Optical Flow I

Guido Gerig
 CS 6320, Spring 2013

(credits: Marc Pollefeys UNC Chapel Hill, Comp 256 / K.H. Shafique, UCSF, CAP5415 / S. Narasimhan, CMU / Bahadir K. Gunturk, EE 7730 / Bradski\&Thrun, Stanford CS223

Materials

- Gary Bradski \& Sebastian Thrun, Stanford CS223 http://robots.stanford.edu/cs223b/index.html
- S. Narasimhan, CMU: http://www.cs.cmu.edu/afs/cs/academic/class/15385-s06/lectures/ppts/lec-16.ppt
- M. Pollefeys, ETH Zurich/UNC Chapel Hill: http://www.cs.unc.edu/Research/vision/comp256/vision10.ppt
- K.H. Shafique, UCSF: http://www.cs.ucf.edu/courses/cap6411/cap5415/ - Lecture 18 (March 25, 2003), Slides: PDF/ PPT
- Jepson, Toronto: http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
- Original paper Horn\&Schunck 1981: http://www.csd.uwo.ca/faculty/beau/CS9645/PAPERS/Horn-Schunck.pdf
- MIT AI Memo Horn\& Schunck 1980: http://people.csail.mit.edu/bkph/AIM/AI M-572.pdf
- Bahadir K. Gunturk, EE 7730 Image Analysis II
- Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black, K. Toyama

Tracking - Rigid Objects

What is Optical Flow (OF)?

Optical flow is the relation of the motion field:

- the 2D projection of the physical movement of points relative to the observer to 2D displacement of pixel patches on the image plane.

What is Optical Flow (OF)?

Optical flow is the relation of the motion field:

- the 2D projection of the physical movement of points relative to the observer to 2D displacement of pixel patches on the image plane.

Common assumption:
The appearance of the image patches do not change (brightness constancy)

$$
I\left(p_{i}, t\right)=I\left(p_{i}+\stackrel{\stackrel{1}{v}}{i}, t+1\right)
$$

What is Optical Flow (OF)?

Optical flow is the relation of the motion field:

- the 2D projection of the physical movement of points relative to the observer to 2D displacement of pixel patches on the image plane.

Common assumption:
The appearance of the image patches do not change (brightness constancy)

$$
I\left(p_{i}, t\right)=I\left(p_{i}+\stackrel{\prime}{v_{i}}, t+1\right)
$$

Note: more elaborate tracking models can be adopted if more frames are process all at once

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Optical Flow and Motion

- We are interested in finding the movement of scene objects from timevarying images (videos).
- Lots of uses
- Motion detection
- Track objects
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- Special effects
- Games: http://www.youtube.com/watch?v=JILkkom6tww
- User Interfaces: http://www.youtube.com/watch?v=Q3gT52sHDI4
- Video compression

Optical Flow: Where do pixels move to?

Related to: Optical flow

Where do pixels move?

Related to: Optical flow

Tracking - Non-rigid Objects

(Comaniciu et al, Siemens)

Tracking - Non-rigid Objects

Alper Yilmaz, Fall 2005 UCF

Optical Flow: Correspondence

Basic question: Which Pixel went where?

Optical Flow is NOT 3D motion field

Structure from Motion?

Optical Flow is NOT 3D motion field

http://en.wikipedia.org/wiki/File:Opticfloweg.png

Definition of optical flow

OPTICAL FLOW = apparent motion of brightness patterns

Ideally, the optical flow is the projection of the three-dimensional velocity vectors on the image

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Start with an Equation: Brightness Constancy

Point moves (small), but its brightness remains constant:

$$
\begin{gathered}
I_{t 1}(x, y)=I_{t 2}(x+u, y+v) \\
I=\text { constant } \rightarrow \frac{d I}{d t}=0
\end{gathered}
$$

Mathematical formulation

$I(x(t), y(t), t)=$ brightness at (x, y) at time t

Brightness constancy assumption (shift of location but brightness stays same):

$$
I\left(x+\frac{d x}{d t} \delta t, y+\frac{d y}{d t} \delta t, t+\delta t\right)=I(x, y, t)
$$

Optical flow constraint equation (chain rule):

$$
\frac{d I}{d t}=\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0
$$

The aperture problem

$$
\begin{gathered}
u=\frac{d x}{d t}, \quad v=\frac{d y}{d t} \\
I_{x}=\frac{\partial I}{\partial y}, \quad I_{y}=\frac{\partial I}{\partial y}, \quad I_{t}=\frac{\partial I}{\partial t} \\
I_{x} u+I_{y} v+I_{t}=0
\end{gathered} \begin{aligned}
& \text { Horn and } \\
& \begin{array}{l}
\text { Schunck } \\
\text { optical flow } \\
\text { equation }
\end{array}
\end{aligned}
$$

