interviewer may be in the number
of people who answer yes. In this case, we have X1, X2, . . . , Xn random variables, where Xi codes
the answer of the ith interviewed, and X =

∑n
i=1 Xi is the frequency of positive answers.

Example 8 (Binomial Distribution) Suppose that a sample of 3 British people are asked to
whether they favor a common European market or not and let X1, X2, X3 be the variables cod-
ing the 3 answers. Let X =

∑3
i=1 Xi be the frequency of 1s in the sample, that is the frequency of

positive answers. The first column in Table 2 reports the eight possible ordered combinations ci of
answers in the sample. The second column reports the value of X. Suppose also that the answers
given by different individuals are independent, and that every individual gives a positive answer with
the same probability p. By independence, we can then compute the probability of each value of X.
These probabilities are in the last column of Table 2.

The range of values of X is given by the integers x = 0, 1, 2, 3, and the probability that X = x
is independent of the order of the answers, e.g. p(X = 1) = p(1 − p)2 for the three possible orders
of answers E, Ē, Ē, Ē, E, Ē and Ē, Ē, E. By grouping combinations of answers that have the same
probability of occurrence, we have

p(X = x) =
3!

x!(3− x)!
px(1− p)3−x x = 0, 1, 2, 3

where 3!/[x!(3− x)!] is the number of different sequences of 3 elements containing E x times. This
random variable is said to have a Binomial distribution.
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ci x p(X = x)
Ē, Ē, Ē 0 (1− p)3

E, Ē, Ē 1 p(1− p)2

Ē, E, Ē 1 p(1− p)2

Ē, Ē, E 1 p(1− p)2

E, E, Ē 2 p2(1− p)
E, Ē, E 2 p2(1− p)
Ē, E, E 2 p2(1− p)
E, E, E 3 p3

Table 2: Probability mass function of the variable X =
∑3

i=1 Xi

Definition 7 (Binomial Distribution) Let Xi (i = 1, ..., n) be n binary random variables asso-
ciated to n independent Bernoulli trials, with a common p(Xi = 1) = p for all i. Then, the variable
X =

∑n
i=1 Xi has a Binomial distribution whose p.m.f. is

p(X = x) =
n!

n!(n− x)!
px(1− p)n−x x = 0, ..., n

where n!/[x!(n − x)!] is the Binomial coefficient, which gives the number of ways n objects can be
grouped into two classes having x and n− x objects respectively, and px(1− p)n−x is the probability
of observing one such ordered combination. The distribution of this variable will be denoted as1

X ∼ Bin(n, p). The quantities n and p are parameters that identify a specific Binomial distribution.

In general, we will denote the range of values taken by the variable as {x1 < x2 . . . < xn}, and the
p.m.f. as p(X = xi) = p(xi). The p.m.f. describes the probability of individual events. In many
applications, we may be interested in evaluating the probability of the union of events, as p(X ≤ xj)
or p(xi < X ≤ xj) for some given xi, xj . Note first the difference between the events X < xj

and X ≤ xj . The former is the event X = x1 ∪ X = x2 ∪ ... ∪ X = xj−1 — as X < xj denotes
the event that X takes a value in the set {x1 < x2 . . . < xj−1} — while the latter is the event
X = x1 ∪ X = x2 ∪ ... ∪ X = xj , since the value xj can be taken, as well as any of the values
in {x1 < x2 . . . < xj−1}. The states of the variable X are associated with exclusive events and
hence the probability of the event X = x1 ∪ X = x2 ∪ ... ∪ X = xj is

∑j
i=1 p(xi). The value of

p(xi < X ≤ xj) is the probability of the event X = xi+1 ∪ X = xi+2 ∪ ... ∪ X = xj and it can
be written as p(X ≤ xj) − p(X ≤ xi). there follows that the evaluation of complex events can
be done by evaluating first the cumulative probabilities, say p(X ≤ xj) and p(X ≤ xi), and by
then manipulating them. When x is a variable, the function p(X ≤ x) is called the cumulative
distribution function (c.d.f). The c.d.f fully characterizes a random variable (Casella and Berger,
1990).

Definition 8 (Cumulative Distribution Function (c.d.f)) Let X be a discrete random vari-
able. The cumulative distribution function is defined as FX(x) = p(X ≤ x), for all x ∈ (−∞, +∞).

