

Structured Light II

Guido Gerig CS 6320, Spring 2013 (thanks: slides Prof. S. Narasimhan, CMU, Marc Pollefeys, UNC) http://www.cs.cmu.edu/afs/cs/academic/class/15385s06/lectures/ppts/lec-17.ppt

Variant

- Pattern projection
 - project a pattern instead of a single point
 - · needs only a single image, one-shot recording
 - ...but matching is no longer unique (although still easier)
 - more on this later

Active triangulation: Structured light

- One of the cameras is replaced by a light emitter
- Correspondence problem is solved by searching the pattern in the camera image (pattern decoding)

Space-time stereo Zhang, Curless and Seitz, CVPR'03

Faster Acquisition?

- Project multiple stripes/patterns simultaneously.
- Correspondence problem: which stripe/pattern is which? How to uniquely identify patterns?

Zhang 2002: Works in real-time and on dynamic scenes

Coded structured light

- Correspondence without need for geometrical constraints
- For dense correspondence, we need many light planes:
 - Move the projection device
 - Project many stripes at once: needs encoding
- Each pixel set is distinguishable by its encoding
- Codewords for pixels:
 - Grey levels
 - Color
 - Geometrical considerations

Codeword Classification

- Time-multiplexing:
 - Binary codes
 - N-ary codes
 - Gray code + phase shift
- Spatial Codification
 - De Bruijn sequences
 - M-arrays
- Direct encoding
 - Grey levels
 - Colour

Pattern encoding/decoding

 A pattern is encoded when after projecting it onto a surface, a set of regions of the observed projection can be easily matched with the original pattern. Example: pattern with two-encoded-columns

Pattern encoding/decoding

- Two ways of encoding the correspondences: single and double axis codification \Rightarrow it determines how the triangulation is calculated

۲

Time-Coded Light Patterns

• Assign each stripe a unique illumination code over time [Posdamer 82]

Space

Binary Coding: Bit Plane Stack

• Assign each stripe a unique illumination code over time [Posdamer 82]

Time

Binary Coding (II)

Binary coding

- Only two illumination levels are commonly used, which are coded as 0 and 1.
- Gray code can be used for robustness (adjacent stripes must only differ in 1 bit)
- Every encoded point is identified by the sequence of intensities that it receives
- n patterns must be projected in order to encode
 2ⁿ stripes
- Advantages

- Easy to segment the image patterns
- Need a large number of patterns to be projected

Binary Encoded Light Stripes

Binary Encoded Light Stripes

(c) Light sectioning using structured light.

- Set of light planes are projected into the scene
- Individual light planes are indexed by an encoding scheme for the light patterns
 - Obtained images form a bit-plane stack
 - Bit-plane stack is used to uniquely address the light plane corresponding to every image point

Binary code projection

Time Multiplexing

A set of patterns are successively projected onto the measuring surface, codeword for a given pixel is formed by a sequence of patterns.

The most common structure of the patterns is a sequence of stripes increasing its width by the time \rightarrow single-axis encoding

Advantages:

- high resolution \rightarrow a lot of 3D points
- High accuracy (order of μ m)
- Robustness against colorful objects since binary patterns can be used

Drawbacks:

- Static objects only
- Large number of patterns

Example: 5 binary-encoded patterns which allows the measuring surface to be divided in 32 sub-regions

Binary Coding

Concept Gray Code

Structured Lighting: Swept-Planes Revisited

- Swept-plane scanning recovers 3D depth using ray-plane intersection
- Use a data projector to replace manually-swept laser/shadow planes
- How to assign correspondence from projector planes to camera pixels?
- Solution: Project a spatially- and temporally-encoded image sequence
- What is the optimal image sequence to project?

Structured Lighting: Binary Codes

Binary Image Sequence [Posdamer and Altschuler 1982]

- Each image is a bit-plane of the binary code for projector row/column
- Minimum of 10 images to encode 1024 columns or 768 rows
- In practice, 20 images are used to encode 1024 columns or 768 rows
- Projector and camera(s) must be synchronized

Structured Lighting: Gray Codes

Gray Code Image Sequence [Inokuchi 1984]

- Each image is a bit-plane of the Gray code for each projector row/column
- Requires same number of images as a binary image sequence, but has better performance in practice

Bin2Gray(B,G)

- 1 G ← B
- 2 for $i \leftarrow n-1$ downto 0
- 3 $G[i] \leftarrow B[i+1] \text{ xor } B[i]$

Gray Code

Gray Code Image Sequence

- Each image is a bit-plane of the Gray code for each projector row/column
- Requires same number of images as a binary image sequence, but has better performance in practice

Bin2Gray(B,G)

- $1 \quad G \leftarrow B$
- 2 for $i \leftarrow n-1$ downto 0
- 3 $G[i] \leftarrow B[i+1] \text{ xor } B[i]$

Frank Gray (-> name of coding sequence)
Code of neighboring projector pixels only differ by 1bit, possibility of error correction!