The aperture problem

$$
\begin{gathered}
u=\frac{d x}{d t}, \quad v=\frac{d y}{d t} \\
I_{x}=\frac{\partial I}{\partial y}, \quad I_{y}=\frac{\partial I}{\partial y}, \quad I_{t}=\frac{\partial I}{\partial t} \\
I_{x} u+I_{y} v+I_{t}=0
\end{gathered} \begin{aligned}
& \text { Horn and } \\
& \begin{array}{l}
\text { Schunck } \\
\text { optical flow } \\
\text { equation }
\end{array}
\end{aligned}
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
f(t) \equiv I(x(t), t)=I(x(t+d t), t+d t)
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
f(t) \equiv I \underbrace{I t}_{\frac{\partial f(x)}{(x(t)}, t})=I(x(t+d t), t+d t)
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
\begin{aligned}
& f(t) \equiv I \underbrace{\left.\frac{\partial f(x)}{x(t), t}\right)}=I(x(t+d t), t+d t) \\
& \left.\frac{\partial I}{\partial t}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
\begin{aligned}
& f(t) \equiv I \underbrace{\left.\frac{\partial f(x)}{x(t)}, t\right)}=I(x(t+d t), t+d t) \\
& \left.\frac{\partial I}{\partial t}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& I_{x}=0
\end{aligned}
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
\begin{aligned}
& f(t) \equiv I \underbrace{\frac{\partial f(x)}{\partial t}}_{\underbrace{(x(t), t})}=0 \text { Because no change in brightness with time } \\
& \left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \Longrightarrow v=-\frac{I_{x}}{I_{x}} \\
& \Longrightarrow v t), t+d t) \\
&
\end{aligned}
$$

Tracking in the 1D case:

Spatial derivative

$$
I_{x}=\left.\frac{\partial I}{\partial x}\right|_{t} \quad I_{t}=\left.\frac{\partial I}{\partial t}\right|_{x=p} \quad \square \quad \stackrel{r}{v} \approx-\frac{I_{t}}{I_{x}} \quad\left\{\begin{array}{l}
\text { Assumptions: } \\
\cdot \text { Brightness constancy } \\
\cdot \text { Small motion }
\end{array}\right.
$$

Tracking in the 1D case:

Iterating helps refining the velocity vector

Tracking in the 1D case:

Iterating helps refining the velocity vector

Tracking in the 1D case:

Iterating helps refining the velocity vector

Can keep the same estimate for spatial derivative

Tracking in the 1D case:

Iterating helps refining the velocity vector

Can keep the same estimate for spatial derivative

$$
\stackrel{r}{V} \leftarrow \stackrel{r}{v}_{\text {previous }}-\frac{I_{t}}{I_{x}}
$$

Tracking in the 1D case:

Iterating helps refining the velocity vector

Can keep the same estimate for spatial derivative

$$
\stackrel{r}{V} \leftarrow \stackrel{r}{v}_{\text {previous }}-\frac{I_{t}}{I_{x}}
$$

Converges in about 5 iterations

From 1D to 2D tracking

$$
1 \mathrm{D}:\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
$$

From 1D to 2D tracking

$$
\begin{aligned}
& \text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \text { 2D: }\left.\frac{\partial I}{\partial x}\right|_{t t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial y}\right|_{t t}\left(\frac{\partial y}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

From 1D to 2D tracking

$$
\begin{aligned}
& \text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \text { 2D: }\left.\frac{\partial I}{\partial x}\right|_{t t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial y}\right|_{t}\left(\frac{\partial y}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \left.\quad \frac{\partial I}{\partial x}\right|_{t} u+\left.\frac{\partial I}{\partial y}\right|_{t} v_{t}+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

From 1D to 2D tracking

$$
\begin{aligned}
& \text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \text { 2D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial y}\right|_{t}\left(\frac{\partial y}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \left.\quad \frac{\partial I}{\partial x}\right|_{t}{ }_{u}+\left.\frac{\partial I}{\partial y}\right|_{t}=\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

Shoot! One equation, two velocity (u, v) unknowns...

