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Abstract

A visibility ordering of a set of objects, from a given view-
point, is a total order on the objects such that if objecta ob-
structs objectb, thenb precedesa in the ordering. Such order-
ings are extremely useful for rendering volumetric data. We
present an algorithm that generates a visibility ordering of the
cells of an unstructured mesh, provided that the cells are con-
vex polyhedra and nonintersecting, and that the visibility or-
dering graph does not contain cycles. The overall mesh may
be nonconvex and it may have disconnected components. Our
technique employs the sweep paradigm to determine an or-
dering between pairs of exterior (mesh boundary) cells which
can obstruct one another. It then builds on Williams’ MPVO
algorithm [33] which exploits the ordering implied by adja-
cencies within the mesh. The partial ordering of the exterior
cells found by sweeping is used to augment the DAG created
in Phase II of the MPVO algorithm. Our method thus removes
the assumption of the MPVO algorithm that the mesh be con-
vex and connected, and thereby allows us to extend MPVO
algorithm, without using the heuristics that were originally
suggested by Williams (and are sometimes problematic). The
resulting XMPVO algorithm has been analyzed, and a varia-
tion of it has been implemented for unstructured tetrahedral
meshes; we provide experimental evidence that it performs
very well in practice.

Key Words and Phrases:Volume rendering, scientific visu-
alization, finite element methods, depth ordering, volume vi-
sualization, visibility ordering.

1 Introduction

A visibility ordering (or depth ordering), <v, of a setSof ob-
jects from a given viewpoint,v2ℜ3, is a total (linear) order on
Ssuch that if objecta2 Svisually obstructs objectb2 S, par-
tially or completely, thenb precedesa in the ordering:b<v a.

Direct volume rendering based on projective methods [20,
33, 30, 32] works by projecting the polyhedral cells of a mesh
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onto the image plane, in visibility order, and incrementally
compositing the cell’s color and opacity into the final im-
age. Projective methods, as opposed to those using ray trac-
ing, have the advantage of being able to make extensive use
of graphics hardware, and have the potential of avoiding anti-
aliasing artifacts. Existing visibility ordering algorithms for
arbitrary polyhedral cell complexes (e.g. curvilinear or non-
convex unstructured meshes) are quite slow. Some visibility
ordering methods for arbitrary polyhedral cell complexes uti-
lize heuristics which generate a fast but inexact sorting.

This paper describes an extension of the meshed polyhedra
visibility ordering (MPVO) algorithm of Williams [33], which
we call the XMPVO algorithm, that efficiently generates an
exact visibility ordering of the cells of arbitrary polyhedral cell
complexes in interactive time. The cells are expected to be
convex and nonintersecting, and the visibility ordering graph
of the cells should not contain cycles. As our results show, the
algorithm presented herein runs substantially faster (by orders
of magnitude) than any previously published algorithm.

The next section discusses related previous work. Section 3
defines basic terminology. Section 4 gives an overview of the
MPVO algorithm. Section 5 describes the XMPVO algorithm,
and then in Section 6 we present implementation details for
a variation of this algorithm. Finally in Section 7 we present
timing results and images from diverse data sets, and in Sec-
tion 8 we give our conclusions and discuss future work.

2 Previous Work

An algorithm, called the “Meshed Polyhedra Visibility Or-
dering” (MPVO) algorithm, for visibility ordering the cells
of an acyclic convex mesh of convex cells is described by
Williams [33]. A similar algorithm to the MPVO Algorithm
was developed independently by Max, Hanrahan and Craw-
fis [20]. Both algorithms were based on the work of Edels-
brunner described in his paper on the acyclicity of cell com-
plexes [13]. The MPVO algorithm runs in linear time and uses
linear storage.