For any xi ≤ x < xi+1 the c.d.f is given by FX(x) = p(X ≤ x) =
∑i

j=1 p(xj). Clearly FX(x) = 0 for
all x < x1, because X cannot take values smaller than x1, and FX(x) = 1 for all x ≥ xn, since, with

1the symbol ∼ is read as “distributed as”
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x FX(x)
(−∞, 0) 0
[0, 1) (1− p)3

[1, 2) (1− p)3 + 3p(1− p)2

[2, 3) (1− p)3 + 3p(1− p)2 + 3p2(1− p)
[3,∞) (1− p)3 + 3p(1− p)2 + 3p2(1− p) + p3 = (p + 1− p)3 = 1

Table 3: Cumulative distribution function of the variable X =
∑3

i=1 Xi.

-2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

CD
F

Figure 2: Graphical representation of the c.d.f in Table 7 for p = 0.5. Circles identify the value of
the c.d.f at the jump points.

probability 1, X takes one of the values x1, . . . , xn. The Table 7 reports the c.d.f of the variable X
of Example 8. Figure 2 gives a graphical representation of the c.d.f in Table 7 for p = 0.5. The plot
shows that the c.d.f is a step function with jumps that occur at the points xi. At the jump point
xi, the c.d.f takes 2 the value

∑i
j=1 p(xj). The size of the jump is p(xi). Note that the c.d.f is a

non-decreasing function.

The properties highlighted in this example hold in general and characterize a c.d.f as shown in
the next Theorem.

Theorem 2 A function F (x) is a c.d.f of a variable X if and only if:

1. limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1;

2. F (x) is a non-decreasing function of x;
2Technically, this property is called right-continuity (Casella and Berger, 1990)
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3. F (x) is right-continuous, that is the right-limit limx↓xi
F (x) = F (xi).

The examples described so far were focused on discrete random variables taking on a finite
number of states. However, a discrete random variable can also take a countable number of states,
e.g. the range of values can be the set of integer number N = {0, 1, 2, ...}.

Example 9 (Poisson Distribution) Let X be a discrete random variable taking values in the set
N of integer numbers with probability

p(X = x) =
λx

x!
e−λ x = 0, 1, 2, ...

It can be shown that
∑∞

x=0 p(X = x) = 1. A random variable having this p.m.f. is said to have a
Poisson distribution and it is usually denoted by P (λ). This distribution is usually associated with
count data, and it can also be derived as limit of the Binomial distribution for n → ∞. See Wilks
(1963) for details.

8. Continuous Random Variables

Theorem 2 does not exclude the possibility that the c.d.f of a random variable X be a continuous
function. In this case, X is said to be continuous and it is assumed to be defined over the all real
line.

Definition 9 (Density Function) Let FX(x) be a continuous function satisfying the conditions
stated in Theorem 2. The associated variable X is then called a continuous random variable. The
function f(·) that verifies

F (x) =
∫ x

−∞
f(t)dt

is termed the density function (d.f.) and has the properties of being non-negative (f(x) ≥ 0 for all
x in (−∞,∞)) and normalized (

∫∞
−∞ f(x)dx = 1.)

A continuous random variable usually represents events related to measurements. Examples are the
variable representing the height of white males in United Kingdom the 31st of December 1998 or the
variable representing the length of an object measured with an imprecise instrument. In both cases,
the variables take real values and we need to be precise about the meaning of the event X = x.
For example, the integer x = 1, or the rational x = 1/2 are examples of real numbers. But also
x =

√
2 = 1.4142... or x = π = 3.14... are examples of real numbers and the notation adopted is

a conventional way to represent the fact that both x =
√

2 = 1.4142... or x = π = 3.14... have
an expression as infinite decimal numbers. What do we mean by the probability of the event “the
height of a white male is 178.8976...cm” or “the length of the object is 3.9876...m”? Both events
are so rare that their probability goes to zero. On the other hand, it is non-trivial to consider
probability of events as “the height of a white male is between 178cm and 179cm” or “the length
of the object is between 3.9m and 4.0m” and they both increase with the range of possible values.
Hence, a non-zero probability is associated with intervals and not points and the limiting range of
values we can consider is the infinitesimal interval dx. Thus, with continuous variables, we regard
the event X = x as actually the event that X takes values in the range x, x + dx and

∫ x+dx

x
f(x)dx

12
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is its probability. A consequence of this assumption is that the events a ≤ X < b and a < X < b
will have the same probability — while we have to treat them as different when X is discrete —
since we are assuming that X = a is essentially a < X < a + dx.

The probability of an event a ≤ X < b is computed by using the c.d.f. Hence, by writing p(a ≤
X < b) = p(X < b)− p(X ≤ a) and using the definition of c.d.f, we have p(a ≤ X < b) =

∫ b

a
f(x)dx.

By plotting the d.f. against the x values, the probability of a ≤ X < b is represented by the area
between the density function and the x-axis, with a ≤ x < b.