Optical Flow vs. Motion: Aperture Problem

Barber shop pole: http://www.youtube.com/watch?v=VmqQs613SbE

Optical Flow vs. Motion: Aperture Problem

Barber shop pole: http://www.youtube.com/watch?v=VmqQs613SbE Barber pole illusion

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

Aperture Problem Exposed

Motion along just an edge is ambiguous
Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html Aperture Problem

Barber pole illusion

Normal Flow

Notation

At a single image pixel, we get a line:

$$
\begin{gathered}
I_{x} u+I_{y} v+I_{t}=0 \\
\nabla I^{T} \mathbf{u}=-I_{t} \\
\mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right] \quad \nabla I=\left[\begin{array}{l}
I_{x} \\
I_{y}
\end{array}\right]
\end{gathered}
$$

We get at most "Normal Flow" - with one point we can only detect movement perpendicular to the brightness gradient. Solution is to take a patch of pixels Around the pixel of interest.

Aperture Problem

Aperture Problem

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

$$
v=u \frac{I_{x}}{I_{y}}+\frac{I_{t}}{I_{y}}
$$

- Let $\left(u^{\prime}, v^{\prime}\right)$ be true flow
- True flow has two components
- Normal flow: d
- Parallel flow: p
- Normal flow can be computed
- Parallel flow cannot

Computing True Flow

- Horn \& Schunck
- Schunck
- Lukas and Kanade

Possible Solution: Neighbors

Two adjacent pixels which are part of the same rigid object:

- we can calculate normal flows $\mathbf{v}_{\mathrm{n} 1}$ and $\mathbf{v}_{\mathrm{n} 2}$
- Two OF equations for 2 parameters of flow: $\bar{v}=\binom{v}{u}$

$$
\begin{aligned}
& \nabla I_{1} \cdot \bar{v}-I_{t 1}=0 \\
& \nabla I_{2} \cdot \bar{v}-I_{t 2}=0
\end{aligned}
$$

Considering Neighbor Pixels

Schunck

- If two neighboring pixels move with same velocity
- Corresponding flow equations intersect at a point in (u,v) space
- Find the intersection point of lines
- If more than 1 intersection points find clusters
- Biggest cluster is true flow

Alper Yilmaz, Fall 2005 UCF

Considering Neighbor Pixels

Cluster center provides velocity vector common for all pixels in patch.

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization: Horn \& Schunck
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Horn \& Schunck algorithm

Horn and Schunck's approach - Regularization
Two terms are defined as follows:

- Departure from smoothness

$$
e_{s}=\iint_{\Omega}\left(\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y
$$

- Error in optical flow constaint equation

$$
e_{c}=\iint_{\Omega}\left(E_{x} u+E_{y} v+E_{t}\right)^{2} d x d y
$$

The formulation is to minimize the linear combination of e_{s} and e_{c},

$$
e_{s}+\lambda e_{c}
$$

where λ is a parameter.
Note: In this formulation, u and v are functions of x and y. Physically, u is the x-component of the motion, and v is the y-component of the motion.

Horn \& Schunck algorithm
$\int_{D}\left(\nabla I \cdot \vec{v}+I_{t}\right)^{2}+\lambda^{2}\left[\left(\frac{\partial v_{x}}{\partial x}\right)^{2}+\left(\frac{\partial v_{x}}{\partial y}\right)^{2}+\left(\frac{\partial v_{u}}{\partial x}\right)^{2}+\left(\frac{\partial v_{u}}{\partial y}\right)^{2}\right]_{d x d y}$
Additional smoothness constraint (usually motion field varies smoothly in the image \rightarrow penalize departure from smoothness) :

$$
e_{s}=\iint\left(\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y
$$

OF constraint equation term
(formulate error in optical flow constraint) :

$$
e_{c}=\iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2} d x d y
$$

minimize $e_{s}+\lambda e_{c}$

Horn \& Schunck algorithm

Variational calculus: Pair of second order differential equations that can be solved iteratively.

- Define an energy function and minimize

$$
E(x, y)=\left(u I_{x}+v I_{y}+I_{t}\right)^{2}+\lambda\left(u_{x}^{2}+u_{y}^{2}+v_{x}^{2}+v_{y}^{2}\right)
$$

- Differentiate w.r.t. unknowns u and v

$$
\begin{aligned}
& \frac{\partial E}{\partial u}=2 I_{x}\left(u I_{x}+v I_{y}+I_{t}\right)+\frac{\partial f}{\partial u} \quad \frac{\partial f}{\partial u}=\frac{\partial}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial}{\partial u} \frac{\partial u}{\partial y}=2\left(u_{x x}+u_{x y}\right) \\
& \frac{\partial E}{\text { laplacian of } u}=2 I_{v}\left(u I_{x}+v I_{v}+I_{t}\right)+2\left(v_{x x}+v_{v v}\right)
\end{aligned}
$$

