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Shape from Silhouettes Il

Guido Gerig
CS 6320, Spring 2015

(credit: slides modified from Marc Pollefeys

UNC Chapel Hill, some of the figures and slides are adapted
from M. Pollefeys, J.S. Franco, J. Matusik’s presentations,
and referenced papers)
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e Silhouettes
— basic concepts
— extract silhouettes
— fundamentals about using silhouettes
— reconstruct shapes from silhouettes
— use uncertain silhouettes
— calibrate from silhouettes

e Perspectives and cool ideas
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Silhouette Consistency
Constraints: Forbes et al.

e http://www.dip.ee.uct.ac.za/—kforbes/Publications/P
ublications.html

e Keith Forbes, Anthon Voigt and Ndimi Bodika. Using
Silhouette Consistency Constraints to Build 3D
Models. In Proceedings of the Fourteenth Annual
Symposium of the Pattern Recognition Association of
South Africa (PRASA 2003), November 2003.

e Keith Forbes, Anthon Voigt and Ndimi Bodika. Visual
Hulls from Single Uncalibrated Snapshots Using Two
Planar Mirrors. In Proceedings of the Fifteenth Annual
Symposium of the Pattern Recognition Association of
South Africa (PRASA 2004), November 2004.
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= = Merging sets of silhouettes
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=" == (Forbes et al.)
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Figure I: Two views of the epipolar geometry of a scene: (a) shows a front view, an
Figure 1: Toro silhoustte views of a duck showing () the cameras, each reprasented () shows a side view looking onto the scene in a direction parallel to the baseline.
by a camera centre and image plane, (b) the visual cones comesponding to each of the
mwo silbouettes, and (c) the visnal bnll cormesponding to the two silhousttes.
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Review Epipolar Geometry
Matrix Form
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p-[tx(Rp) =0
ixb=[a_]b
p [t 1Rp'=0




Review Epipolar Geometry
The Essential Matrix

Matrix that relates image of point in one camera to a
second camera, given translation and rotation.
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Review Epipolar Geometry

The Essential Matrix

(9p' 1s the epipolar line corresponding to p” in the
left camera.
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au+bv+c=0

p=(uvl)
[=(a,b,c)

[-p=0

&pp=0
p'Ep =0

T
Similarly &p is the epipolar line corresponding to p in the
right camera
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Calculation of Epipoles
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Ee' =t |Re'=0
Similarly, ETe=R"[t ['e=-R"|t . Je=0

Essential Matrix 1s singular with rank 2

Epipoles are left and right nullspaces of &
(SVD: UZVI select last column of V)
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Merging sets of silhouettes
(Forbes et al.)
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Figure 3: The epipolar tangency constramt: the epipolar tangent line touches the
silhouette at the projection of the frontier point, as shown in (a) and (b); the projection
of this line onto the image plane of the opposite camera 1s constrained to coincide with
the opposite epipolar tangency line.

e P,, P,z Frontier points

® P1s0, P21 Projections of Py (P12, P21 == Py)

e Epipolar geometry: line e;,p;,, Same as line
defined by E,;Ps10
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Reprojection Errors: Measure of
Inconsistencies
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Reprojection error: Shortest
distance from epipolar
tangency to epipolar line of
corresponding point

e Distances can be computed
via E; — cost function

@) associated to pose
PI-T_;-,} Eipjix
dxo d!-jk -

."I . .
V (ByPjie) 7 + (EyPjik)3

/—‘:ﬂ

e Pose estimation: Adjust
pose parameters to
minimize cost fct:

(b}
m n 1
t d-
Figure 4: Epipolar tangent lines with the projection of the epipolar tangent lir cost = Z Z Z ifk
of the cppesite view and incorrect pose information: since the pose information i=1j=1k=0

incorrect, the epipolar tangent lines do not project onto cne ancther. The silhounet
are inconsistent with one another for the given viewpoints. The reprojection esrot
a measure of the degree of inconsistency.
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Figure 5 Vizual mll models of a wing out {(3)}-{d) show four medals each budlt from
five silkonettes, (&) shows the model bult from the 20 stlbonetes vsed i (2)—(d) aftar
the poses of 2l silbouete: bave been determined in & commnon reference frame.
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Figure T: The nventy visual cones of the car