Example 10 (Uniform Distribution) The function

f(x) =
{

1 if 0 ≤ x ≤ 1
0 otherwise

defines a d.f., being non-negative and normalized as
∫∞
−∞ f(x)dx =

∫ 1

0
dx = 1. The associated

random variable X is said to have a Uniform distribution over the range 0–1, and sometimes it is
denoted by X ∼ U(0, 1). It is straightforward to show that this distribution assigns probability b− a
to an event a ≤ X < b. The range of definition of a uniform distribution can be generalized to
any finite interval [α, β] by defining the d.f. f(x) = 1/(β − α). In this case, the distribution will be
denoted by U(α, β) and it assigns probability (b− a)/(β − α) to any event a ≤ X ≤ b.

The c.d.f of a continuous random is in a one-to-one relationship with the d.f. and, often, continuous
random variables are described in terms of their d.f.. We note that the properties of a d.f. of being
non-negative and normalized are also sufficient to characterize a d.f.. A proof of this statement is
given for instance by Karr (1992).

Example 11 (Normal Distribution) A continuous random variable X defined in (−∞,∞) and
with d.f.:

f(x) =
1√

2πσ2
e−(x−µ)2/(2σ2)

is said to have a Normal distribution — or Gaussian distribution — with parameters µ and σ2. The
parameters µ and σ2 identify, respectively, the point of symmetry of the distribution — the d.f. is
symmetrical about µ — and the “spread” of the d.f. about µ. When µ = 0 and σ2 = 1 the distribution
is called Normal Standard. Examples are in Figure 3 that plots three d.f. for µ = 0 and increasing
values of σ2 (σ2 = 0.25 dotted line; σ2 = 1 continuous line; σ2 = 2 dashed line.) Small values of
σ2 make the d.f. more concentrated about µ, while large values of σ2 enlarge the spread of the d.f..
Consider the event X ≤ −1 that, by symmetry, will have the same probability of the event X ≥ 1.
The area between the x-axis, the d.f. and the line x = −1 represents p(X ≤ −1), and this quantity
will decrease as σ2 decreases. On the other hand, p(−1 ≤ X ≤ 0) — represented by the area between
thed.f., the x-axis and the lines x = −1 and x = 0 — will increase as σ2 decreases. The symmetry
of the d.f. ensures also that p(X ≤ µ) = p(X ≥ µ) = 0.5.

The c.d.f is the integral function

Φ(x) =
∫ x

−∞
f(t)dt

13
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Figure 3: Density of Normal distributions with µ = 0 and different σ2: σ2 = 1 continuous line;
σ2 = 0.25 dotted line; σ2 = 2 dashed line.

that has no closed form solution. Hence, numerical integration techniques are required to evaluate
probability of events of interest.

The Normal distribution can be also derived as limiting distribution from a Binomial distribution
for n →∞ via the Central Limit Theorem. We state the Central Limit Theorem only to show that
the limiting distribution of a Binomial random variable is a Normal distribution. More details are
in Feller (1968).

Theorem 3 (Central Limit Theorem) Let X ∼ (Bin(n, p). Then

lim
n→∞

p(X ≤ x) =
∫ x

−∞

1√
2π[np(1− p)]2

e−(x−np)2/(2[np(1−p)]2)

Hence, the limiting c.d.f is that of a Normal distribution with parameters µ = np and σ2 = np(1−p).

A family of p.m.f.s is called an Exponential family with parameter θ if the d.f. can be written:

f(x) = h(x)g(θ)e
∑k

i=1
wi(θ)ti(x)

The exponential family contains many important discrete and continuous random variables. In the
former case, the d.f. represents the p.m.f.. It is left as an exercise to show that the distributions in
Table 8 belong to the exponential family.

A complete treatment of continuous random variables is given by Casella and Berger (1990).
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Distribution θ h(x) g(θ) wi(x) ti(θ)
Bin(n, p) p n!

x!(n−x)! (1− p)n w1(θ) = log p
(1−p) t1(x) = x

P (λ) λ 1
x! e−λ w1(λ) = λ t1(x) = 1

N(µ, σ2) (µ, σ2) 1 e−µ2/(2σ2)√
2πσ2 w1(θ) = −1

2σ2 t1(x) = x2

w2(θ) = µ
σ2 t2(x) = x

Table 4: Distributions that belong to the exponential family.