Gray Codes: Decoding Performance

3D Reconstruction using Structured Light [Inokuchi 1984]

- Implemented using a total of 42 images (2 to measure dynamic range, 20 to encode rows, 20 to encode columns)
- Individual bits assigned by detecting if bit-plane (or its inverse) is brighter
- Decoding algorithm: Gray code \rightarrow binary code \rightarrow integer row/column index

Examples

http://www.youtube.com/watch?v=wryJeq3kdSg

Alternatives

Figure 8. Flowchart of the Line Shift algorithm.

Towards higher precision and real time scanning

Line Shift Processing (Guehring et al.)

Gray Code Sequence

 Line Shift Sequence (Pattern Length: 6 Lines)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 3

 5
 1
 1
 1
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 3

 6
 1
 1
 1
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 <

Figure 4. Gray code (top) and Line Shift (bottom) of a n = 32 stripe code sequence.

•Project Gray Code sequence

•Project set of 6 thin line patterns, detect line centers in image

•Combine line center positions with gray code encoding to resolve for ambiguities

•Obtain camera coordinates with subpixel accuracies for projector coordinates

•See <u>Videometrics01-Guehring-4309-24.pdf</u> for details

Gray Code + Phase Shifting (I)

• A sequence of binary patterns (Gray encoded) are projected in order to divide the object in regions

- An additional periodical pattern is projected
- The periodical pattern is projected several times by shifting it in one direction in order to increase the resolution of the system → similar to a laser scanner

Gühring's line-shift technique

Example: three binary patterns divide the object in 8 regions

Without the binary patterns we would not be able to distinguish among all the projected slits

Every slit always falls in the same region

Industrial Inspection via line shift sequence

Figure 7. (a) One image of the *line shift* sequence. (b) Computed range image (z component). (c) Rendered view of the obtained surface. The holes are caused by points that have been eliminated by consistency checks, e.g. due to saturated pixels.

Phase Shift Method (Guehring etal.)

Figure 3. Gray code (top) and Phase Shift (bottom) of a n = 32 stripe code sequence.

- •Project set of patterns
- •Project sin functions
- •Interpolation between adjacent light planes
- •Yields for each camera pixel corresponding strip with subpixel accuracy!
- •See <u>Videometrics01-Guehring-4309-24.pdf</u> for details

Gray Code + Phase Shifting (II)

Gray code + phase shifting

- Grey code: easy codification, low resolution
- Phase shifting: high resolution, neighborhood ambiguity
- Gray code + phase shifting: robust codification, no ambiguity and high resolution, but increase the number of projecting patterns

Figure 9.15: Sketch of the spatial arrangement of light patterns used to implement a simple phase shift method.

Source:

Increasing the resolution

 $\label{eq:http://www.igp.ethz.ch/photogrammetry/education/lehrveranstaltungen/MachineVisionFS2011/coursematerial/MV-SS2011-structured.pdf$

- · project three phase-shifted sinusoidal patterns
- · can be projected sequentially, or simultaneously in different colours
- the recorded intensities allow to compute the phase angle of a pixel within a wavelength

- Phase angle from brightness values
 - · computing the phase angle from the three images
 - although the method relies on brightness, the ambient light and the power of the projector need not be known

observed intensities

 $I_{-} = I_{base} + I_{var} \cos(\phi - \theta)$ $I_{0} = I_{base} + I_{var} \cos(\phi)$ $I_{+} = I_{base} + I_{var} \cos(\phi + \theta)$

$$\frac{I_- - I_+}{2I_0 - I_- - I_+} =$$

- Phase angle from brightness values
 - · computing the phase angle from the three images
 - although the method relies on brightness, the ambient light and the power of the projector need not be known