(2}

Figure 6 Visnal hall models of a2 toy cat (2)<{d) show four models eack built fom
five zsilhousttes, (&) shows the modal baile fom the 20 silhonettes nsed in (a)—{d) after
the poses of all silhonettas have bean detenmuired In a conumen raference frame.
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e Visual Hulls from
Single
Uncalibrated
Snapshots Using
Two Planar
Mirrors

e Keith Forbes,
Anthon Voigt,
Ndimi Bodika,
PRASA2004 (link)
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e Virtual camera
does not really
exist

e Determine
images it would
® observe from
P - the real
=) | e camera’s image
cx ol | e ) g - T-herefore: Two
silhouettes
(in .~ A i captured by real
Q\ H camera are two
views of the real
object

real nb.ject virtual object
DUITST

(b)

Figure 1. Reflechon of a duck m a numer: (z) shows the image seen by the real
cameara, (b} shows the silhouette views seen by the rezl camera and by the virtaal
camera that i3 the reflaction of the real camera.
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Visual Hulls from 2 Mirrors
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Then I manuallv segmented the five silhouettes in Matlab using polyvgons.
The coordinates of the five polvegons are the inputs to the Matlab code used
to caleulate the visual hull.

Christine Xu, Class Project CV UNC Chapel Hill, 2005
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Visual Hulls from 2 Mirrors
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e Epipolar geometry of the object's five silhouettes is
determined directly from the image without knowing
the poses of the camera or the mirrors.

e Once the pose associated with each silhouette has
been computed, a five-view visual hull of the object
can be computed from the five silhouettes.

e After getting an initial estimation of all the camera
poses, we can use the non-linear least square
Levenberg-Marqguardt method to iteratively minimize
the reprojection error across every pair of
silhouettes.
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Similar as before: Epipolar
Tangency Lines
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Figure 4: Imazes of 3 scene: (2) shows the raw image, (b)) shows the segmentad
image with silhoustte outlines and epipolar tangency lines, and (c) shows the derived
orthographic image thar wonld be seen by an orthographic camera.




j

Visual Hulls from 2 Mirrors
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The epipole corresponding to a camera’s reflection can be computed from
the camera’s silhouette 1mage of an object and its reflection by finding the
intersection of the two outer bitangent lines.

i e—

In the above picture, evl, ev2, evl2l, and ev212 are eipoles corresponding
to camera Cvl, Cv2, Cv121, and Cv212, where Cvl 1s the reflected camera
by Mirror 1, Cv121 1s reflected by Mirror 1 and then Mirror 2 and then again
by Mirrorl, sumilar to Cv2 and Cv212.
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Visual Hulls from 2 Mirrors
(Forbes et al.)

Figure 4.5 shows how the epipoles eV1, eV2, eV121, and
eV212 are computed from the outlines of the five
silhouettes observed by the real camera.
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Figure 4.5: Computing epipoles 171, er2. e17121. and e77212 from the silhouette outlines in an image.

Note that the epipoles eV1, eV2, eV121, and eV212 are
collinear, since they all lie in both the image plane of the

real camera and in the plane PC in which all camera centres lie.
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Visual Hulls from 2 Mirrors
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Once we know the focal length and the principal point pg, we can compute

the mirror normals.
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Visual Hulls from 2 Mirrors
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The four colinear epipoles determined directly using silhouette outhnes are
showed as follows.
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Visual Hulls from 2 Mirrors:
Merge multiple 5 view hulls
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Christine Xu: Calculations in Matlab, all calculations <1Min
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What if my views aren't calibrated at all?
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e Possible to calibrate from silhouettes

e ldea: optimize for a set of calibration parameters
most consistent with silhouettes

e Boyer 05: define a dense distance between two
cones
— minimize the combined distances between viewing cones