9. Multivariate Distributions

The variables described so far are univariate variables that take on values in a subset of the real
numbers. We can generalize the definition of random variables to vectors. A vector in Rc is a
set of c univariate variables, and we will denote it by X = (X1, ..., Xc). A vector X takes values
x = (x1, ..., xc) in a subset of Rc. Note that we will use bold-face to denote a vector. The components
of a vector will have an index identifying their position. When we refer to a particular value, as
X = xj , then we will use the notation xj = (x1j , ..., xcj).

Definition 10 (Random Vectors) A random vector X = (X1, ..., Xc) is a vector whose compo-
nents Xi are univariate random variables. If Xi are all discrete, then X is a discrete random vector.
If Xi are all continuous, X is called a continuous random vector.

The distribution of a random vector is characterized by the joint c.d.f that is defined as

p(X ≤ x) = F (x) = p(X1 ≤ x1, ..., Xc ≤ xc) x = (x1, ..., xc)

Note that (X1 ≤ x1, ..., Xc ≤ xc) is the intersection of events Xi ≤ xi, as it represents the event that
the components Xi satisfy simultaneously the condition Xi ≤ xi, for all i. We can also describe the
joint distribution of a random vector in terms of the joint p.m.f. or d.f., that are defined as

discrete p(x) = p(X1 = x1, ..., Xc = xc)
continuous f(x) = f(x1, ..., xc)

and, again, X1 = x1, ..., Xc = xc is the event that Xi = xi simultaneously, i.e. for all i. The p.m.f.
obeys the rule that

∑
x p(x) = 1, while the d.f. is such that

∫∞
−∞ ...

∫∞
−∞ f(x1, ..., xc)dx1...dxc = 1.

Hence, they are both normalized.

Example 12 (A Bivariate Distribution) Let X1 and X2 be two binary variables, taking values,
say, 1 and 2. The joint p.m.f. of X = (X1, X2) can be represented by a 2 × 2 table, containing the
probability p(X1 = xi, X2 = xj), (i, j = 1, 2), and

∑2
i=1

∑2
j=1 p(X1 = xi, X2 = xj) = 1. An example

is in Table 12.

From the joint p.m.f., we can derive the marginal distribution of each component — or set of compo-
nents — of the vector X. Consider, for example, the p.m.f. in Table 12. The first row of the Table
gives the probabilities p(X1 = 1, X2 = 1) and p(X1 = 1, X2 = 2). Summing up these two probabili-
ties p(X1 = 1, X2 = 1)+p(X1 = 1, X2 = 2) is equivalent to applying the Total Probability Theorem
in (5) to the events X1 = 1, X2 = 1 and X1 = 1, X2 =, so that p(X1 = 1, X2 = 1)+p(X1 = 1, X2 = 2)
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X2

X1 1 2
1 p(X1 = 1, X2 = 1) p(X1 = 1, X2 = 2)
2 p(X1 = 2, X2 = 1) p(X1 = 2, X2 = 2)

Table 5: Joint p.m.f. of the random vector X = (X1, X2)

X2 Marginal
X1 1 2
1 p(X1 = 1, X2 = 1) p(X1 = 1, X2 = 2) p(X1 = 1)
2 p(X1 = 2, X2 = 1) p(X1 = 2, X2 = 2) p(X1 = 2)

Marginal p(X2 = 1) p(X2 = 2)

Table 6: Joint p.m.f. of the random vector X = (X1, X2), and marginal p.m.f.s of X1 and X2.

is the marginal probability of X1 = 1. Similarly, p(X1 = 2, X2 = 1) + p(X1 = 2, X2 = 2) =
p(X1 = 2). Because the joint p.m.f. of X1 and X2 is normalized, the probabilities p(X1 = 1) and
p(X1 = 2) sum up to one and define the p.m.f. of the univariate variable X1. We can also derive
the marginal distribution of X2 as p(X2 = 1) = p(X1 = 1, X2 = 1) + p(X1 = 2, X2 = 1) and
p(X2 = 2) = p(X1 = 1, X2 = 2) + p(X1 = 2, X2 = 2). The marginal p.m.f.s of both X1 and X2 can
be displayed in Table 12 by adding a column and row as in Table 9.

When the random vector X has more than two components, we can also talk about the marginal
distribution of a random vector having a subset of the components of X. For instance, if X =
(X1, X2, X3) is a random vector in R3, then (X1, X2) is a random vector in R2. The p.m.f. of
(X1, X2) is defined as p(X1 = x1i, X2 = x2j) =

∑
k p(X1 = x1i, X2 = x2j , X3 = x3k) for all i and j.

We can now give a formal definition of marginal distribution for discrete random variables.