observed intensities

 $I_{-} = I_{base} + I_{var} \cos(\phi - \theta)$ $I_{0} = I_{base} + I_{var} \cos(\phi)$ $I_{+} = I_{base} + I_{var} \cos(\phi + \theta)$

removed dependence on Ibase

removed dependence on Ivar

$$\begin{aligned} \frac{I_{-} - I_{+}}{2I_{0} - I_{-} - I_{+}} = \\ \frac{I_{base} + I_{ver} \cos(\phi - \theta) - I_{base} - I_{ver} \cos(\phi + \theta)}{2I_{base} + 2I_{ver} \cos\phi - I_{base} - I_{ver} \cos(\phi - \theta) - I_{base} - I_{ver} \cos(\phi + \theta)} \end{aligned}$$

- Phase angle from brightness values
 - computing the phase angle from the three images
 - although the method relies on brightness, the ambient light and the power of the projector need not be known

observed intensitiesfrom trigonometry $I_{-} = I_{base} + I_{var} \cos(\phi - \theta)$ $\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{\sin(\theta)}$ $I_{0} = I_{base} + I_{var} \cos(\phi)$ $\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{\sin(\theta)}$ $I_{+} = I_{base} + I_{var} \cos(\phi + \theta)$ $\cos(\phi - \theta) = \cos(\phi) \cos(\theta) + \sin(\phi) \sin(\theta)$ $\cos(\phi + \theta) = \cos(\phi) \cos(\theta) - \sin(\phi) \sin(\theta)$

$$\frac{\cos(\phi - \theta) - \cos(\phi + \theta)}{2\cos\phi - \cos(\phi - \theta) - \cos(\phi + \theta)} = \frac{2\sin(\phi)\sin(\theta)}{2\cos(\phi)(1 - \cos(\theta))}$$

- Phase angle from brightness values
 - computing the phase angle from the three images
 - although the method relies on brightness, the ambient light and the power of the projector need not be known

observed intensities $I_{-} = I_{base} + I_{var} \cos(\phi - \theta)$ $I_{0} = I_{base} + I_{var} \cos(\phi)$ $I_{+} = I_{base} + I_{var} \cos(\phi + \theta)$ from trigonometry $\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{\sin(\theta)}$ $\cos(\phi - \theta) = \cos(\phi)\cos(\theta) + \sin(\phi)\sin(\theta)$ $\cos(\phi + \theta) = \cos(\phi)\cos(\theta) - \sin(\phi)\sin(\theta)$

$$\frac{2\sin(\phi)\sin(\theta)}{2\cos(\phi)(1-\cos(\theta))} = \frac{\tan(\phi)\sin(\theta)}{1-\cos(\theta)} = \frac{\tan(\phi)}{\tan(\theta/2)}$$

Phase-shift projection

- Phase angle from brightness values
 - computing the phase angle from the three images
 - although the method relies on brightness, the ambient light and the power of the projector need not be known

observed intensities

 $I_{-} = I_{base} + I_{var} \cos(\phi - \theta)$ $I_{0} = I_{base} + I_{var} \cos(\phi)$ $I_{+} = I_{base} + I_{var} \cos(\phi + \theta)$

phase angle
$$\frac{I_{-} - I_{+}}{2I_{0} - I_{-} - I_{+}} = \frac{\tan(\phi)}{\tan(\theta/2)}$$
$$\phi'(0, 2\pi) = \arctan\left(\tan\left(\frac{\theta}{2}\right)\frac{I_{-} - I_{+}}{2I_{0} - I_{-} - I_{+}}\right)$$

Phase-shift projection

- Total phase
 - phase angle within a period from intensity
 - number of period from stereo triangulation (or light stripe)
 - stereo matching is easy: only N possibilities

Phase-shift projection

• Total phase

See also: <u>http://www.youtube.com/watch?v=a6pgzNUjh_s</u>

- the phase angle only determines the relative position within one cycle of the periodic sine wave
- need to know which stripe we are in (c.f. GPS phase ambiguity)
- achieved by ordering assumption, or combination with stereo

N-ary codes

- Reduce the number of patterns by increasing the number of intensity levels used to encode the stripes.
 - Multi grey levels instead of binary
 - Multilevel gray code based on color.
- Alphabet of *m* symbols encodes *mⁿ* stripes

3 patterns based on a n-ary code of 4 grey levels (Horn & Kiryati) → 64 encoded stripes

Direct Codification

- Every encoded pixel is identified by its own intensity/color
- Since the codification is usually condensed in a unique pattern, the spectrum of intensities/colors used is very large
- Additional reference patterns must be projected in order to differentiate among all the projected intensities/colors:
 - Ambient lighting (black pattern)
 - Full illuminated (white pattern)
 - ...