R T———

extremal

frontier point ‘ a~epipolar plane

viewpoint

silhouette

visual hull
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Camera network calibration
using silhouettes

M 114

4 NTSC videos recorded by 4 computers for 4 minutes

e Manually synchronized and calibrated using MoCap
system
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Additional slides:
Not used In Class
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Multiple View Geometry of
Silhouettes
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Frontier Points
Epipolar Tangent

X Fx =0

§72

Points on Silhouettes in 2 views do not correspond in
general except for projected Frontier Points

Always at least 2 extremal frontier points per silhouette
In general, correspondence only over two views

T view |
x'"Fx'=0 __
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Camera Network Calibration from Silhouettes
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(Sinha et al, CVPR'04)
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e 7 or more corresponding frontier points needed to
compute epipolar geometry for general motion

e Hard to find on single silhouette and possibly
occluded

However, Visual Hull systems record many silhouettes!
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Camera Network Calibration from Silhouettes

—
-,
“.
="
-{.
= ey
ey
—
=

-

‘H

e If we know the epipoles, it is simple

e Draw 3 outer epipolar tangents (from two
silhouettes)

=

e Compute corresponding line homography
H-T (not unique)

- Epipolar Geometry F=[e],H
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Let’s just sample: RANSAC
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e Repeat
— Generate random hypothesis for epipoles
— Compute epipolar geometry
— Verify hypothesis and count inliers

until Satisfying hypothesis (use conservative threshold,

e.g. 5 pixels, but abort early

e Refine hypothesis if not promising)
— minimize symmetric transfer error of frontier
points

— include more inliers

- . - (use strict threshold, e.g. 1 pixels)
Until error and inliefs’ &tapfe”® ¢ *°

We'll need an efficient representation
as we are likely to have to do many trials!
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A Compact Representation for Silhouettes
Tangent Envelopes

. :IIH,HI

Convex Hull of Silhouette.

-H

e Tangency Points
for a discrete set of angles.

e Approx. 500 bytes/frame. Hence a whole video
sequences easily fits in memory.

e Tangency Computations are efficient.




17
)

i
Wik

i




Model Verification
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e RANSAC allows efficient exploration of 4D
parameter space (i.e. epipole pair) while being
robust to imperfect silhouettes

e Select key-frames to avoid having too many
identical constraints (when silhouette is static)
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Computed Fundamental Matri.cg
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Computed Fundamental Matri.(g

F computed directly (black epipolar lines)
F after consistent 3D reconstruction (color)
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Computed Fundamental Matriw

F computed directly (black epipolar lines)
F after consistent 3D reconstruction (color)
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From epipolar geometry to full

calibration
Not trivial because only matches between

two views

Approach similar to Levi et al. CVPR’03, but
practical

Key step is to solve for camera triplet

P =[I0] P = [[ear]x Fiz2|eai]
P3 — [[331]><F13|0] + 631'UT(V IS 4-vector) 131‘3

oz = [632]><P3P;' (also linear in v) 1

Choose P5 corresponding to F53 closest Fa3

Assemble complete camera network

projective bundle, self-calibration, metric
bundle
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Metric Cameras and Visual-Hull
Reconstruction from 4 views
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view 3 view 2 view | view 4

Final calibration quality comparable to explicit calibration procedure
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Validation experiment:
Reprojection of silhouettes
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Visual Hull Construction without
Calibration
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e Compute homography from image views to the

hO rizontal SI ice [Khan et.al., A homographic framework for the fusion of
multi-view silhouettes, ICCV, 2007]
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e Use silhouettes + colors consistency

Sudipta's ICCV05 method
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Occluder Inference in Natural
Environment

Goal: 3D dynamic object (e.g. human) modeling in
uncontrolled outdoor environment, with geometrically
calibrated cameras

Setup Difficulties

— lighting variation
— color inconsistency
— little usable texture information™ =%

1T 111

StS, 3D volume representation ﬂﬂ ]”[

]- A Il.