For some important classes of meshes (e.g., rectilinear
meshes and Delaunay meshes [13]), it is known that a visi-
bility ordering always exists, with respect to any viewpoint. If
the visibility ordering graph has cycles for a given viewpoint,
no visibility ordering exists. It is an important problem to find
a small number of “cuts” that partition the cells so as to elim-
inate such cycles; see [6, 5]. The binary space partition (BSP)
tree algorithm [15], which is typically used to depth-sort poly-
gons, is not suitable for visibility ordering large polyhedral
meshes since the BSP algorithm uses splitting planes. Since
the cells are meshed, a large number of cells can be split, re-



sulting in a potential explosion in the total number of cells. As
shown by Paterson and Yao [25], the BSP tree algorithm can
have performance that is quadratic inf , the number of faces
in the original mesh. An A-buffer [11] is also not suitable
for visibility ordering large meshes for volume rendering be-
cause there are too many transparent cells at each pixel, mak-
ing memory requirements prohibitive with current hardware.

Williams [33] also described a heuristic, called the
MPVONC algorithm, which sorts the cells of acyclicnon-
convex meshes of convex cells,i.e. meshes with cavities
and/or voids. This heuristic generates an exact sorting of the
cells only if no boundary anomalies[33] are present. The
MPVONC algorithm, in practice, is linear in time for most
meshes; see [33].

Steinet al [32] describe an algorithm for visibility order-
ing an arbitrary collection of acyclic nonintersecting convex
polyhedra. This algorithm runs in timeO(n2) (worst case) for
n arbitrarily shaped, nonintersecting convex polyhedra with
planar faces, whose visibility ordering does not contain cy-
cles. The faces of adjacent cells need not be aligned, and the
meshes may have disconnected portions. The algorithm is ef-
fectively a 3D generalization of the Newell, Newell and San-
cha sort for polygons [22, 23]. Williamset al [34] describe a
correction and an optimization to the original Stein algorithm.
Even with the optimization, this algorithm does not run in in-
teractive time,e.g.it requires on the order of 3 minutes to sort
200,000 cells and 15 minutes to sort 1,000,000 cells, on an
SGI Power Onyx using an R10000 194 MHZ CPU. (See the
results in Section 7.)

An exact visibility ordering algorithm is described by de
Berg, Overmars, and Schwarzkopf [9] which, in worst-case
timeO(n4=3+ε) for any fixedε> 0, determines an ordering or
reports that none exists (due to a cycle in the “behind” rela-
tion). However, this algorithm, which is based on a general
framework for computing and verifying linear orders extend-
ing implicitly defined binary relations, is mostly of theoretical
interest and is not readily implemented. In particular, it re-
lies on the fairly complex dynamic data structure of Agarwal
and Matoušek [1] for searching for intersections between line
segments in space and “curtains” (the shadow surface cast by
a segment) induced by line segments. Its theoretical impor-
tance stems from the fact that it determines, insubquadratic
worst-case time, if a linear ordering existswithout necessar-
ily computing the full behind relation (which may have size
quadratic in the number of objects).

Karasicket al [19], building on the earlier work of Edels-
brunner, describe a linear expected time algorithm for sort-
ing the cells of 3DDelaunay meshes(the Delaunay tetrahe-
dralization of some set of discrete points). Their algorithm is
based on sorting the cells by their “powers”. While this ap-
proach is elegant and efficient, many unstructured and curvi-
linear meshes encountered in scientific visualization are not
Delaunay meshes.

Finally, we mention some related work in ray casting of
unstructured grids, in which the goal is to compute the depth
ordering along each of the rays that passes through one of the
screen pixels. Garrity [16] employed the idea (as do we) of
focusing attention on boundary facets in a nonconvex mesh;
he needs to perform “ray shooting queries”� only to jump from

�A “ray shooting query” requires that we find the first object hit by
a ray that is fired in a given direction from a given query point. The
field of computational geometry provides some data structures for han-
dling them: One can either answer queries in timeO(logn), at a cost

one boundary facet to another. Giertsen [17], Yagelet al [35],
and Silva and Mitchell [31] have shown methods of speeding
up ray casting by exploiting coherence through the use of a
sweep algorithm (as we do here – our approach is related to
that of [31]).

In this paper, we describe an algorithm which extends the
MPVO algorithm to generate an exact visibility ordering of
the cells of arbitary acyclic polyhedral cell complexes, having
convex nonintersecting cells, in interactive time. We review
the MPVO algorithm in Section 4, and then describe the re-
quired extension in Section 5.

