
Polyhedral Visual Hulls for Real-Time
Rendering

Wojciech Matusik Chris Buehler Leonard McMillan
MIT Laboratory for Computer Science

Abstract. We present new algorithms for creating and rendering visual hulls in
real-time. Unlike voxel or sampled approaches, we compute an exact polyhedral
representation for the visual hull directly from the silhouettes. This represen-
tation has a number of advantages: 1) it is a view-independent representation,
2) it is well-suited to rendering with graphics hardware, and 3) it can be com-
puted very quickly. We render these visual hulls with a view-dependent texturing
strategy, which takes into account visibility information that is computed during
the creation of the visual hull. We demonstrate these algorithms in a system that
asynchronously renders dynamically created visual hulls in real-time. Our system
outperforms similar systems of comparable computational power.

1 Introduction

A classical approach for determining a three-dimensional model from a set of images
is to compute shape-from-silhouettes. Most often, shape-from-silhouette methods em-
ploy discrete volumetric representations [12, 19]. The use of this discrete volumetric
representation invariably introduces quantization and aliasing artifacts into the resulting
model (i.e. the resulting model seldom projects back to the original silhouettes).

Recently, algorithms have been developed for sampling and texturing visual hulls
along a discrete set of viewing rays [10]. These algorithms have been developed in the
context of a real-time system for acquiring and rendering dynamic geometry. These
techniques do not suffer from aliasing effects when the viewing rays correspond to
the pixels in a desired output image. In addition, the algorithms address the rendering
problem by view-dependently texturing the visual hull with proper visibility. However,
these algorithms are only useful when a view-dependent representation of the visual
hull is desired.

In this paper, we present algorithms for computing and rendering an exact polyhe-
dral representation of the visual hull. This representation has a number of desirable
properties. First, it is a view-independent representation, which implies that it only
needs to be computed once for a given set of input silhouettes. Second, the represen-
tation is well-suited to rendering with graphics hardware, which is optimized for trian-
gular mesh processing. Third, this representation can be computed and rendered just as
quickly as sampled representations, and thus it is useful for real-time applications.

We demonstrate our visual hull construction and rendering algorithms in a real-
time system. The system receives input from multiple video cameras and constructs
visual hull meshes as quickly as possible. A separate rendering process asynchronously
renders these meshes using a novel view-dependent texturing strategy with visibility.



1.1 Previous Work

Laurentini [8] introduced the visual hull concept to describe the maximal volume that
reproduces the silhouettes of an object. Strictly, the visual hull is the maximal volume
constructed from all possible silhouettes. In this paper (and in almost any practical
setting) we compute the visual hull of an object with respect to a finite number of
silhouettes. The silhouette seen by a pinhole camera determines a three-dimensional
volume that originates from the camera’s center of projection and extends infinitely
while passing through the silhouette’s contour on the image plane. We call this volume
a silhouette cone. All silhouette cones exhibit the hull property in that they contain the
actual geometry that produced the silhouette. For our purposes, a visual hull is defined
as the three-dimensional intersection of silhouette cones from a set of pinhole silhouette
images.

Visual hulls are most often computed using a discrete three-dimensional grid of
volume elements (voxels). This technique, known as voxel carving [12, 19], proceeds
by projecting each voxel onto each of the source image planes, and removing those
voxels that fall completely outside of any silhouette. Octree-hierarchies are often used
to accelerate this procedure. Related to voxel approaches, a recent algorithm computes
discrete slices of the visual hull using graphics hardware for acceleration [9]. Other
approaches improve the shape using splines [17] or color information [18].

If the primary purpose of a shape representation is to produce new renderings of
that shape from different viewing conditions, then construction of an explicit model
is not necessary. The image-based visual hull technique introduced in [10], renders
unique views of the visual hull directly from the silhouette images, without constructing
an intermediate volumetric or polyhedral model. This is accomplished by merging
the cone intersection calculation with the rendering process, resulting in an algorithm
similar in spirit to CSG ray casting [15].

