THE REFLECTANCE MAP AND SHAPE-FROM-SHADING

http://www.cs.jhu.edu/~wolff/course600. 461/week9.3/index.htm

REFLECTANCE MODELS

LAMBERTIAN MODEL

albedo

PHONG MODEL

$\mathrm{E}=\mathrm{L}\left(\mathrm{a} \cos \theta+\mathrm{b} \cos ^{\mathrm{n}} \alpha\right)$

Diffuse
Specular
albedo

$\mathrm{a}=0.7, \mathrm{~b}=0.3, \mathrm{n} \cong 0.5$

REFLECTANCE MODELS

- Description of how light energy incident on an object is transferred from the object to the camera sensor

REFLECTANCE MAP IS A VIEWER-CENTERED REPRESENTATION OF REFLECTANCE

$$
\left(f_{x}, f_{y},-1\right)=
$$

REFLECTANCE MAP IS A VIEWER-CENTERED REPRESENTATION OF REFLECTANCE

$$
\left(f_{x}, f_{y},-1\right)=\left(p, q_{1},-1\right)
$$

p, q comprise a gradient or gradient space representation for local surface orientation.

Reflectance map expresses the reflectance of a material directly in terms of viewer-centered representation of local surface orientation.

LAMBERTIAN REFLECTANCE MAP

LAMBERTIAN MODEL

LAMBERTIAN REFLECTANCE MAP

$$
E=L \rho \frac{1+p p_{s}+q q_{s}}{\sqrt{1+p^{2}+q^{2}} \sqrt{1+p_{s}^{2}+q_{s}^{2}}}
$$

Grouping L and ρ as a constant , local surface orientations that produce equivalent intensities under the Lambertian reflectance map are quadratic conic section contours in gradient space.

LAMBERTIAN REFLECTANCE MAP

$$
\mathbf{p}_{\mathrm{s}=0} \quad \mathbf{q}_{\mathrm{s}=0}
$$

LAMBERTIAN REFLECTANCE MAP

$$
\mathbf{p}_{\mathrm{s}=0.7} \quad \mathrm{q}_{\mathrm{s}=0.3}
$$

LAMBERTIAN REFLECTANCE MAP

$$
\mathbf{p}_{\mathrm{s}=}=-2 \quad \mathbf{q}_{\mathrm{s}=-1}
$$

PHOTOMETRIC STEREO

normal map

NORMAL MAP vs. DEPTH MAP

NORMAL MAP vs. DEPTH MAP

- Can determine Depth Map from Normal Map by integrating over gradients p, q across the image.
- Not all Normal Maps have a unique Depth Map. This happens when Depth Map produces different results depending upon image plane direction used to sum over gradients.
- Particularly a problem when there are errors in the Normal Map.

NORMAL MAP vs. DEPTH MAP

- A Normal Map that produces a unique Depth Map independent of image plane direction used to sum over gradients is called integrable.
- Integrability is enforced when the following condition holds:

NORMAL MAP vs. DEPTH MAP

- A Normal Map that produces a unique Depth Map independent of image plane direction used to sum over gradients is called integrable.
- Integrability is enforced when the following condition holds:

$$
\frac{\partial p}{\partial y}=\frac{\partial q}{\partial x}
$$

GREEN'S THEOREM

$$
\iint(\partial p / \partial y-\partial q / \partial x) d x d y=\oint(p d x+q d y)
$$

NORMAL MAP vs. DEPTH MAP

VIOLATION OF INTEGRABILITY

SHAPE FROM SHADING

From a monocular view with a single distant light source of known incident orientation upon an object with known reflectance map, solve for the normal map.

SHAPE FROM SHADING

- Formulate as solving the Image Irradiance equation for surface orientation variables p,q:

$$
I(x, y)=R(p, q)
$$

- Since this is underconstrained we can't solve this equation directly
- What do we do ??.

SHAPE FROM SHADING (Calculus of Variations Approach)

- First Attempt: Minimize error in agreement with Image Irradiance Equation over the region of interest:

$$
\iint_{\text {object }}(I(x, y)-R(p, q))^{2} d x d y
$$

SHAPE FROM SHADING (Calculus of Variations Approach)

- Better Attempt: Regularize the Minimization of error in agreement with Image Irradiance Equation over the region of interest:

$$
\iint_{J} p_{x}^{2}+p_{y}^{2}+q_{x}^{2}+q_{y}^{2}+\lambda(I(x, y)-R(p, q))^{2} d x d y
$$

