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Physical Principles

Source: Wikipedia



SONAR (Sound navigation and 
ranging)

Principle: Wave with known velocity v 
traveling distance 2*r → takes time tf



Bats

Bats use a variety of ultrasonic ranging (echolocation) 
techniques to detect their prey. They can detect 
frequencies as high as 100 kHz, although there is 
some disagreement on the upper limit.[22]

(see also dolphins, shrews, whales).

source: wikipedia



Time of Flight (TOF)

emitter receiver

Range measurement: 
• Velocity v is known
• tf to be measured
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Basic principle: Time of Flight (TOF):   Emit signal, 
wait for echo, measure time difference



Wavelengths for TOF

• Radar (microwaves: c=clight , λ = 0.02m, f = 15GHz)
• Light/Laser (light: clight = 3*10-8 m/sec, λ = 400nm 

to 700nm, f= 7 to 4*106 GHz )
• Sound (sound: c = 331 m/sec, λ = 0.02m, f = 20Hz 

to 20kHz)
• Ultrasound (sound: c = 331 m/sec, λ = 0.017mm, f

= 2MHz )

Source: Wikipedia



TOF ctd.

Resolution: 
Challenge for 
electronics:

Example:
• Sound: 

v=330m/sec 
△R=1cm → 
△t=60s

• Light: 
c=3*108m/sec
△R=1cm → 
△t=67ps 
(picoseconds)
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Ultrasound

• Example: Polaroid
• Material or topology may absorb 

arbitrary frequencies: Transmits 
several frequences (Polaroid: 
60,57,53,50kHz)

• Engineering principle: Use pulsed 
frequency (f) and digital counter (n)

• Range of counter: 2k-1 (e.g. 16bit)
• Range of unique depth measurement: 

R* 
• Example: f=50kHz, v=330m/sec, 

k=16: R*=216m, 1count: 6.6mm)
• Problem: wide bundle (30°) f
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Pulsed Time of Flight

• Advantages:
– Large working volume (up to 100 m.)

• Disadvantages:
– Not-so-great accuracy (at best ~5 mm.)

• Requires getting timing to ~30 picoseconds
• Does not scale with working volume

• Often used for scanning buildings, 
rooms, archeological sites, etc.



Laser

• Very narrow bundle: high spatial resolution
• But: High temporal resolution of 

measurement electronics (pico-seconds)
• Example: 1cm depth resolution: 70 pico sec
• Reliable measurements: Large #pulses
• Alternative to TOF: 

– Phase Shift encoding
– Modulation of laser with sin-wave of frequency 

fAM

– Phase shift due to time of flight



Laser ctd.

High depth 
resolution: 

• Either: high fAM
• Or: high 

resolution △Ф of 
electronics

• Example: △Ф for 
1cm: 0.22°
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Pulsed Time of Flight

• Basic idea: send out pulse of light (usually 
laser), time how long it takes to return

tcd 
2
1 tcd 
2
1

DeltaSphere by http://www.3rdtech.com/



Depth cameras

2D array of 
time-of-flight 
sensors

e.g. Canesta’s CMOS 3D 
sensor

jitter too big on single 
measurement,

but averages out on many
(10,000 measurements100x 

improvement)

Canesta: Principle: http://en.wikipedia.org/wiki/Canesta
Casnesta Inc Demo Videos: https://www.youtube.com/user/Canesta3D
Demos: 
http://www.youtube.com/watch?v=5_PVx1NbUZQ&noredirect=1
http://www.youtube.com/watch?v=TmKShSHOSYU



Depth cameras

Superfast shutter + standard 
CCD

– cut light off while pulse is 
coming back, then I~Z

– but I~albedo (use unshuttered 
reference view)

3DV’s Z-cam



Range Image Data



Input Data

Simulated and real range images



What is special about range 
images?

Object faces?
Object boundaries?



What is different in range 
images?

Object faces?
Object boundaries?



What is special about range 
images?

• Homogeneous in surface normals
• Crest line: Abrupt change of surface normals
• Continuous change of normals, homogeneous in curvature



Types of Discontinuities in 
Range Images



Properties of object surfaces in 
range images

• Homogeneity of surface properties in:
• Surface normals
• Curvature

• Discontinuities between surfaces:
• “roof edges”: locations with change of normals
• “step edges”: discontinuous depth (e.g. 

hidden objects)



Remember:
Shape from Shading: “Monge” Patch
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Surface Orientation and Surface Normal

(-f x , -f y , 1) = (-p, -q, 1)

p, q comprise a gradient or gradient space representation for
local surface orientation.

Wolff, November 4, 1998



n̂~

Object Representation:
The Gaussian Image (EGI)

• Surface normal information for any object is 
mapped onto a unit (Gaussian) sphere by 
finding the point on the sphere with the 
same surface normal:

n̂~



Example (K. Horn)

www.cs.jhu.edu/~misha/Fall04/EGI1.ppt



Example (K. Horn)

www.cs.jhu.edu/~misha/Fall04/EGI1.ppt



The Extended Gaussian Image

• We can extend the Gaussian image by
– placing a mass at each point on the sphere equal 

to the area of the surface having the given normal
– masses are represented by vectors parallel to the 

normals, with length equal to the mass (VOTING)
• An example:

Block EGI of Block



K. Horn, MIT, 1983

http://people.csail.mit.edu/bkph/AIM/AIM-740-OPT.pdf



The Discrete Case EGI

• To represent the information of the Gaussian 
sphere in a computer, the sphere is divided into 
cells:

• For each image cell on the left, a surface 
orientation is found and accumulated in the 
corresponding cell of the sphere.