Definition 11 (Marginal Distribution: The Discrete Case) Let X = (X1, ..., Xc) be a dis-
crete random vector, with p.m.f. p(X = x). The marginal distribution of any vector (X1, ..., Xs)
(s < c) has p.m.f.

p((X1, ..., Xs) = (x1, ..., xs)) =
∑

xs+1,...,xc

p(X1 = x1, ..., Xs = xs, ..., Xc = xc)

where xs+1, ..., xc denotes all values that Xs+1, ..., Xc can take.

Example 13 (Multinomial Distribution) Let X be a discrete variable taking values 1, ..., c with
probability p(X = i) = pi and

∑c
i=1 pi = 1. Suppose we can observe the outcomes of n independent

observations of the variable X, and that we are interested in the probability of the possible distri-
butions of the n values into the c possible categories of X. We shall denote one such outcome as
x = (x1, ..., xc),

∑
i xi = n, and define by X the random vector that takes values x. Then, it can be

shown that the p.m.f. of X is

16
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p(X = x) =
n!

x1!...xc!

c∏

i=1

pxi
i (7)

where n!/(x1!...xc!) is the multinomial coefficient that represents the number of ways in which n
objects can be grouped into c classes, each containing xi objects, and

∏c
i=1 pxi

i is the probability
of one such ordered distribution of values. A random vector having p.m.f. as in (7) is said to
have a Multinomial distribution with parameters n and p = (p1, ..., pc) and we will denote it as
X ∼ Mult(n,p). Note that if X is a bivariate distribution then, by setting 1 − p1 = p2 and
n− x1 = x2, we have

p(X = x) =
n!

x1!(n− x1)!
px1
1 (1− p)n−x1

that characterizes a Binomial distribution. A property of a multinomial distribution is that every
individual component Xi has a Binomial distribution Bin(n, pi). A proof of this result can be found
in Casella and Berger (1990), page 173.

From the joint and marginal p.m.f.s we can then derive the conditional probability p(X2 = 1|X1 =
1) = p(X1 = 1, X2 = 1)/p(X1 = 1) as well p(X2 = 2|X1 = 1) = p(X1 = 1, X2 = 2)/p(X1 = 1.
Note that p(X2 = 1|X1 = 1) + p(X2 = 2|X1 = 1) = 1 and hence the two probabilities p(X2 =
1|X1 = 1), p(X2 = 2|X1 = 1) define a p.m.f.. Since p(X2 = 1|X1 = 1), p(X2 = 2|X1 = 1)
represent conditional probabilities when X1 = 1, the distribution having p.m.f. defined by p(X2 =
1|X1 = 1), p(X2 = 2|X1 = 1) is called the conditional distribution of X2 given X1 = 1. We
will use the notation X2|X1 = 1 to denote the conditional variable. We can similarly define the
conditional distribution of X2|X1 = 2 via the p.m.f. p(X2 = 1|X1 = 2), p(X2 = 2|X1 = 2) as
well as the two conditional distributions of X2 given X1 = 1, 2 whose p.m.f.s will respectively be
p(X1 = 1|X2 = 1), p(X1 = 2|X2 = 1) and p(X1 = 1|X2 = 2), p(X1 = 2|X2 = 2). The definition can
be extended to the case in which the condition event is the intersection of several events, and it is
represented by X = x.

Definition 12 (Conditional Distribution: The Discrete Univariate Case) Let X1 be a uni-
variate random variable, and let X be a random vector. The conditional distribution X1|X = x has
p.m.f.

p(X1 = x1|X = x) =
p(X1 = x1,X = x)

p(X = x)
. (8)

Definition 12 defines a univariate conditional distribution. The extension to multivariate conditional
distributions is obtained by considering

p(X1 = x1|X = x) =
p(X1 = x1,X = x)

p(X = x)
(9)

where now X1 is a random vector.

Example 14 (Multinomial Case) Let X = (X1, ..., Xc) be a random vector having a Multino-
mial distribution Mult(n, p). A property of a multinomial distribution is the closure under con-
ditioning, i.e. (X1, ..., Xc−1)|Xc = xc has a multinomial distribution with parameters n − xc and
(p1/pc, ..., pc−1/pc) (?)page 173]Casella90.
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For continuous random vectors, the d.f. is a multivariate function, that is used to compute the joint
probability of an event as the solution of a multiple integral:

p(X1 ≤ x1, ..., Xc ≤ xc) =
∫ x1

−∞
...