3 Preliminaries

We begin with some basic definitions. Apolyhedron is a
closed subset ofℜ3 whose boundary consists of a finite col-
lection of convex polygons (2-faces, or facets) whose union is
a connected 2-manifold. Theedges(1-faces) andvertices(0-
faces) of a polyhedron are simply the edges and vertices of the
polygonal facets. A convex polyhedron is called apolytope.
A polytope having exactly four vertices (and four triangular
facets) is called asimplex(tetrahedron). A finite setSof poly-
hedra forms amesh(or anunstructured grid) if the intersection
of any two polyhedra fromS is either empty, a single common
edge, a single common vertex, or a single common facet of the
two polyhedra; such a setSis said to form acell complex. The
polyhedra of a mesh are referred to as thecells (or 3-faces).
We say that cellC is adjacentto cell C0 if C andC0 share a
common facet. The adjacency relation is a binary relation on
elements ofSthat defines anadjacency graph.

A facet that is incident on only one cell is called aboundary
facet. A boundary cellis any cell having a boundary facet. The
union of all boundary facets is theboundaryof the mesh. If
the boundary of a meshS is also the boundary of the convex
hull of S, thenSis called aconvexmesh; otherwise, it is called
a nonconvexmesh. If the cells are all simplicies, then we say
that the mesh issimplicial.

The input to our problem will be a given meshS. We letc
denote the number of connected components ofS. If c= 1, the
mesh isconnected; otherwise, the mesh isdisconnected. We
let n denote the total number of edges of all polyhedral cells
in the mesh. Then, there areO(n) vertices, edges, facets, and
cells.

For some of our discussions, we will be assuming that the
input mesh is given in a standard data structure for cell com-
plexes (e.g., a facet-edge data structure [12]), so that each
cell has pointers to its neighboring (incident) cells, and ba-
sic traversals of the boundary edges of facets are also possible
by following pointers. If the raw data does not have this topo-
logical information already encoded in it, then it can be ob-
tained by a preprocessing step, using basic hashing methods,
in worst-case timeO(nlogn).

We use a coordinate system in which the viewing direction
is in the�z direction, and the image plane is the(x;y) plane.

of O(n4+ε) preprocessing and storage [1, 8, 26], or answer queries in
worst-case timeO(n3=4), using a data structure that is essentially lin-
ear inn [2, 29]. In terms of worst-case complexity, there are reasons
to believe that these tradeoffs between query time and storage space
are essentially the best possible. Unfortunately, these algorithms are
rather complicated, with high constants, and have not yet been im-
plemented or shown to be practical. See also the work of Mitchell
et al [21], who devise methods of ray shooting that are “query sensi-
tive.”
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Figure 1: Visibility ordering of the cells of a mesh relative
to viewpointv: MPVO relations (solid arrows) capture local
ordering, while XMPVO relations (dotted) capture global or-
dering among cells, allowing even disconnected meshes to be
handled.

We let ρu denote the ray from the viewpointv through the
point u.

We say that cellsC andC0 areimmediate neighborswith re-
spect to viewpointv if there exists a rayρ from v that intersects
C andC0, and no other cellC00 2Shas a nonempty intersection
C00\ρ that appears in between the segmentsC\ρ andC0\ρ
alongρ. Note that ifC andC0 are adjacent, then they are nec-
essarily immediate neighbors. Further, in a convex mesh, the
only pairs of cells that are immediate neighbors are those that
are adjacent.

A visibility ordering (or depth ordering), <v, of a meshS
from a given viewpoint,v 2 ℜ3 is a total (linear) order onS
such that if cellC 2 Svisually obstructs cellC0 2 S, partially
or completely, thenC0 precedesC in the ordering:C0 <v C.
A visibility ordering is a linear extension of the binarybehind
relation, “<”, in which cellC is behindcellC0 (writtenC<C0)
if and only ifC andC0 are immediate neighbors andC0 at least
partially obstructsC; i.e., if and only if there exists a rayρ from
the viewpointv such thatρ\C 6= /0, ρ\C0 6= /0, ρ\C0 appears
in betweenv andρ\C alongρ, and no other cellC00 intersects
ρ at a point betweenρ\C andρ\C0. A visibility ordering
can be obtained in linear time (by topological sorting) from
the behind relation,(S;<), provided that the directed graph on
the set of nodesS defined by(S;<) is acyclic. If the behind
relation induces a directed cycle, then no visibility ordering
exists.