However, sometimes an explicit three-dimensional model of the visual hull is de-
sired. There has been work [4, 14] on general Boolean operations on 3D polyhedra.
Most of these algorithms require decomposing the input polyhedra into convex poly-
hedra. Then, the operations are carried out on the convex polyhedra. By contrast, our
algorithm makes no convexity assumptions; instead we exploit the fact that each of the
intersection primitives (i.e., silhouette cones) are generalized cones with constant scaled
cross-section. The algorithm in [16] also exploits the same property of silhouette cones,
but exhibits performance unsuitable for real-time use.

View-dependent rendering is very popular for models that are acquired from real
images (e.g., see [13]). The rendering algorithm that we use is closely related to view-
dependent texture mapping (VDTM), introduced in [5] and implemented in real-time in
[6]. The particular algorithm that we use is different from those two, and it is based on
the unstructured lumigraph rendering (ULR) algorithm in [3]. In our implementation,
we extend the ULR algorithm to handle visibility, which was not covered in the original
paper.

Our real-time system is similar to previous systems. The system in [11] constructs
visual hull models using voxels and uses view-dependent texture mapping for rendering,
but the processing is done as an off-line process. The Virtualized Reality system [7]
also constructs models of dynamic event using a variety of techniques including multi-
baseline stereo.



Fig. 1. A single silhouette cone face is shown, defined by the edge in the center silhouette. Its
projection in two other silhouettes is also shown.

2 Polyhedral Visual Hull Construction

We assume that each silhouette s is specified by a set of convex or non-convex 2D
polygons. These polygons can have holes. Each polygon consists of a set of edges
joining consecutive vertices that define its (possibly multiple) contours. Moreover, for
each silhouette s we know the projection matrix associated with the imaging device
(e.g., video camera) that generated the silhouette. We use a 4× 4 projection matrix that
maps 3D coordinates to image (silhouette) coordinates, and whose inverse maps image
coordinates to 3D directions.

2.1 Algorithm Outline

In order to compute the visual hull with respect to the input silhouettes, we need to
compute the intersection of the cones defined by the input silhouettes. The resulting
polyhedron is described by all of its faces. Note that the faces of this polyhedron can
only lie on the faces of the original cones, and the faces of the original cones are defined
by the projection matrices and the edges in the input silhouettes.

Thus, a simple algorithm for computing the visual hull might do the following: For
each input silhouette si and for each edge e in the input silhouette s i we compute the
face of the cone. Then we intersect this face with the cones of all other input silhouettes.
The result of these intersections is a set of polygons that define the surface of the visual
hull.

2.2 Reduction to 2D

The intersection of a face of a cone with other cones is a 3D operation (these are
polygon-polyhedron intersections). It was observed by [10, 16] that these intersections
can be reduced to simpler intersections in 2D. This is because each of the silhouette
cones has a fixed scaled cross-section; that is, it is defined by a 2D silhouette. Reduc-
tion to 2D also allows for less complex 2D data structures to accelerate the intersections.



To compute the intersection of a face f of a cone cone(s i) with a cone cone(sj),
we project f onto the image plane of silhouette sj (see Figure 1). Then we compute the
intersection of projected face f with silhouette sj . Finally, we project back the resulting
polygons onto the plane of face f .

2.3 Efficient Intersection of Projected Cones and Silhouettes

In the previous section, we discussed intersecting a projected cone face f with a sil-
houette sj . If we repeat this operation for every projected cone face in cone(s i), then
we will have intersected the entire projected silhouette cone cone(s i) with silhouette
sj . In this section we show how to efficiently compute the intersection of the pro-
jected cone cone(si) with the silhouette sj . We accelerate the intersection process
by pre-processing the silhouettes into Edge-Bin data structures as described in [10].
The Edge-Bin structure spatially partitions a silhouette so that we can quickly compute
the set of edges that a projected cone face intersects. In the following, we abbreviate
cone(si) as ci for simplicity.

Construction of Edge-Bins. First, we observe that in case of perspective projection
all rays on the surface of the cone ci project to a pencil of lines sharing a common
point p0 (i.e., the epipole) in the image plane of sj . We can parameterize all projected
lines based on the slope α that these lines make with some reference line. Given this
parameterization we partition the domain of α = (−∞,∞) into ranges such that any
projected line with the slope falling inside of the given range always intersects the same
set of edges of the silhouette sj . We define a bin bk to be a three-tuple: the start αstart,
the end αend of the range, and a corresponding set of edges Sk, bk = (αstart, αend, Sk).
We note that each silhouette vertex corresponds to a line that defines a range boundary.