∫ xc

−∞
f(t1, ..., tc)dt1...dtc

Example 15 (A Bivariate Normal) Let X = (X1, X2) be a bivariate continuous random vector.
Define the column vectors

x =
(

x1

x2

)
µ =

(
µ1

µ2

)

and the 2× 2 symmetric matrix

Σ =
(

σ2
1 σ2

12

σ2
12 σ2

2

)

Now, we use these parameters to define the d.f.:

f(x1, x2) =
1

2π detΣ
e−(x−µ)T Σ−1(x−µ)/2

where (x− µ)T is a row vector. Then, the vector X = (X1, X2) is said to have a bivariate Normal
distribution with multivariate parameters µ and Σ. From this d.f., we can evaluate the probability,
say, p(X1 < 0, X2 < 1) as

p(X1 < 0, X2 < 1) =
∫ 0

−∞

∫ 1

−∞
f(x1, x2)dx1dx2

Note that the integral can only be solved using numerical integration techniques (Evans and Swartz,
1995).

When the components of X are continuous, the marginal distribution of a vector having, as elements,
a subset of components of X is usually defined in terms of the d.f.

Definition 13 (Marginal Distribution: The Continuous Case) Let X = (X1, ..., Xc) be a
continuous random vector, with d.f. f(x). The marginal density of (X1, ..., Xs) is defined as

f(x1, ..., xs) =
∫ ∞

−∞
...

∫ ∞

−∞
f(x)dxs+1...dxc.

Example 16 (Closure of Multivariate Normal Distribution) The multivariate Normal dis-
tribution has the same property of being closed under marginalization that we have seen for the
Multinomial distribution. Consider, for instance, the bivariate normal distribution described in
Example 15. Then, it can be shown that each individual component Xi has a univariate Normal
distribution with parameters µi, σi. The more general case is considered in depth by (Whittaker,
1990).
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Suppose now X1 and X are both continuous random variable and vector respectively. The distri-
bution of X1|X = x is defined in terms of the conditional density

f(x1|x) =
f(x1,x)

f(x)

The definition of marginal and conditional distributions enable us to write the joint p.m.f. as a
product of marginal and conditional p.m.f.s. For instance, from (8) we have

p(X1 = x1,X = x) = p(X = x)p(X1 = x1|X = x)

10. Summaries

It is common to give some summary measures of a random variable, usually the expected value
and the mode, and some measure of the variability about these summaries. The expected value of a
random variable is an average of the values that the variable can take, weighted by their probabilities.
In summarizing a random variable via its expectation, we aim to give a reference value that is the
quantity we expect the variable to take.

Definition 14 (Expected Value) Let X be a discrete random variable taking values xk with prob-
ability p(xk), (k = 1, ..., n). The expected value of X is defined as

E(X) =
n∑

i=k

xkp(xk)

If X is a continuous random variable with d.f. f(x) the expected value is defined as

E(X) =
∫ ∞

−∞
xf(x)dx

The expect value is a linear operator, that is, for any linear combination of m random variables∑m
j=1 ajXj , then E(

∑m
j=1 ajXj) =

∑m
j=1 ajE(Xj).

Example 17 (Binomial Distribution: Expectation) The linearity of the expected value let us
compute easily the expected value of a variable having a Binomial distribution. By recalling that a
Binomial random variable X ∼ Bin(n, p) is generated as the sum of n independent binary variables
Xi with p(Xi = 1) = p, we can write

E(X) =
n∑

i=1

E(Xi)

and we need to compute E(Xi) that is given — simply apply Definition 14 — by p×1+(1−p)×0 = p.
Hence, we can conclude that E(X) = np.

Another summary measure of a random variable is the mode, that is defined as the value with the
largest probability when X is a discrete random variable, and the value that maximizes the d.f. when
X is a continuous random variable. If there is more than one value satisfying this requirement, the
distribution is called multi-modal.
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Example 18 (Discrete Uniform Distribution: Expectation) Let X be a discrete random vari-
able taking as values the integers k (k = 1, ..., n) with constant probability p(xk) = 1/n. This distri-
bution is called uniform, its expected value is easily found to be E(X) = (n + 1)/2 and it is clearly
multi-modal.

When a probability distribution is summarized by the expected value, a measure of the variability
around this quantity is the variance.

Definition 15 (Variance) The variance of a discrete random variable X taking values xk with
probability p(xk) (k = 1, ..., n) is defined as

V (X) =
n∑

i=1

p(xk)(xk − E(X))2.

If X is a continuous random variable, then

V (X) =
∫ ∞

−∞
(x− E(X))2f(x)dx

Since (xk − E(X))2 measure the distance of xk from the expected value E(X), the variance is the
average of the distances between the values that the variable can actually take and the expectation,
weighted by the probabilities. The standard deviation

√
V (X) is then the Euclidean distance between

the values of the variable X and the expectation. Note that the standard deviation is expressed in
the same measurement scale of the variable X.