4 An Overview of the MPVO Algorithm

An intuitive overview of the MPVO Algorithm is as follows.
First, the adjacency graph for the cells of a given convex mesh
is constructed. Then, for any specified viewpoint, a visibility
ordering can be computed simply by assigning a direction to
each edge in the adjacency graph and then performing a topo-
logical sort of the graph. The adjacency graph can be reused
for each new viewpoint and for each new data set defined on
the same static mesh.

The direction assigned to each edge of the adjacency graph
is determined by calculating the behind relation for the two
cells connected by the edge. Informally, the behind relation is
calculated as follows. Each edge corresponds to a facet shared
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Figure 2: The DAG for the mesh in Figure 1. Note that XM-
PVO generates redundant visibility ordering relations.

by two cells. That facet defines a plane which in turn defines
two half-spaces, each containing one of the two cells. If we
represent the behind relation by a directed arc (arrow) through
the shared face, then the direction of the arrow is towards the
cell whose containing half-space contains the viewpoint; see
Figures 1 and 2. To implement this, the plane equation for the
shared face can be evaluated at the viewpointv. The adjacency
graph and the plane equation coefficients can be computed and
stored in a preprocessing step.

5 The XMPVO Algorithm

The XMPVO algorithm extends the MPVO algorithm to han-
dle nonconvex meshes efficiently. When a mesh is nonconvex
or has disconnected components, it does not suffice to examine
only edges of the adjacency graph. The key idea in XMPVO
is to extend the DAG created by Phase II of MPVO with addi-
tional relations — relations between pairs of exterior (bound-
ary) cells which can obstruct one another. These new relations
are determined by ray-shooting queries in the context of the
sweep paradigm described below. The addition of these rela-
tions make the DAG sufficient for visibility ordering any mesh
exactly, thus removing the assumption of the MPVO algorithm
that the mesh be convex and connected (see Figures 1 and 2).
In the rest of this section, we discuss the theory behind this ex-
tension (with some practical remarks in the end). In Section 6,
an actual implementation based on these ideas is presented,
and in Section 7, XMPVO is shown (experimentally) to be or-
ders of magnitude faster than previous techniques.

The algorithm is based on a standard algorithmic paradigm
in computational geometry — the “sweep” paradigm [10, 27],
in which asweep-lineis swept across the plane, or asweep-
plane is swept across 3-space. A data structure, called the
sweep structure(or sweep status), is maintained during the
simulation of the continuous sweep, and at certain discrete
events(e.g., when the sweeping object hits one of a discrete set
of points), the sweep structure is updated to reflect the change.
This allows the algorithm to localize the problem to be solved,
solving it within the lower dimensional space of the sweep-
line or sweep-plane, while exploiting spatial coherence in the
data.
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Figure 3: Three distinct connected sets of boundary facets are
depicted, projected onto the(x;y)-plane. Edge portions that
are not visible are shown dashed. The sweep continues upward
(in positive y direction). The vertex events are shown with
solid circles; the crossing point events in the event queue are
shown with hollow circles at points where two edges have a
crossing in the projection. At such event points, we compute
thez-ordering of the respective facets. This allows us to infer
the visibility order relations.

The goal of the algorithm is to identify, for each boundary
cell Ci , the set of boundary cellsCj that areCi ’s immediate
neighbors. This permits us to compute the entire behind rela-
tion for all cells of the mesh, since all other pairs of immediate
neighbors are determined by the adjacency graph ofS.

Our sweep algorithm executes the following steps:

(1) We identify, in a single pass over the cells ofS, the set
of boundary facets,B. We also identify the adjacency relation-
ship, and, as in MPVO, establish the behind relationship for
every pair of adjacent cells, establishing a directed arc corre-
sponding to each facet shared by an adjacent pair of cells.

(2) We perform a sweep of the setB in 3-space, using a
sweep-plane that is parallel to thex-z plane, sweeping in the
direction of increasingy.