In certain configurations, all rays project to a set of parallel epipolar lines in the im-
age plane of sj . When this case occurs, we use a line p(α) = p0 + dα to parameterize
the lines, where p0 is some arbitrary point on the line p(α) and d is a vector perpen-
dicular to the direction of the projected rays. To define bins, we use the values of the
parameter α at the intersection points of the line p(α) with the epipolar lines passing
through the silhouette vertices. In this way we can describe the boundary of the bin
using two values αstart and αend, where αstart, αend are the values of α for the lines
passing through two silhouette vertices that define the region.

The Edge-Bin construction involves two steps. First, we sort the silhouette vertices
based on the value of the parameter α. The lines that pass through the silhouette vertices
define the bin boundaries.

Next, we observe that two consecutive slopes in the sorted list define αstart and
αend for each bin. To compute a set of edges assigned to each bin we traverse the
sorted list of silhouette vertices. At the same time we maintain the list of edges in the
current bin. When we visit a vertex of the silhouette we remove from the current bin
an edge that ends at this vertex, and we add an edge that starts at the vertex. The start
of an edge is defined as the edge endpoint that has a smaller value of parameter α. In
Figure 2 we show a simple silhouette, bins, and corresponding edges for each bin.

The edges in each bin need to be sorted based on the increasing distance from the
point p0 (or the distance from parameterization line p(α) in case of the parallel lines).
The efficient algorithm first performs a partial ordering on all the edges in the silhouette
such that the edges closer to the point p0 are first in the list. Then, when the bins are
constructed the edges are inserted in the bins in the correct order.



e1

Bin 5
e2

e6

e5

e3

e4

Bin 7

Bin 1

Bin 6

Bin 4

Bin 3Bin 2

p0

e1Bin 5

e2

e6

e5

e3

e4

p0

Bin 7

Bin 1

Bin 6

Bin 4

Bin 3

Bin 2

Bin 1 2 3 4 5 6 7
Edges ∅ e2, e3 e2, e4 e2, e5 e2, e6 e1, e6 ∅

Fig. 2. Two example silhouettes and their corresponding Edge-Bin data structures. Two cases are
shown, one with convergent bins and one with parallel bins. The edges that are stored in the bins
are listed in the accompanying table.

Efficient Intersection of the Projected Cone Faces with a Silhouette. Using the
edge bin data structure, we can compute efficiently the intersection of the projected cone
ci with the silhouette sj of some other cone cj . In order to compute the intersection we
process the faces of cone ci in consecutive order. We start by projecting the first face f1

onto the plane of silhouette sj . The projected face f1 is defined by its boundary lines
with the values αp1 , αp2. First, we need to find a bin b = {αstart, αend, S} such that
αp1 ∈ (αstart, αend). Then, we intersect the line αp1 with all the edges in S. Since
the edges in S are sorted based on the increasing distance from the projected vertex
of cone ci (or distance from line p(α) in case of parallel lines) we can immediately
compute the edges of the resulting intersection that lie on line αp1. Next, we traverse
the bins in the direction of the value αp2. As we move across the bins we build the
intersection polygons by adding the vertices that define the bins. When we get to the
bin b′ = {α′

start, α
′
end, S

′} such that αp2 ∈ (α′
start, α

′
end) we intersect the line αp2

with all edges in S ′ and compute the remaining edges of the resulting polygons. It
is important to note that the next projected face f2 is defined by the boundary lines
αp2, αp3. Therefore, we do not have to search for the bin α p2 falls into. In this manner
we compute the intersection of all projected faces of cone c i with the silhouette sj .

2.4 Calculating Visual Hull Faces

In the previous section we described how to perform the intersection of two cones ef-
ficiently. Performing the pairwise intersection on all pairs of cones results in k − 1
polygon sets for each face of each cone, where k is the total number of silhouettes. The
faces of the visual hull are the intersections of these polygon sets at each cone face. It
is possible to perform the intersection of these polygon sets using standard algorithms
for Boolean operations [1, 2], but we use a custom algorithm instead that is easy to
implement and can output triangles directly.