Horn \& Schunck algorithm

$$
I_{x}\left(u I_{x}+v I_{y}+I_{t}\right)+\Delta^{\top} u=0 \quad I_{y}\left(u I_{x}+v I_{y}+I_{t}\right)+\Delta v=0
$$

- Laplacian controls smoothness of optical flow
- A particular choice can be $\overline{\Delta^{2}} u=u-u_{\text {avg }}, \widehat{\Delta^{2} v=v-v_{\text {avg }}}$.
- Rearranging equations

$$
\begin{aligned}
& u\left(\lambda+I_{x}^{2}\right)+v I_{x} I_{y}+I_{x} I_{t}-\lambda u_{\text {avg }}=0 \\
& v\left(\lambda+I_{y}^{2}\right)+u I_{x} I_{y}+I_{y} I_{t}-\lambda v_{\text {avg }}=0
\end{aligned}
$$

- 2 equations 2 unknowns
- Write v in terms of u
- Plug it in the other equation
$u=u_{\text {avg }}-I_{x}\left(\frac{I_{x} u_{\text {avg }}+I_{y} v_{\text {avg }}+I_{t}}{I_{x}^{2}+I_{y}^{2}+\lambda}\right) \quad v=v_{\text {avg }}-I_{y}\left(\frac{I_{x} u_{\text {avg }}+I_{y} v_{\text {avg }}+I_{t}}{I_{x}^{2}+I_{y}^{2}+\lambda}\right)$
- Iteratively compute u and v
- Assume initially u and v are 0
- Compute $u_{\text {avg }}$ and $v_{\text {avg }}$ in a neighborhood

Horn \& Schunck

The Euler-Lagrange equations :

$$
\begin{aligned}
& F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}=0 \\
& F_{v}-\frac{\partial}{\partial x} F_{v_{x}}-\frac{\partial}{\partial y} F_{v_{y}}=0
\end{aligned}
$$

In our case,

$$
F=\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)+\lambda\left(I_{x} u+I_{y} v+I_{t}\right)^{2},
$$

so the Euler-Lagrange equations are

$$
\begin{gathered}
\Delta u=\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x}, \\
\Delta v=\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}, \\
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \quad \text { is the Laplacian operator }
\end{gathered}
$$

Horn \& Schunck

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\Delta u-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x} \\
& \frac{\partial v}{\partial t}=\Delta v-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}
\end{aligned}
$$

2. More than two frames allow a better estimation of I_{t}
3. Information spreads from corner-type patterns

Discrete Optical Flow Algorithm

Consider image pixel (i,j)

- Departure from Smoothness Constraint:

$$
\begin{gathered}
s_{i j}=\frac{1}{4}\left[\left(u_{i+1, j}-u_{i, j}\right)^{2}+\left(u_{i, j+1}-u_{i, j}\right)^{2}+\right. \\
\left.\left(v_{i+1, j}-v_{i, j}\right)^{2}+\left(v_{i, j+1}-v_{i, j}\right)^{2}\right]
\end{gathered}
$$

-Error in Optical Flow constraint equation:

$$
c_{i j}=\left(E_{x}^{i j} u_{i j}+E^{i j} v_{i j}+E_{t}^{i j}\right)^{2}
$$

- We seek the set $\left\{u_{i j}\right\} \&\left\{v_{i j}\right\}$ that minimize:

$$
e=\sum_{i} \sum_{j}\left(S_{i j}+\lambda c_{i j}\right) \quad \begin{aligned}
& \text { NOTE: }\left\{u_{i j}\right\} \&\left\{v_{i j}\right\} \\
& \text { show up in more than one } \\
& \text { term }
\end{aligned}
$$

Discrete Optical Flow Algorithm

- Differentiating e w.r.t $v_{k l} \& u_{k l}$ and setting to zero:

$$
\frac{\partial e}{\partial u_{k l}}=2\left(u_{k l}-\overline{u_{k l}}\right)+2 \lambda\left(E_{x}^{k l} u_{k l}+E_{y}^{k l} v_{k l}+E_{t}^{k l}\right) E_{x}^{k l}=0
$$

$$
\frac{\partial e}{\partial v_{k l}}=2\left(v_{k l}-\overline{v_{k l}}\right)+2 \lambda\left(E_{x}^{k l} u_{k l}+E_{y}^{k l} v_{k l}+E_{t}^{k l}\right) E_{y}^{k l}=0
$$

- $v_{k l} \& u_{k l}$ are averages of (u, v) around pixel (k, l)