Example 19 (Binomial Distribution: Variance) If X ∼ Bin(n, p) then V (X) = np. Note
that, for given n, the variance is largest when p = 0.5 that represents the situation of maximum
uncertainty, since both X = 1 and X = 0 are equally probable. The variance is symmetrical about
p = 0.5 and decreases for p either approaching 1 or 0.

If X has a Normal distribution with parameters µ and σ2, then it can be shown that E(X) = µ and
V (X) = σ2. A property of the Normal distribution is that if X ∼ N(µ, σ2) and Y = aX + b for real
numbers a and b, then Y ∼ N(aµ + b, a2σ2). This property allows to generate any Normal distribu-
tion from the Standard Normal distribution X ∼ N(0, 1). To generate a variable Y ∼ N(µ, σ2) we
can simply define Y = µX + σ.

The variance is a measure of variability of a random variable about its expected value. A different
measure of variability — actually a measure of the lack of information3 conveyed by a variable — is
the entropy. If X is a random variable with p.m.f. p(x), the entropy of X is defined as

Ent(X) = −
∑

x

p(x) log p(x)

and becomes

Ent(X) = −
∫ ∞

−∞
f(x) log f(x)dx

3A derivation of the entropy as the lack of information from a sequence of binary digits that are sent with some
probability of being inverted is given by (Cover and Thomas, 1991).

20



A Tutorial on Probability Theory

when X is a continuous random variable with d.f. f(x). Note that the entropy is only a function of
either the p.m.f. or d.f. of a distribution and does not take into account explicitly the values that the
variable can take. If, for instance, X is a binary variable, taking values 1 with p(X = 1) = p and 0
with probability p(X = 0) = 1− p, then the entropy is Ent(X) = −p log p/(1− p)− log(1− p). This
is also the entropy of any other binary variable having p.m.f. p, (1−p), independently of the states in
which the variable is coded. Note that when p = 1/2, Ent(X) = log 2 that is the maximum achiev-
able, and Ent(X) → 0 as p approaches either 0 or 1. If X ∼ N(µ, σ2), then Ent(X) = log(2πσ2)/2
so that it is an increasing function of the variance. If X ∼ U(α, β), then Ent(X) = log(β − α) that
is an increasing function of the range of values that X can take: the larger the range, the less infor-
mative the distribution. In all cases, the entropy measures the overall uncertainty of the distribution.

Mean and variance are simple summaries of univariate random variables. Suppose now X is a
random vector. Every component is a univariate random variable, and hence it will have its own
mean and variance. We can then define the expectation of a random vector X = (X1, ..., Xc) as the
vector E(X) = (E(X1), ..., E(Xc)) and

E(Xi) =
{ ∑

j p(Xi = xij)p(xij) if Xi is discrete∫∞
−∞ xif(xi)dxi if Xi is continuous

In both cases, the calculation are carried out using the marginal p.m.f. or d.f. of Xi.

Example 20 (Expectation of a Multinomial Distribution) Let X = (X1, ..., Xc) have a multi-
nomial distribution Mult(n,p) with p = (p1, ..., pc). As shown in Example 13, every component Xi

has a Bin(n, pi) distribution, so that E(Xi) = npi and E(X) = (np1, ..., npc).

The variance of a random variable X is a measure of the variability of X about E(X). Suppose
now we have two discrete random variables X1 and X2. Then V (X1) and V (X2) are independent
measures of the variability of X1 and X2. Consider the vector X = (X1, X2) with joint p.m.f.
p(x1i, x2j). The joint p.m.f. of X1 and X2 gives a probability measure to the joint event X1 =
x1i, X2 = x2j , and as the two variables are so related, we may wish to have a measure of their joint
variability. One possible measure is the covariance.

Definition 16 (Covariance) Let X1 and X2 be two random variables. The covariance of X1 and
X2 is defined as:

cov(X1, X2) =





∑
ij(x1i − E(X1))(x2j − E(X2))p(x1i, x2j)

if Xi, Xj are discrete∫∞
−∞

∫∞
−∞(x1 − E(X1))(x2 − E(X2))f(x1, x2)dx1dx2

if X1, X2 are continuous

Note that the computation of the covariance involves the joint distribution — in terms of either
p.m.f. or d.f. — of X1, X2. Furthermore, if X1 ≡ X2, then cov(X1, X2) = V (X1) and also, clearly,
cov(X1, X2) = cov(X2, X1).