Our polygon intersection routine works by decomposing arbitrary polygons into
quadrilaterals and intersecting those. In Figure 3, we demonstrate the procedure with



Region 2

Region 3

Region 1

Fig. 3. Our polygon intersection routine subdivides polygons into quadrilaterals for intersection.

two 5-sided polygons, one with vertical hatching and the other with horizontal hatching.
We first divide the space occupied by the polygons into triangular regions based on
the polygons’ vertices and the apex of the silhouette cone (similar to the Edge-Bin
construction process). Note that within each triangular region, the polygon pieces are
quadrilaterals. Then, we intersect the quadrilaterals in each region and combine all of
the results into the final polygon, shown with both horizontal and vertical hatching.

The resulting polyhedral visual hull includes redundant copies of each vertex in
the polyhedron (in fact, the number of copies of each vertex is equal to the degree
of the vertex divided by 2). To optionally eliminate the redundant copies, we simply
merge identical vertices. Ideally, our algorithm produces a watertight triangular mesh.
However, because of our non-optimal face intersection routine, our meshes may contain
T-junctions which violate the watertight property.

2.5 Visibility

In order to properly texture map the visual hull we need to determine which parts of the
visual hull surface are visible from which cameras.

This visibility problem is equivalent to the shadow determination problem where
one places a point light source at each reference camera position, and the goal is to
determine which parts of the scene are illuminated by the light and which parts lie in a
shadow. Standard graphics (hardware) algorithms are directly applicable since we have
a mesh representation of the visual hull surface. However, they require rendering the
scene from each input camera viewpoint and reading the z-buffer or the frame-buffer.
These operations can be slow (reading the frame and z-buffer can be slow) and they can
suffer from the quantization artifacts of the z-buffer.

We present an alternative novel software algorithm that computes the visible parts of
the visual hull surface from each of the input cameras. The algorithm has the advantages
that it is simple, and it can be computed virtually at no cost at the same time that we
compute the visual hull polygons.

Let us assume that we want to compute whether the faces of the visual hull that lie
on the extruded edge i in silhouette sj are visible from image k.

We observe that these faces have to be visible from the camera k if the edge i is
visible from the epipole p0 (the projection of the center of projection of image k onto
the image plane of camera j). This effectively reduces the 3D visibility computation to
the 2D visibility computation. Moreover, we can perform the 2D visibility computation
very efficiently using the edge-bin data structures that we already computed during the



camera j

camera k
p

0

Fig. 4. We perform a conservative visibility test in 2D. In this example, the thick edges in the
silhouette of camera cj have been determined to be visible by camera ck. These 2D edges corre-
spond to 3D faces in the polyhedral visual hull.

visual hull computation.
First, we label all edges invisible. Then, to determine the visibility of edges in image

j with respect to image k we traverse each bin in the Edge-Bin data structure. For each
bin, we label the part of the first edge that lies in the bin as visible (see Figure 4). The
edges in the bin are sorted in the increasing distance from the epipole; thus, the first
edge in the bin corresponds to the front-most surface.

If the edge is visible in its full extent (if it is visible in all the bins in which it resides)
then the edge is visible. If the edge is visible in some of its extent (if it is visible only in
some bins in which it resides) then the edge is partially visible. The easiest solution in
this case is to break it into the visible and invisible segments when computing the faces
of the visual hull.

The visibility computation described in this section is conservative; we never label
an edge visible if it is in fact invisible. However, it is often over-conservative, especially
for objects whose silhouettes contains many holes.

3 View-Dependent Texturing

We have applied a novel view-dependent texturing strategy for rendering our polyhedral
visual hull models in real-time. Our algorithm is based on the unstructured lumigraph
rendering (ULR) algorithm detailed in [3], and we have added extensions to handle the
visibility information computed during the visual hull construction.

The core idea of ULR is that the influence of a single image on the final rendering is
a smoothly varying function across the desired image plane (or, equivalently, across the
geometry representing the scene). These smooth weighting functions combine to form
a image “blending field” that specifies how much contribution each input image makes
to each pixel in the output image. The assumption of smoothness suggests an efficient
rendering strategy: sparsely sample the image blending field and reconstruct it using
simple basis functions (e.g., linear hat functions). The reconstructed blending field is
then used to blend pixels from the input images to form the output image.