This sweep is equivalent to sweeping, with a horizontal line,
the arrangementA of line segments in thex-y plane that are
obtained by projecting the edges of facets inB; it is essen-
tially a Bentley-Ottmann sweep ofA, lifted to 3-space. (Note,
however, that we do not need explicitly to project the edges of
B, nor explicitly to constructA.) In particular, events in the
sweep occur at verticesVB of B, and at crossing points inA
(where the projections of two edges ofB cross).

The sweep status encodes the set of elements ofB inter-
sected by the sweep plane (see Figure 3); specifically, we
maintain anx-ordering (X-LIST , in a balanced binary tree)
of the edges ofA that cross the sweep line (corresponding to
the sweep plane). Additionally, the sweep status maintains the
elements ofB that intersect the sweep plane in a data struc-
ture that allows us to keep track of, for each interval in the
X-LIST , the set of elements ofB whosex-projection (within
the sweep plane), onto the sweep line, contains the interval.
This can be done using segments trees [10], in timeO(logb0)
per operation (insertion or deletion) withO(b0 logb0) storage,
whereb0 is the number of elements ofB intersected by the
sweep plane.

The event queue (maintained as a heap) is initialized by
sorting they-coordinates ofVB; then, as the sweep discovers
crossing point vertices ofA (i.e., whenever there is a change

in thex-ordering of the projected edges), they-coordinates of
crossing points that correspond to them are enqueued.

At each event point, there is some bookkeeping to do to
maintain the sweep status – a constant number of insertions
or deletions. At each event point, we also compute the new
neighbor relations that are discovered at the event point: this
corresponds to the adjacencies in thezordering of the cells that
participate in the event. In other words, we examine each of
the cells containing the edges that are responsible for the event
point, and determine their relative ordering alongρ, among
the other cells that are also stabbed byρ. (This information is
maintained in the sweep status.) The segment tree of the sweep
status allows us to do this efficiently (see analysis below).

Correctness of the algorithm is implied by the following
simple lemma:

Lemma 1 If boundary cellCi is behind boundary cellCj , then
there exists a ray,ρ, through some vertex of the arrangement
A that serves as a witness for the fact that Ci <Cj; i.e., such
thatρ\Ci 6= /0, ρ\Cj 6= /0, and no other cell of S intersectsρ at
a point in between the segmentρ\Ci and the segmentρ\Cj .

Proof. Let ρ be a witness ray to the fact thatCi <Cj . Then,
ρ corresponds to a point,pρ, in the viewing plane. Ifpρ lies
interior to a 2-face ofA, then we can movepρ rigthwards,
say, until it comes in contact with an edge (1-face) ofA; this
corresponds to rotatingρ to the right until it comes into contact
with (at least) one edge of a cell ofS. Now pρ lies on the
edge set ofA; if it is not yet at a vertex ofA, then we can
slide it along its containing edge (in either direction) until it
encounters a vertex of the arrangementA, at which pointρ
passes either through a vertex of some cell ofS or through
a pair of edges of cells ofS. In any case, the motion ofpρ
(andρ) is such that it has stayed within the closure of a 2-face
of A, and therefore, except for possible degeneracies on the
boundary of the 2-face, intersects the same set of cells as it did
originally. Thus,ρ has remained a witness ray. ut

After the sweep algorithm establishes the behind relations
among pairs of boundary cells, the visibility ordering algo-
rithm completes its task simply by doing topological sort of
(S;<), which takes time linear in the size of the directed graph
corresponding to the relation.

Analysis

To analyze the above algorithm, we letb = jBj be the num-
ber of boundary facets and letI denote the number of cross-
ing points inA. In the worst case,I = Ω(b2), as the pro-
jected edges could form a grid pattern; this is unlikely in prac-
tice. The maintenance of the sweep structures requires time
O(logb) per event. At event points, we must also compute
the new information gained about the behind relation at the
event point. Assuming nondegeneracy (which can be ensured
by general perturbation techniques [14]), only a constant num-
ber of cells are involved in the change of the behind relation.
The change can be computed naively in timeO(m), wherem is
the number of cells intersected by the rayρ through the event
point. (These cells are identifiable efficiently, in timeO(logb),
using the segment tree data structure, since each is represented
within the segment tree as a union ofO(logb) canonical inter-
vals.) If, however, we also augment the segment tree with an
auxilliary data structure, storing the canonical intervals stored



at each node in sorted order byz, then the search for a neigh-
bor alongρ is done in timeO(logb) per node of the segment
tree visited; overall, this results in timeO(log2 b) per event
point in the worst case. The final time complexity is then
O((b+ I) log2 b). The space complexity is simplyO(b), if we
use the standard trick for reducing the space complexity of the
Bentley-Ottmann sweep fromO(I) to O(b) (by removing non-
adjacent segment pairs from the event queue; see,e.g., [10]),
plus theO(blogb) space required for storing up tob intervals
in the segment tree.