Introducing color in coding

- Allowing colors in coding is the same as augmenting code basis. This gives us more words with the same length.
- If the scene changes the color of projected light, then information can be lost.
- Reflectivity restrictions (neutral scene colors) have to be imposed to guarantee the correct decoding.

Direct encoding with color

• Every encoded point of the pattern is identified by its colour

Tajima and Iwakawa rainbow pattern

(the rainbow is generated with a source of white light passing through a crystal prism)

T. Sato patterns capable of cancelling the object colour by projecting three shifted patterns

(it can be implemented with an LCD projector if few colours are projected)

Rainbow Pattern

http://cmp.felk.cvut.cz/cmp/demos/RangeAcquisition.html

Assumes that the scene does not change the color of projected light

Direct Codification

- Every encoded pixel is identified by its own intensity/color
- Since the codification is usually condensed in a unique pattern, the spectrum of intensities/colors used is very large
- Additional **reference patterns** must be projected in order to differentiate among all the projected intensities/colors:
 - Ambient lighting (black pattern)
 - Full illuminated (white pattern)
 - ...
- Advantages:
 - Reduced number of patterns
 - High resolution can be theoretically achieved

Drawbacks:

- Very noisy in front of reflective properties of the objects, nonlinearities in the camera spectral response and projector spectrum ⇒ non-standard light emitters are required in order to project single wave-lengths
- Low accuracy (order of 1 mm)

Spatial Coherence

- Coding in a single frame.
- Spatial Coherence can be local or global.
- The minimum number of pixels used to identify the projected code defines the accuracy of details to be recovered in the scene.

Real time by direct encoding

Works despite complex appearances

Works in real-time and on dynamic scenes

- Need very few images (one or two).
- But needs a more complex correspondence algorithm

Zhang et al

De Bruijn Sequences

• A De Bruijn sequence (or pseudorandom sequence) of order *m* over an alphabet of *n* symbols is a circular string of length n^m that contains every substring of length m exactly once (in this case the windows are one-dimensional).

 $1000010111101001 \begin{cases} m=4 \text{ (window size)} \\ n=2 \text{ (alphabet symbols)} \end{cases}$

• The De Bruijn sequences are used to define colored slit patterns (single axis codification) or grid patterns (double axis codification)

• In order to decode a certain slit it is only necessary to identify one of the windows in which it belongs to) can resolve occlusion problem.

Zhang et al.: 125 slits encoded with a De Bruijn sequence of 8 colors and window size of 3 slits

Salvi et al.: grid of 29×29 where a De Bruijn sequence of 3 colors and window size of 3 slits is used to encode the vertical and horizontal slits

M-Arrays

• An m-array is the bidimensional extension of a De Bruijn sequence. Every window of w×h units appears only once. The window size is related with the size of the m-array and the number of symbols used

0	0	1	0	1	0
0	1	0	1	1	0
1	1	0	0 1 0	1	1
0	0	1	0	1	0

Example: binary marray of size 4×6 and window size of 2×2

Morano et al. M-array represented with an array of coloured dots

M-array proposed by Vuylsteke et al. Represented with shape primitives

Shape primitives used to represent every symbol of the alphabet

Some examples

*************	* * ***** * **

*************	** **** * ** *

Ilimitated dot.

Morita - Yakima - Sakata 1988

 Initial projection of a whole illuminated dot matrix to extract dot position.

Window coded pattern.

Column Coded / Static / Binary / Absolute Lavoie '96. A grid pattern with random binary dots in the cross-points.

Vuylsteke - Oosterlinck 1990

- · Chess-board pattern projection with coded squares.
- Window coded pattern.
- Column Coded / Dynamic / Binary / Absolute Pajdla '95 : Re-implementation. Ito '95 : A three grey level checkerboard pattern.

Binary spatial coding

http://cmp.felk.cvut.cz/cmp/demos/RangeAcquisition.html

Problems in recovering pattern

Examples

Boyer - Kak 1987

· Multiple coloured vertical slits.