In the case of real-time rendering, the blending field can be efficiently reconstructed
by triangulating the samples and using hardware alpha interpolation across the faces of



Desired Ray

Q

Q
Q

Q

1

2

3

k

Fig. 5. Our k-nearest neighbor weighting is based on the k cameras with viewing rays closest in
angle to the desired viewing ray. In this example, the desired ray is shown in bold in addition to
four camera viewing rays. The angles of the k closest cameras are ordered such that Θ1 ≤ Θ2 ≤
Θ3 ≤ . . . ≤ Θk, and Θk is taken to be the threshold at which the weighting function falls to
zero.

the triangles. The input image pixels are then blended together by projectively texturing
mapping the triangles and accumulating the results in the frame buffer. The pseudocode
for a multi-pass rendering version of the algorithm proceeds as follows:

Construct a list of blending field sample locations
for each input image i do

for each blending field sample location do
evaluate blending weight for image i and store in alpha channel

end for
Set current texture i
Set current texture matrix Pi

Draw triangulated samples using alpha channel blending weights
end for

The sample locations are simply 3D rays along which the blending field is evaluated.
In the case when a reasonably dense model of the scene is available, sampling along
the rays emanating from the desired viewpoint and passing through the vertices of the
model is generally sufficient to capture the variation in the blending field. In this case,
the triangles that are drawn are the actual triangles of the scene model. By contrast,
in the general unstructured lumigraph case, one may sample rays randomly, and the
triangles that are drawn may only roughly approximate the true scene geometry.

The texture matrix Pi is simply the projection matrix associated with camera i. It is
rescaled to return texture coordinates between 0 and 1. In our real-time system, these
matrices are obtained from a camera calibration process.

3.1 Evaluating the Blending Weights

Our view-dependent texturing algorithm evaluates the image blending field at each ver-
tex of the visual hull model. The weight assigned to each image is calculated to favor
those cameras whose view directions most closely match that of the desired view. The
weighting that we use is the k-nearest neighbor weighting used in [3] and summarized
here. For each vertex of the model, we find the k cameras whose viewings rays to that
vertex are closest in angle to the desired viewing ray (see Figure 5). Consider the k th

ray with the largest viewing angle, Θk. We use this angle to define a local weighting
function that maps the other angles into the range from 0 to 1: weight(Θ) = 1 − Θ

Θk
.



Applying this function to the k angles results (in general) in k−1 non-zero weights.
We renormalize these weights to arrive at the final blending weights. In practice, we
typically use k = 3 in our four camera system, which results in two non-zero weights
at each vertex.

Although other weighting schemes are possible, this one is easy to implement and
does not require any pre-processing such as in [6]. It results in a (mostly) smooth
blending field except in degenerate cases, such as when k (or more) input rays are
equidistant from the desired ray or when less than k nearest neighbors can be found
(due to visibility or some other reason).

3.2 Handling Visibility

The algorithm in [3] does not explicitly handle the problem of visibility. In our case,
we have visibility information available on a per-polygon basis. We can distinguish
two possible approaches to incorporating this information: one that maintains a contin-
uous blending field reconstruction and one that does not. A continuous blending field
reconstruction is one in which the blending weights for the cameras on one side of a
triangle edge are the same as on the other side of the edge. A continuous reconstruction
generally has less apparent visual artifacts.

A simple rule for utilizing visibility while enforcing continuous reconstruction is
the following: if vertex v belongs to any triangle t that is not visible from camera c,
then do not consider c when calculating the blending weights for v. This rule causes
camera c’s influence to be zero across the face of triangle t, which is expected because
t is not visible from c. It also forces c’s influence to fall to zero along the other sides
of the edges of t (assuming that the mesh is watertight) which results in a continuous
blending function.

The assumption of a watertight mesh makes the continuous visibility rule unsuitable
for our non-watertight visual hull meshes. Even with a watertight mesh, the mesh must
be fairly densely tessellated, or the visibility boundaries may not be well-represented.