Theorem 2 The XMPVO sweep algorithm requires O((b+
I) log2 b) time, worst case, and working storage O(blogb).

Remarks:

(a) In practice, the numberb of boundary cells is much less
than the numbern of cells of S; we may expect it to be
roughly n2=3 (e.g., if the grid is a regulark-by-k-by-k
grid, thenb= 6k2 while n= k3). Further, it suffices to
consider only those boundary facets ofS that are not on
the convex hull ofS. In practice, we also expectI to be
much smaller than its worst-case upper bound ofO(b2).

(b) Using much more sophisticated methods for computing
intersections among line segments, the arrangementA
can in fact be constructed in optimal worst-case time
O(I +blogb), using onlyO(b) space (see [4, 3]). How-
ever, an auxilliary data structure would still be required
to obtain the ray-shooting information along each rayρ
at event points.

(c) This sweep algorithm is similar to that of [5] and [24],
who considered the problem of depth-ordering a set of
line segments inℜ3. In contrast, we are visibility sorting
only the boundary facets ofS, and utilizing the adjacency
information to sort interior cells ofS.

(d) Our sweep algorithm can also be stated in terms of a space
sweep, in which we maintain in the sweep status theslice
of B (the intersection of the sweep plane with the setB),
which, in general, consists of a set of noncrossing, pos-
sibly nested, closed polygonal chains. If we maintain
the 2-dimensionaltrapezoidal decomposition(with “ver-
tical” direction in thez-direction) of the sweep slice, then
the events correspond to (1) the sweep plane hitting a ver-
tex ofB, or (2) twoz-parallel edges of the trapezoidal de-
composition coming together (indicating a crossing point
in A). Then, the sweep status can be maintained using
dynamic data structures for polygonal subdivisions, al-
lowing point location and updates in timeO(log2 b) (see
[18]).

(e) Our algorithm can be seen as constructing a “vertical de-
composition” of the voids (the portion ofℜ3 that lies
within the convex hull ofS, but outside the union of
the cells ofS), where each trapezoid within the vertical
decomposition corresponds to a pair of cells for which
we discover the behind relationship. Computational ge-
ometry methods lead to improved theoretical worst-case
bounds for vertical decompositions of arrangements; see
[7, 28].

(f) As discussed in the next section, the implementation that
we use in our experiments uses a simple grid-based hash-
ing scheme to compute the ordering among boundary
facets. The full implementation of the above sweep-
based algorithm is under current development.

6 Implementation Details

Our implementation of XMPVO is based on the original
MPVO code. XMPVO extends the existing code (for the im-
plementation of MPVO based on a depth-first search topo-
logical sort) by computing extra depth-ordering dependencies,
which are then used in the topological-sort (or splatting) phase.

We have a preliminary implementation of the sweep
paradigm described in the previous section, as well as a sim-
plified version of it based on a simple (regular) grid-based
hashing scheme (explained below). Our experiments are con-
ducted using the grid-based method, which is currently more
robust, and can be applied to a wider variety of data (Sweep
algorithms are delicate to implement robustly in floating point
arithmetic, particularly in the presence of degenerate or possi-
bly corrupted data.)

Since we decided to write the extension code in C++ using
STL (the Standard Template Library), while the original code
was written in C, we had to be careful not to replicate major
data structures, and to maintain a clean interface between the
two portions of code. This was not difficult, since the MPVO
code has a nicely modular design. In the end, our current im-
plementation of XMPVO adds less than 1,000 lines of code to
MPVO.