Let X = (X1, ..., Xc) be a random vector. Every c(c−1) pair of different components Xi, Xj will
have a covariance that measures their pair-wise variability. We also have c variances V (Xi). We can
display these c2 quantities into a c × c matrix V (X) having (i, j)th element equal to cov(Xi, Xj).
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Hence the diagonal terms are the c variances V (Xi), and the c(c − 1) off-diagonal terms are the
covariances. Hence, this matrix will be called the covariance matrix. The symmetry of the covariance
ensures that the covariance matrix is symmetric.

Example 21 (Expectation of a Bivariate Normal Distribution) The Bivariate Normal dis-
tribution X introduced in Example 15 is characterized by the vector of parameters µ and the matrix
Σ. It can be shown that µ is the vector of expectations of X, and hence µi = E(Xi) (i = 1, 2). The
matrix Σ is the covariance matrix. Hence σ2

i = V (Xi) (i = 1, 2) and σ2
12 = cov(X1, X2). Details of

the calculation can be found, for instance, in Whittaker (1990).

We conclude this chapter by describing in details a particular multivariate distribution — the Dirich-
let distribution.

Definition 17 (Dirichlet Distribution) Let X = (X1, ..., Xc) be continuous random vector tak-
ing values in the c-dimension simplex4 and with joint d.f.

f(x1, ..., xc) =
Γ(α)∏c

i=1 Γ(αi)

c∏

i=1

xαi−1
i αi > 0 for all i (10)

where Γ(x) =
∫∞
0

tx−1e−tdt is termed the Gamma function. Then X is said to have a c-dimension
Dirichlet distribution, with parameter vector α = (α1, ..., αc) and α =

∑c
i=1 αi. We will use the

notation X ∼ D(α1, . . . , αc).

A two-dimension Dirichlet distribution is also called a Beta distribution. The vector of expectations
and the covariance matrix are function of the parameters αi. We have:

E(Xi) =
αi

α
(11)

and the covariance matrix V (X) has elements

cov(Xi, Xj) = − αiαj

α2(α + 1)
i 6= j (12)

V (Xi) = −αi(α− αi)
α2(α + 1)

(13)

Note that V (Xi) = E(Xi)[1− E(Xi)]/(α + 1). An important property of the Dirichlet distribution
is that it is closed under marginalization so that, if X ∼ D(α1, . . . , αc), then any random vector
Xs = (X1, ..., Xs) (s < c) will have a Dirichlet distribution D(α1, ..., αs−1, (α −

∑s−1
i=1 αi)). The

proof of the next result can be found in Wilks (1963, page 179).

Property 1 Let X ∼ (D(α1, ..., αc) and define the random vector Y = (Y1, ..., Ym−1) whose com-
ponents are sum of different components of X, that is Y1 =

∑c1
j=1 Xi, Y2 =

∑c2
j=c1+1 Xi, . . .,

Ym−1 =
∑c

j=cm−1
Xi. Then Y ∼ D(β1, ..., βm−1) where βi =

∑ci+1
j=ci

αj.

4The c-dimension simplex is such that if X = x = (x1, ..., xc) then
∑c

i=1
xi = 1
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11. Special Distributions

We will add a summary of common random variables. For the time being, refer to Casella and
Berger (1990).

12. Independence

We defined two events to be independent when their joint probability decomposes into the product of
their marginal probabilities. In this section, we will extend the concept of independence to random
variables that take values associated with the occurrence of an event. For example, let X and Y be
binary variables and suppose that X takes values 1 if A occurs and 0 otherwise and that Y takes
value 1 if the event B occurs, and 0 otherwise. If the event A and B be independent so are Ā and
B̄ as well as A, B̄ and Ā, B. The independence of A and B ensures that

p(X = 1, Y = 1) = p(A,B) = p(A)p(B) = p(X = 1)p(Y = 1)

and similarly, using the independence of Ā, B, A, B̄ and Ā, B̄ we can show p(X = i, Y = j) = p(X =
i)p(Y = j) all i, j = 1, 2. In other words, the joint p.m.f. of X,Y factorizes into the product of the
marginal p.m.f.s and, in this case, we say the X and Y are independent variables.

Definition 18 (Independent Random Variables) Let X and Y two discrete random variables
taking values xi and yj. They are said to be independent if

p(X = xi, Y = yj) = p(X = xi)p(Y = yj)

for all i and j.

The same concept can be extended to continuous random variables. In this case, the characterization
of independence is given in terms of the joint d.f. and X and Y are independent if

f(x, y) = f(x)f(y)

Conditional independence is defined as for events. We say that X1 and X2 are independent given
Y if

p(X1 = x1i, X1 = x2i|Y = yj) = p(X1 = x1i|Y yj)p(X2 = x2i|Y = yj)

or

f(x1, x2|y) = f(x1|y)f(x2|y).
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