For these reasons, we relax the requirement of reconstruction continuity in our vis-
ibility treatment. When computing blending weights, we create a separate set of blend-
ing weights for each triangle. Each set of blending weights is computed considering
only those cameras that see the triangle. When rendering, we replicate vertices so that
we can specify different sets of blending weights per-triangle rather than per-vertex. Al-
though this rendering algorithm is less elegant and more complex than the continuous
algorithm, it works well enough in practice.

4 Real-Time System

The current system uses four calibrated Sony DFW-V500 IEEE-1394 video cameras.
Each camera is attached to a separate client (600 MHz Athlon desktop PC). The cam-
eras are synchronized to each other using an external trigger signal. Each client captures
the video stream at 15 fps and performs the following processing steps: First, it seg-
ments out the foreground object using background subtraction. Then, the silhouette
and texture information are compressed and sent over a 100Mb/s network to a central
server. The system typically processes video at 320 × 240 resolution. It can optionally
process 640 × 480 video at a reduced frame rate.

The central server (2x933MHz Pentium III PC) performs the majority of the com-
putations. The server application has the following three threads:



• Network Thread - receives and decompresses the textures and silhouettes from
the clients.

• Construction Thread - computes the silhouette simplification, volume intersec-
tion, and visibility.

• Rendering Thread - performs the view-dependent texturing and display.

Each thread runs independently of the others. This allows us to efficiently utilize the
multiple processors of the server. It also enables us to render the visual hull at a faster
rate than we compute it. As a result, end users perceive a higher frame rate than that at
which the model is actually updated.

5 Results

Our system computes polyhedral visual hull models at a peak 15 frames per second,
which is the frame rate at which our cameras run. The rendering algorithm is decoupled
from the model construction, and it can run up to 30 frames per second depending on
the model complexity. The actual frame rates of both components, especially rendering,
are dependent on the model complexity, which in turn depends on the complexity of the
input silhouette contours. In order to maintain a relatively constant frame rate, we
simplify the input silhouettes with a coarser polygonal approximation. The amount of
simplification is controlled by the current performance of the system.

In Figure 6, we show two flat-shaded renderings of a polyhedral visual hull that was
captured in real-time from our system. These images demonstrate the typical models
that our system produces. The main sources of error in creating these models is poor
image segmentation and a small number of input images.

Figure 7 shows the same model view-dependently textured with four video images.
In Figure 7a, the model is textured using information from our novel visibility algo-
rithm. This results in a discontinuous reconstruction of the blending field, but it more
accurately captures regions of the model that were not seen by the video cameras. In
Figure 7b, the model is textured without visibility information. The resulting blending
field is very smooth, although some visibility errors are made near occlusions.

Figure 8 shows visualizations of the blending fields of the previous two figures.
Each of the four cameras is assigned a color (red, green, blue, and yellow), and the
colors are blended together using the camera blending weights. It is clear from these
images that the image produced using visibility information is discontinuous while the
other image is not.

6 Future Work and Conclusions

In offline testing, our algorithms are sufficiently fast to run at full 30 frames per second
on reasonable computer hardware. The maximum frame rate of our current live system
is limited by the fact that our cameras can only capture images at 15 frames per second
in synchronized mode. Clearly, it would improve the system to use better and more
cameras that can run at 30 frames per second. Additional cameras would both improve
the shape of the visual hulls and the quality of the view-dependent texturing.

In the current system we compute and throw away a different mesh for each frame
of video. For some applications it might be useful to derive the mesh of the next frame
as a transformation of the mesh in the original frame and to store the original mesh plus
the transformation function. Temporal processing such as this would also enable us to



accumulate the texture (radiance) of the model as it is seen from different viewpoints.
Such accumulated texture information could be used to fill in parts that are invisible in
one frame with information from other frames.

In this paper we have presented novel algorithms for efficiently computing and ren-
dering polyhedral visual hulls directly from a set of images. We implemented and
tested these algorithms in a real-time system. The speed of this system and the quality
of the renderings are much better than previous systems using similar resources. The
primary advantage of this system is that it produces polygonal meshes of the visual
hull in each frame. As we demonstrated, these meshes can be rendered quickly using
view-dependent texture mapping and graphics hardware.