XMPVO includes a modification of the traversal algorithm
of MPVO in order to handle general meshes. We recall that
MPVO does not compute and store an explicit DAG (directed
acyclic graph) for its traversal; instead, the DAG information
is stored implicitly by labeling each facet shared by two cells
of the mesh as “inbounding” or “outbounding”. Then, during a
traversal, a cell is said to betraversableif it has no inbounding
facets,i.e., if its in-degree is zero, indicating that all cells that
must precede it in the ordering have already been traversed
(output).

The enhanced traversal phase for XMPVO requires three
new data structures. These are designed not to require global
searches of the data and to contain auxilliary data only for the
boundary facets. The three data structures are:

(1) an explicit dependency graph, kept as an STLmap, which
keeps for each boundary cellCi , a vector of the cells
that depend onCi being projected first (i.e., that precede
Ci in the ordering);

(2) for each boundary cellCi , a semaphore that indicates how
many boundary cells need to be projected beforeCi can
be projected;

(3) a list of the (boundary) cells that can be projected imme-
diately (i.e., the semaphore is zero).

The data structure definitions are:

map<int,vector<int>,less<int>> depend_on_MAP;
map<int,int,less<int>> semaphore_MAP;
list<int> cells_to_render_LIST;



Figure 4 has the traversal code for XMPVO. The function
dfs is basically the MPVO traversal code with one change:
it only outputs boundary cells whose semaphore is zero, in
addition to the usual restriction that the cell must have no in-
bounding facets.

Most of the new computational time of XMPVO is spent
in computingdepend on MAP. This computation is at the
core of the sweep method described in the previous section.
Here, we describe a simple, yet practical variant of the sweep
approach, which is the method on which the reported experi-
mental results are based.

The purpose of the sweep is to identify efficiently the de-
pendencies implied by the behind relation. An alternative
method is to perform a basic geometric hashing of the bound-
ary facets, based on a regular grid decomposition of the view-
ing plane into fixed-size boxes. (Here, we will use “grid”
and “box” when referring to this regular hashing grid and will
use “mesh” and “cell” when referring to the original irregular
grid S.)

We make two passes over the set of boundary facets. In the
first pass, we look for ordering relations that are inferred by
rays through crossing points, where the projected edges of two
facets intersect; in the second pass, we examine relations that
are inferred by rays through vertices of the projected facets. In
each pass, we consider the boundary facets one by one; as we
“insert” each facetf into the grid, we addf to a facet-list asso-
ciated with each box of the grid that is intersected by the pro-
jection of f onto the viewing plane. (Actually, we have found
it advantageous to do something even simpler — we addf to
all those face-lists corresponding to boxes that are intersected
by the (axis-aligned) bounding rectangle of the projection of
f .) As facet f is inserted into the facet-list of some box, we
test its projection for overlap with the projections of each facet
already in the facet-list; for those that overlap, we compute the
ordering of the respective containing cells and add this infor-
mation to thedepend on MAP. While this procedure is cer-
tainly worst-case quadratic in the size of each facet-list, we do
some optimizations to help reduce the overall effort:

(a) the overlap comparison between projected facets includes
a filter that tests for overlap between bounding rectangles
first;

(b) if the pair of containing cells are already ordered (the re-
lationship is known), no comparison is made;

(c) if the pair of facets having overlapping projections corre-
spond to the same cell, then no ordering comparison is
made (since none is needed); and,

(d) if the pair of facets do not have oppositely directed nor-
mals (one toward the viewpoint, one away from the view-
point, as determined by the signs of simple dot products),
then the corresponding cells need not be compared (some
other pair of boundary facets obeying this condition will
imply the necessary order relationship).

7 Results

In order to evaluate the performance of our current implemen-
tation, described in the previous section, we performed exper-
iments using a single 194 Mhz R10000 CPU of an SGI Power
Onyx. Table 1 summarizes our experiments. (See Figure 5 for
an image computed with XMPVO.) We compare our results

No. Cells Stein Sort Multi-Tiled Sort XMPVO
13,000 14 sec. 7.2 sec. 3.5 sec.

190,000 2880 sec. 162 sec. 25 sec
223,000 N/A 475 sec 48 sec.
600,000 29,370 sec. 570 sec. 11 sec.

1,000,000 54,516 sec. 900 sec. 12 sec.