Update Rule:

$$
\begin{aligned}
& u_{k l}^{n+1}=\overline{u_{k l}^{n}}-\frac{E_{x}^{k l} \overline{u_{k l}^{n}}+E_{y}^{k l} \overline{v_{k l}^{n}}+E_{t}^{k l}}{1+\lambda\left[\left(E_{x}^{k l}\right)^{2}+\left(E_{y}^{k l}\right)^{2}\right]} E_{x}^{k l} \\
& v_{k l}^{n+1}=\overline{v_{k l}^{n}}-\frac{E_{x}^{k l} \overline{u_{k l}^{n}}+E_{y}^{k l} \overline{v_{k l}^{n}}+E_{t}^{k l}}{1+\lambda\left[\left(E_{x}^{k l}\right)^{2}+\left(E_{y}^{k l}\right)^{2}\right]} E_{y}^{k l}
\end{aligned}
$$

Horn-Schunck Algorithm : Discrete Case

- Derivatives (and error functionals) are approximated by difference operators
- Leads to an iterative solution:

$$
\begin{aligned}
& u_{i j}^{n+1}=\bar{u}_{i j}^{n}-\alpha E_{x} \\
& v_{i j}^{n+1}=\bar{v}_{i j}^{n}-\alpha E_{y}
\end{aligned} \quad \alpha=\frac{E_{x} \bar{u}_{i j}^{n}+E_{y} \bar{y}_{i j}^{n}+E_{t}}{1+\lambda\left(E_{x}^{2}+E_{y}^{2}\right)}
$$

\bar{u}, \bar{v} is the average of values of neighbors

Intuition of the Iterative Scheme

The new value of (u, v) at a point is equal to the average of surrounding values minus an adjustment in the direction of the brightness gradient

Horn - Schunck Algorithm

```
begin
forj:=1 to Ndo for i:= | toM do begin
    calculate the values }\mp@subsup{E}{y}{}(i,j,t),\mp@subsup{E}{y}{\prime}(i,j,t),\mathrm{ and }\mp@subsup{E}{i}{}(i,j,r) usin
            a selected approximaxion formula;
                            { special cases for inluge points at the inmage border
                                    have to be taken into accounct
    initialize the values u(i,j) and v{{, j) with zcro
end {for};
choose a suitable weighting valac }\lambda\mathrm{ ;
choose a suitable number }\mp@subsup{t}{0}{}\geql\mathrm{ of itcrations;
n:= l;
```

$$
\{\operatorname{erg} \lambda=10\}
$$

$$
\left\{\pi_{0}=8\right\}
$$

$$
\{\text { iteration counter }\}
$$

```
while \({ }_{1} \leq j_{0}\) do begin
for \(j:=1\) to \(N\) do for \(i:=1\) to \(M\) do begin
\[
\bar{u}:=\frac{1}{4}(u(i-1, j)+u(i+1, j)+u(i, j-i)+u(i, j+1)) ;
\]
\[
\bar{v}:=\frac{1}{4}\left(v\left(i-1_{j} j\right)+v\left(i+\left[_{1} j\right)+v(i, j-1)+v\left(i_{1} j+l\right)\right) ;\right.
\]
\{ treat image points at the image border separately \} \(\alpha:=\frac{E_{x}(i, j, t) \bar{u}+E_{y}(i, j, t) \bar{v} \div E_{t}(i, j, t)}{1+\lambda\left(E_{x}^{2}(i, j, t)+E_{y}^{2}(i, j, t)\right)} \cdot \lambda ;\) \(u(i, j):=\bar{u}-\alpha \cdot E_{y}(i, j, t) ; \quad v(i, j):=\bar{v}-\alpha \cdot E_{y}(i, j, t)\)
end \{êor\};
\(\pi ;=n+1\)
end \{while\}
end;
```


Example

http://of-eval.sourceforge.net/

Results

(a)

(c)

Figure 12-8. Four frames of a synthetic image sequence showing a sphere slowly rotating in front of a randomly patterned background.

(b)

(d)

(a)
(c)
(b)

Figure 12-9. Estimates of the optical flow shown in the form of needle diagrams after 1, 4, 16, and 64 iterations of the algorithm.

Results

(a)
(b)

Figure 12-10. (a) The estimated optical flow after several more iterations. (b) The computed motion field.

Optical Flow Result

Horn \& Schunck, remarks

1. Errors at boundaries
2. Example of regularisation (selection principle for the solution of illposed problems)

Results of an enhanced system

Results

http://www-student.informatik.uni-bonn.de/~gerdes/OpticalFlow/index.html

Differenzbild (pixelweise)

Gradient E_{x} (in $2 \times 2 \times 2$ Block)

Gradient E_{t} (in $2 \times 2 \times 2$ Block)

Results

http://www.cs.utexas.edu/users/jmugan/GraphicsProject/OpticalFlow/

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