Model explicitly the static occlu 1] “ QJL

Bayesian inference two steps: Lid
e Dynamic object
= Static occluder [Guan et.al., CVPR 2007]

Incremental scheme
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Occluder Inference in Natural
Environment
(cont.)

Pre-observed background models
Occluder occupancies

multi-view silhouette Independent
cue fusion of time
O
o 2
at .{’5.’_, 2 O
] i Dljl L.1 ®
o | O &
O} hd r:).” .l:i!f,
o U,®
Ol e CTe ‘\
-“/ .I
5, l B,
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e Still many things to do:
— accumulate information over time

— combine different sources of information:
silhouettes, color consistency, other cues.

— new models to represent the scene

— fully automatic system for multi-view
reconstruction and data representation
» Calibration
e Static environment modeling
e Dynamic objects analysis
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e Still many things to do:
— accumulate information over time

— combine different sources of information:
silhouettes, color consistency, other cues.

— new models to represent the scene

— fully automatic system for multi-view
reconstruction and data representation
» Calibration
e Static environment modeling
e Dynamic objects analysis
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Why use a Visual Hull?

Can be computed efficiently
No photo-consistency required

As bootstrap of many fancy refinement ...

Why not a Visual Hull?

No exact representation in concavity
Sensitive to silhouette observation
Closed surface representation
Silhouette loses some information ...
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e Theory
— Laurentini ‘94, Petitjean 98, Laurentini '99
e Solid cone intersection:
— Baumgart '74 (polyhedra), Szeliski '93 (octrees)
e Image-based visual hulls
— Matusik et al. '00, Matusik et al. '0O1
e Advanced modeling

— Sullivan & Ponce '98, Cross & Zisserman '00,
Matusik et al. '02

e Applications
— Leibe et al. ’00, Lok 01, Shlyakhter et al. 01, ...




Extension:
Multi-view Stereo with exact
silhouette constraints
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Sinha Sudipta, PhD thesis UNC 2008,
Silhouettes for Calibration and
Reconstruction from Multiple Views
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Volumetric Formulation

il

(]
.

T e—

isual hull
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Inner
Offset

Surface S

Find S which minimizes fs ¢,(S) ds

0(s) is a measure of the photo-
Inconsistency of a surface element at; s
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Silhouette Consistent Shapes

Viewing Ray

Surface

50
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Silhouette Consistent Shapes

Viewing Ray

Surface

51
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Photoconsistency
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e Photo-consistency is a function that how measures
the likelihood of a 3D point of being on a opaque
surface in the scene. This likelihood is computed
based on the images in which this 3D point is
potentially visible.

e An ideal Lambertian surface point will appear to have
the same color in all the images.

e Photo-consistency can be measured in image space
or object space.

— Image space computations compare image patches
centered at the pixels where the 3D point projects.

— Object space computations are more general — a patch
centered at the 3D point is projected into the images
and the appearance of the projected patches are
compared.
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Photoconsistency

Figure 6.19: Computing multiple hypotheses for 2-view matches. These 2-view matches
are triangulated and the generated 3D points are used to accumulate votes within a 3D vol-
ume. The photo-consistency measure is derived from these votes. A slice through the photo-
consistency volume (interior of visual hull) 1s shown. Here black indicates regions of high
photo-consistency.

Sinha Sudipta, PhD thesis UNC 2008,
Silhouettes for Calibration and
Reconstruction from Multiple Views



Mesh with Photo-consistency

shown with

Photo-consistency
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Ibility of the
onsistent Patches

Also proposed by
Hernandez et. al. 2007, Labatut et. >
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Results

After graph-cut
optimization

After local
refinement

57
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y Evaluation

Accuracy Completeness Time
0.69 mm 97.2 % 110 mins.

0.79 mm 94.9 % 104 mins.