Table 1: Comparative timings, in seconds, for visibility order-
ing using three methods: the sort reported by Steinet al [32],
the multi-tiled sort of Williamset al [34], and the current
implementation of the XMPVO algorithm. All timings were
done using a single R10000 CPU of an SGI Power Onyx. Note
that XMPVO is almost two orders of magnitude faster than
the multi-tiled sort, and almost four orders of magnitude faster
than the Steinet al sort.

with those reported previously in Steinet al [32], and the (re-
cently published) multi-tiled sort of Williamset al [34]. Our
results show that XMPVO is orders of magnitude faster than
these previous works, and in fact, scales much better with the
dataset size.

The 13,000 cell result in Table 1 is from the use of XMPVO
on a finite element mesh with tetrahedral cells. A volume ren-
dering of data on this mesh is shown in Figure 5. The 190,000
cell result is from a tetrahedralization of the standard bluntfin
data set. The 223,000 result is from the mesh for a finite ele-
ment method simulation of air flow past anF117ajet aircraft,
and uses tetrahedral cells. Due to the scarceness of large un-
structured data sets, the remaining two results are from tetra-
hedralized versions of rectilinear meshes.

The reason the results for the 223,000 cell mesh are much
slower than might be expected (when compared to timings for
the larger datasets) are due to the fact that this mesh is adap-
tively refined, i.e., the mesh is created so that in areas in which
the data field is changing most rapidly, the cell size is much
smaller compared to the average cell size. Therefore, there are
regions of the mesh which contain orders of magnitude more
cells than other areas. Consequently, our preliminary (non-
sweep) implementation of XMPVO which uses a regular grid
decomposition into boxes as described in the previous section,
gives a very unbalanced load to each box, basically defeating
the speedup normally obtained by doing the decomposition.
For example, in a 64 box decomposition, the mean number
of cells/box is 54, while the max number of cells in a box is
73,450. Load balancing the boxes should result in a significant
reduction in sorting time (in the same way that the tiling of the
Steinet al [32] sort dramatically reduced the timings as shown
in Table 1).

Not surprisingly, the performance of the current, grid-based
code is dependent on the resolution of the grid that we use
for hashing. The reported experiments were run with a 20-
by-20 grid resolution (400 bins); by using a 10-by-10 grid,
our code is slowed down by a factor of two. We anticipate
that the full implementation of our proposed sweep algorithm
will permit even faster execution times, and will remove the
dependence on this resolution parameter. Another approach
we are planning to explore is that of using a variable resolution
grid (e.g., quadtree) in place of our simple-minded bucketing
scheme.



while(cells_to_render_LIST.empty() != true) {
int cell_id = cells_to_render_LIST.back();
cells_to_render_LIST.pop_back();
// Need to decrement all the cells that depend on cell_id.
di = depend_on_MAP.find(cell_id);
for(vector<int>::iterator vi = (*di).second.begin();

vi != (*di).second.end(); vi++)
{

map<int, int, less<int> >::iterator mi;
mi = semaphore_MAP.find(*vi);
(*mi).second--;
if((*mi).second == 0) {

cells_to_render_LIST.push_back( (*vi) );
}

}
if (T[cell_id].notVisited)

dfs(cell_id);
}

Figure 4: XMPVO traversal code.

8 Conclusion and Future Work

XMPVO fills a gap in unstructured grid depth-sorting. Pre-
viously, on one side, there were accurate techniques, such as
[32], which were too costly to be used in practice; on the other
side, there were techniques such as MPVO which were fast
and suitable for interactive applications, but only provided ei-
ther accurate support for limited types of meshes, or inaccurate
support for general meshes.

A considerable amount of work remains. There is still an
order of magnitude difference in speed between XMPVO and
MPVO. For example, in the 11 seconds it takes to sort the
600,000-cell complex, about 90% of that time is spend in our
depth-sorting of boundary facets. We emphasize, however,
that our current implementation of XMPVO does not exploit
all of the ideas outlined in Section 5; we made substantial sim-
plifications in order to run the experiments reported here. We
do have a prototype implementation of the sweep method, and
we expect that, with it, XMPVO will take approximately the
same time as MPVO, and we will be able, with the help of
advanced graphics hardware, to render irregular grids in real-
time.
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