Properties of the Gaussian 
Image

• This mapping is called the Gaussian image of the 
object when the surface normals for each point on 
the object are placed such that:
– tails lie at the center of the Gaussian sphere
– heads lie on the sphere at the matching normal 

point
• In areas of convex objects with positive 

curvature, no two points will have the same 
normal.

• Patches on the surface with zero curvature (lines 
or areas) correspond to a single point on the 
sphere.

• Rotations of the object correspond to rotations of 
the sphere.



Using the EGI

• EGIs for different objects or object types 
may be computed and stored in a model 
database as a surface normal vector 
histogram.

• Given a depth image, surface normals may 
be extracted by plane fitting.

• By comparing EGI histogram of the 
extracted normals and those in the 
database, the identity and orientation of the 
object may be found.



Properties of object surfaces in 
range images

• Homogeneity of surface properties in:
– Surface normals
– Curvature

• Discontinuities between surfaces:
– “roof edges”: continuous depth but 

change of normals
– “step edges”: discontinuous depth (e.g. 

hidden objects)



Segmentation into planar 
patches

• F&P page 476/477
• Idea: Break object surface into sets of 

flat pieces
– Clustering of surface normals via EGI
– Region growing: Iterative merging of 

planar patches via graph/arc-costs



Segmentation into planar 
patches

Iterative merging of planar patches:
• Graph nodes: Patches with best fitting plane
• Graph arcs: costs corresponding to average error 

between combined set of points and plane that best fits 
these points

• Iteration: Find best arc, merge, next …



Segmentation into planar 
patches



Segmentation 
into planar 
patches



From flat pieces to curvature: 
Differential Geometry



Elements of Analytical Differential Geometry (see F&P)

• Parametric surface:      x : Ux R2 → R3

• Unit surface normal:     N =                   (xu x xv)  | xu x xv |
1

• First fundamental form:

I( t, t ) = Eu’2 + 2Fu’v’+Gv’2
E=xu.xu
F=xu.xv
G=xv.xv

{
• Second fundamental form:

II( t, t ) = eu’2 + 2fu’v’+gv’2
e= – N.xuu
f = – N.xuv
g= – N.xvv

{
• Normal (direction t) and Gaussian curvatures:

t = 
I( t, t )
II( t, t )

K =
eg – f 2

EG – F 2



Example: Monge Patches
h
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x ( u, v ) =  (u, v, h( u, v ))

In this case

• N=                           ( –hu , –hv , 1)T
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And the Gaussian curvature is:         K =                           .
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Example: Local Surface Parameterization

• u,v axes = principal directions

• h axis = surface normal

In this case:

• h(0,0)=hu(0,0)=hv(0,0)=0

• N=(0,0,1)T

• huv(0,0)=0, 1= – huu(0,0), 2= – hvv(0,0)

h(u,v)  = – ½  (1 u2 +2 v2)Taylor expansion of order 2



Calculation of Partial 
Derivatives



Principal Directions



Calculation of principal 
curvatures

Note that the principal curvatures are homogeneous 
across the large lower part of the bottle → can serve 
as homogeneous features for clustering



The Problem

Align two 
partially-
overlapping 
meshes
given initial 
guess
for relative 
transform



Range Image Registration ctd.
• Concept: 

– Determine rigid transformation between pairs 
of range surfaces

– Minimize average distance between point 
sets

– ICP: Iterative Closest Point algorithm (Besl 
& McKay 1992)



Corresponding Point Set 
Alignment

• Let M be a model point set. 
• Let S be a scene point set.

We assume :
1. NM = NS.
2. Each point Si correspond to Mi .



Corresponding Point Set 
Alignment

The MSE objective function :

The alignment is :
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Aligning 3D Data

• If correct correspondences are 
known, can find correct relative 
rotation/translation



Aligning 3D Data

• How to find correspondences:  User 
input? Feature detection?  
Signatures?

• Alternative: assume closest points 
correspond



Aligning 3D Data

• How to find correspondences:  User 
input? Feature detection?  
Signatures?

• Alternative: assume closest points 
correspond



Aligning 3D Data

• Converges if starting position “close 
enough“



Closest Point

• Given 2 points r1 and r2 , the 
Euclidean distance is:

• Given a point r1 and set of points 
A , the Euclidean distance is:
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Example: 3D Data Integration 

• Range image registration



Example: 3D Data Integration 



Applications:
Crime Scene, Forensic Analysis

http://www.deltasphere.com/



Applications:
Crime Scene, Forensic Analysis

http://www.deltasphere.com/



Applications

Museums, Cultural Exhibits

Archeology

Military Simulation and Training

Architecture and Construction



Range Finders: Some 
References

• P.J. Besl. Active, optical range imaging sensors. 
Machine Vision and Applications,1:127-152, 1988. 

• R.A. Jarvis Range sensing for computer vision. In 
A.K. Jain and P.J. Flynn, editors, Three-Dimensional 
Object Recognition Systems, pages 17-56. Elsevier 
Science Publishers, 1993. 

• T.G. Stahs and F.M. Wahl, "Fast and Robust Range 
Data Acquisition in a Low-Cost Environment", in SPIE 
#1395: Close- Range Photogrammetry Meets Mach. 
Vis., Zurich, 1990, 496-503. 



Conclusions

Wide range of application areas including: 
• Action recognition and tracking
• Object pose recognition for robotic control
• Obstacle detection for automotive control 
• Human-computer interaction
• Video surveillance
• Scene segmentation and obstacle detection
• Computer assisted surgical intervention
• Industrial applications of TOF cameras
• Automotive applications of TOF cameras
• Virtual reality applications
• Integration of range and intensity imaging sensor 

outputs
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