Codification from slit colour sequence.

Column Coded / Dynamic / Colour / Absolute Monks '93 : Utilisation of the same pattern for speech interpretation.

Chen '97 : Unique codification and colour improvement.

Griffin - Narasimhan - Yee 1992

- Mathematical study to obtain the largest codification matrix from a fixed number of colours.
- Dot position coded by the colour of its four neighbours.

Both axis coded / Static / Colour / Absolute Davies '96 : Re-implementation.

Local spatial Coherence

http://www.mri.jhu.edu/~cozturk/sl.html

•Medical Imaging Laboratory Departments of Biomedical Engineering and Radiology Johns Hopkins University School of Medicine Baltimore, MD 21205

Experimental results Gühring . . s) 14 stripes) De Bruijn Timemultipleving Morano (45x45 dot array) Spat codifica Direct codification

Discussion Structured Light

- Advantages
 - robust solves the correspondence problem
 - fast instantaneous recording, real-time processing
- Limitations
 - less flexible than passive sensing: needs specialised
 - equipment and suitable environment
- Applications
 - industrial inspection
 - entertainment
 - healthcare

.

heritage documentation

Microsoft Kinect

Microsoft Kinect

Stage 1: The depth map is constructed by analyzing a speckle pattern of infrared laser light

The Kinect combines <u>structured</u> <u>light</u> with two classic computer vision techniques: <u>depth from</u> <u>focus</u>, and <u>depth from stereo</u>.

The Kinect uses infrared laser light, with a speckle pattern

Shpunt et al, PrimeSense patent application US 2008/0106746

http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf

Consumer application

- Now people have it in their living room
 - Xbox Kinect periodic infrared dot pattern

Microsoft Kinect

Inferring body position is a two-stage process: first compute a depth map, then infer body position

http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf

Decoding table

Decoding table

vertices	d(0)	d(1)	d(2)	d(3)
V(00)	0	3	6	9
V(01)	14	17	19	11
V(<mark>02</mark>)	28	34	22	24
V(10)	26	29	18	21
V(11)	1	31	33	35
V(12)	15	4	8	13
V(<mark>20</mark>)	16	23	32	12
V(21)	27	5	7	25
V(22)	2	10	20	30

Experiment

Spatial Codification

Project a certain kind of spatial pattern so that a set of neighborhood points appears in the pattern only once. Then the codeword that labels a certain point of the pattern is obtained from a neighborhood of the point around it.

- The codification is condensed in a unique pattern instead of multiplexing it along time
- The size of the neighborhood (**window size**) is proportional to the number of encoded points and inversely proportional to the number of used colors
- The aim of these techniques is to obtain a one-shot measurement system ⇒ moving objects can be measured

Advantages:

- Moving objects supported
- Possibility to condense the codification to a unique pattern

• Drawbacks:

- Discontinuities on the object surface can produce erroneous window decoding (occlusions problem)
- The higher the number of used colours, the more difficult to correctly identify them when measuring nonneutral surfaces
- Maximum resolution cannot be reached

Gray Code Structured Lighting: Results

Results

igare 5: Beethoven bust with projected dot pattern

Including exposures with phase-shifted pattern the complete surface dataset consists of 43,000 projected dots. Results of a subset of about 18,000 dots are shown in Figure 6 - Figure 8. Figure 8 shows a photorealistic visualization of the dataset, which has been generated from the photogrammetrically determined object surface data by a mytracer program.

Figure 6: Deethoven - grid Madei

Figure 7: Beetheven - isaline plot

Figure 8: Douboven - Photorealistic visualisation

Conclusions

Types of techniques		
Time-multiplexing	Highest resolutionHigh accuracyEasy implementation	 Inapplicability to moving objects Large number of patterns
Spatial codification	 Can measure moving objects A unique pattern is required 	 Lower resolution than time- multiplexing More complex decoding stage Occlusions problem
Direct codification	High resolutionFew patterns	 Very sensitive to image noise Inapplicability to moving objects

Guidelines

Requirements	Best technique	
 High accuracy Highest resolution Static objects No matter the number of patterns 	Phase shift + Gray code → Gühring's line-shift technique	
 High accuracy High resolution Static objects Minimum number of patterns 	N-ary pattern → Horn & Kiryati Caspi et al.	
High accuracyGood resolutionMoving objects	De Bruijn pattern → Zhang et al.	