

Project Ideas

Guido Gerig CS 6320, 3D Computer Vision Spring 2013

Final Project 3D CV

- Work on your own.
- Select a 3D vision method (examples given in slides).
- Develop a project that goes from input data to a 3D solution.
- Develop/use code, generate images (or make use of existing test images), show some substantial effort towards your own solution.
- Write a final report (min 6 pages) describing your project, approach, algorithms, input data, results, limitations, problems, critical discussion.
- Short presentation (5-10Min, ev. demo) and discussion in the last week of classes.
- Report and presentation clearly need to reflect contributions of own coding versus using pieces of existing code libraries.

3D from Stereo

Disparity map

image I(x,y)

Disparity map D(x,y)

image l´(x´,y´)

(x',y')=(x+D(x,y),y)

Dynamic Programming (Ohta and Kanade, 1985)

Reprinted from "Stereo by Intra- and Intet-Scanline Search," by Y. Ohta and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(2):139-154 (1985). Ó 1985 IEEE.

Shape from Shading

Ceramic Pot Data

Usable Data Mask

Ceramic Pot Results

Needle Diagram:

Albedo

Re-lit:

Results – Lord Buddha Images – Pre-Processed Images Guozhen Fan and Aman Shah

Original Image

Albedo Map

Surface Normals

Obtained Surfaces from different angles

Structured Light

Active Vision: Structured Light

Segmentation: Binarization and coding of stripes

3D model extracted from stripe pattern

Example: Bouguet and Perona, ICCV'98

"Cheap and smart" Solution

Structured Light Using a Rotating Table James Clark, 3D CV F2009

Localized Mesh

Structured Light Anuja Sharma, Abishek Kumar

Structured Light Anuja Sharma, Abishek Kumar

Shape from Silhouettes

3D Shape from Silhouettes

3D shape from silhouettes

Forbes et al., ICCV2005 Christine Xu, Computer Vision Student Project Think about the geometry -> calculate relationship between silhouettes

3D shape from silhouettes

Build 3D model

Visualize 3D model from arbitrary viewing angles

Example

- Compute visual hull with silhouette images from multiple calibrated cameras
- Compute Silhouette Image
- Volumetric visual hull computation
- Display the result

Shape from Rotation

Turntable Approach

Range Sensor Data Processing to get 3D Shapes

Input Data: Depth Maps

Range Image (left) and gray level image (right)

A slide from Microsoft's E3 Conference 5 showing a diagram of the technologies in Kinect

This infrared image shows the laser grid Kinect uses to calculate depth

The depth map is visualized here using 5 color gradients from white (near) to blue

(f)

Figure 9: Continuation of the example scene consisting of four objects. (e) and (f) grasping the Scotch tape roller, and (g) and (h) grasping the coffee cup.

Object Tracking

Object Tracking

Object Tracking: Using Deformable Models in Vision

Object Tracking: Using Deformable Models in Vision: II

Unifying Boundary and Region-based information for Geodesic Active Tracking

Object Tracking III

Spatiotemporal Volumes

Figure 3.3: Visualization of a spatio-temporal volume and a spatio-temporal cut plane. On the left, a 10 second video is presented as a spatio-temporal volume. The front of the volume shows the first frame, the right side shows the right-most vertical line through time, and the top shows the top-most scanline through time. On the right, the volume has been rotated and been cut using two planar cuts. The first, parallel to the front face, has shortened the video. The second has revealed a different scanline which shows the motion of people walking during the duration of the video.

Motion Tails

Motion Tails Virtual Shutter Original Exposure

Figure 5.9: Two examples of using motion tails to depict dense motion paths between sampled time-lapse frames. The building front result (above) uses uniform sampling, while the crowded sidewalk (below) is non-uniformly sampled.

3D from Texture

Shape from Texture

Shape from Texture

Images from: <u>http://www.betterphoto.com/gallery/dynoGall2.asp?catID=355</u>, and google images

3D from Optical Flow

Optical Flow from dynamic Imaging

Optical Flow

• Motion of brightness pattern in the image

Optical Flow

- Motion of brightness pattern in the image
- Optical flow = Projection of Motion field into image plane
- Recover 3D motion

Webcam Based Virtual Whiteboard Jon Bronson James Fishbaugh

- Blackboards came first
- Whiteboards eventually followed
- Virtual Whiteboards are coming
- Basic Idea:
 - Write on any surface
 - Use no ink/chalk
 - Store all information to disk

Webcam Based Virtual Whiteboard Jon Bronson James Fishbaugh

Real-Time 3D Glowstick Detection Computer Vision Project 2009 Andrei Ostanin

Detecting the 3D position of glowsticks in real-time using two cameras.

Figure 25 Chevron Courts Travers

Realtime Glowstick Detection Andrei Ostanin

- Capture the 3D position of glowsticks in real-time using two webcams
- Environment dark enough that glowsticks are easily segmented out
- Prefer speed over correctness