References

1. Balaban, I. J., “An Optimal Algorithm for Finding Segments Intersections,” Proc. 11th Annual
ACM Symposium on Computational Geometry, (1995), pp. 211-219.

2. Bentley, J. and Ottmann, T., “Algorithms for Reporting and Counting Geometric Intersec-
tions,” IEEE Trans. Comput., C-28, 9 (Sept. 1979), pp. 643-647.

3. Buehler, C., Bosse, M., Gortler, S., Cohen, M., McMillan, L., “Unstructured Lumigraph Ren-
dering,” To appear SIGGRAPH 2001.

4. Chazelle, B., “An Optimal Algorithm for Intersecting Three-Dimensional Convex Polyhedra,”
SIAM J. Computing, 21 (1992), pp. 671-696.

5. Debevec, P., Taylor, C., Malik. J., “Modeling and Rendering Architecture from Photographs,”
SIGGRAPH 1996, pp. 11-20.

6. Debevec, P., Yu, Y., Borshukov, G. D., “Efficient View-Dependent Image-Based Rendering
with Projective Texture Mapping,” Eurographics Rendering Workshop, (1998).

7. Kanade, T., P. W. Rander, P. J. Narayanan. “Virtualized Reality: Constructing Virtual Worlds
from Real Scenes,” IEEE Multimedia, 4, 1 (March 1997), pp. 34-47.

8. Laurentini, A., “The Visual Hull Concept for Silhouette Based Image Understanding,” IEEE
PAMI, 16, 2 (1994), pp. 150-162.

9. Lok, B., “Online Model Reconstruction for Interactive Virtual Environments,” I3D 2001.
10. Matusik, W., Buehler, C., Raskar, R., Gortler, S., McMillan, L., “Image-Based Visual

Hulls,”SIGGRAPH 2000, (July 2000), pp. 369-374.
11. Moezzi, S., D.Y. Kuramura, R. Jain. “Reality Modeling and Visualization from Multiple

Video Sequences,” IEEE CG&A, 16, 6 (Nov 1996), pp. 58-63.
12. Potmesil, M., “Generating Octree Models of 3D Objects from their Silhouettes in a Sequence

of Images,” CVGIP, 40 (1987), pp. 1-29.
13. Pulli, K., Cohen, M., Duchamp, T., Hoppe, H., Shapiro, L., and Stuetzle, W., “View-based

Rendering: Visualizing Real Objects from Scanned Range and Color Data,” 8th Eurographics
Workshop on Rendering, 1997.

14. Rappoport, A. and Spitz, S., “Interactive Boolean Operations for Conceptual Design of 3D
Solids,” SIGGRAPH 1997, pp. 269-278.

15. Roth, S. D., “Ray Casting for Modeling Solids,” Computer Graphics and Image Processing,
18 (Feb 1982), pp. 109-144.

16. Rozenoer, M. and Shlyakhter, I., “Reconstruction of 3D Tree Models from Instrumented
Photographs,” M.Eng. Thesis, M.I.T., (1999).

17. Sullivan, S. and Ponce, J., “Automatic Model Construction, Pose Estimation, and Object
Recognition from Photographs Using Triangular Splines,” ICCV ’98, pp. 510-516, 1998.

18. Seitz, S. and Dyer, C., “Photorealistic Scene Reconstruction by Voxel Coloring,” CVPR ’97,
pp. 1067-1073, 1997.

19. Szeliski, R., “Rapid Octree Construction from Image Sequences,” CVGIP: Image Under-
standing, 58, 1 (July 1993), pp. 23-32.



(a) (b)

Fig. 6. Two flat-shaded views of a polyhedral visual hull.

(a) (b)

Fig. 7. Two view-dependently textured views of the same visual hull model. The left render-
ing uses conservative visibility computed in real-time by our algorithm. The right view ignores
visibility and blends the textures more smoothly but with potentially more errors.

(a) (b)

Fig. 8. Two visualizations of the camera blending field. The colors red, green, blue, and yellow
correspond to the four cameras in our system. The blended colors demonstrate how each pixel is
blended from each input image using both (a) visibility and (b) no visibility.


