
Fast Rendering of Irregular Grids

Cláudio T. Silva Joseph S. B. Mitchell Arie E. Kaufman

State University of New York at Stony Brook

Stony Brook, NY 11794

Abstract

We propose a fast algorithm for rendering general irregular grids.
Our method uses a sweep-plane approach to accelerate ray casting,
and can handle disconnected and nonconvex (even with holes) un-
structured irregular grids with a rendering cost that decreases as the
“disconnectedness” decreases. The algorithm is carefully tailored
to exploit spatial coherence even if the image resolution differs sub-
stantially from the object space resolution.

In this paper, we establish the practicality of our method through
experimental results based on our implementation, and we also pro-
vide theoretical results, both lower and upper bounds, on the com-
plexity of ray casting of irregular grids.

1 Introduction

Volume rendering methods are used to visualize scalar and vector
fields by modeling volume as “cloud-like” cells composed of semi-
transparent material that emits its own light, partially transmits light
from other cells, and absorbs some incoming light [31, 17]. The
most common input data type is aregular (Cartesian) gridof vox-
els. Given a general scalar field in<3, one can use a regular grid
of voxels to represent the field by regularly sampling the function
at grid points(�i; �j; �k), for integersi; j; k, and some scale fac-
tor � 2 <, thereby creating a regular grid of voxels. However, a
serious drawback of this approach arises when the scalar field is
disparate, having nonuniform resolution with some large regions
of space having very little field variation, and other very small re-
gions of space having very high field variation. In such cases, which
often arise in computational fluid dynamics and partial differential
equation solvers, the use of a regular grid is infeasible since the
voxel size must be small enough to model the smallest “features” in
the field. Instead,irregular grids (or meshes), having cells that are
not necessarily uniform cubes, have been proposed as an effective
means of representing disparate field data.

Irregular grid data comes in several different formats [26]. One
very common format has beencurvilinear grids, which arestruc-
turedgrids in computational space that have been “warped” in phys-
ical space, while preserving the same topological structure (con-
nectivity) of a regular grid. However, with the introduction of new
methods for generating higher quality adaptive meshes, it is becom-
ing increasingly common to consider more generalunstructured
(non-curvilinear) irregular grids, in which there is no implicit con-
nectivity information. Furthermore, in some applicationsdiscon-
nectedgrids arise.

In this paper, we present and analyze a new method for rendering
general meshes, which include unstructured, possibly disconnected,
irregular grids. Our method is based on ray casting and employs a
sweep-plane approach, as proposed by Giertsen [14], but introduces
several new ideas that permit a faster execution, both in theory and
in practice.

Definitions and Terminology

A polyhedronis a closed subset of<3 whose boundary consists
of a finite collection of convex polygons (2-faces, or facets) whose
union is a connected 2-manifold. Theedges(1-faces) andvertices
(0-faces) of a polyhedron are simply the edges and vertices of the
polygonal facets. A convex polyhedron is called apolytope. A
polytope having exactly four vertices (and four triangular facets) is
called asimplex(tetrahedron). A finite setS of polyhedra forms a
mesh(or anunstructured, irregular grid) if the intersection of any
two polyhedra fromS is either empty, a single common edge, a sin-
gle common vertex, or a single common facet of the two polyhedra;
such a setS is said to form acell complex. The polyhedra of a mesh
are referred to as thecells (or 3-faces). If the boundary of a mesh
S is also the boundary of the convex hull ofS, thenS is called a
convexmesh; otherwise, it is called anonconvexmesh. If the cells
are all simplices, then we say that the mesh issimplicial.

We are given a meshS. We letc denote the number of connected
components ofS. If c = 1, we say that the mesh isconnected; oth-
erwise, the mesh isdisconnected. We letn denote the total number
of edges of all polyhedral cells in the mesh. Then, there areO(n)
vertices, edges, facets, and cells.

The image space consists of a screen ofN -by-N pixels. We let
�i;j denote the ray from the eye of the camera through the center
of the pixel indexed by(i; j). We let ki;j denote the number of
facets ofS that are intersected by�i;j . (Then, the number of cells
intersected by�i;j is betweenki;j=2 andki;j .) Finally, we letk =P

i;j
ki;j be the total complexity of all ray casts for the image. We

refer tok as theoutput complexity.

Related Work

A simple approach for handling irregular grids is to resample them,
thereby creating a regular grid approximation that can be rendered
by conventional methods [30]. In order to achieve high accuracy it
may be necessary to sample at a very high rate, which not only re-
quires substantial computation time, but may well make the result-
ing grid far too large for storage and visualization purposes. Several
rendering methods have been optimized for the case of curvilinear
grids; in particular, Fr¨uhauf [11] has developed a method in which
rays are “bent” to match the grid deformation. Also, by exploit-
ing the simple structure of curvilinear grids, Mao et al. [16] have
shown that these grids can be efficiently resampled with spheres
and ellipsoids that can be presorted along the three major directions
and used for splatting.

A direct approach to rendering irregular grids is to compute the
depth sorting of cells of the mesh along each ray emanating from
a screen pixel. For irregular grids, and especially for disconnected
grids, this is a nontrivial computation to do efficiently. One can
always take a naive approach, and for each of theN2 rays, compute
theO(n) intersections with cell boundary facets in timeO(n), and
then sort these crossing points (inO(n log n) time). However, this
results in overall timeO(N2n log n), and does not take advantage
of coherence in the data: The sorted order of cells crossed by one
ray is not used in any way to assist in the processing of nearby rays.

Garrity [13] has proposed a preprocessing step that identifies the



A

B

C

Figure 1:3 triangles that have no depth ordering.

boundary facets of the mesh. When processing a ray as it passes
through interior cells of the mesh, connectivity information is used
to move from cell to cell in constant time (assuming that cells are
convex and of constant complexity). But every time that a ray ex-
its the mesh through a boundary facet, it is necessary to perform a
“FirstCell” operation to identify the point at which the ray first reen-
ters the mesh. Garrity does this by using a simple spatial indexing
scheme based on laying down a regular grid of voxels (cubes) on
top of the space, and recording each facet with each of the vox-
els that it intersects. By casting a ray in the regular grid, one can
search for intersections only among those facets stored with each
voxel that is stabbed by the ray.

The FirstCell operation is in fact a “ray shooting query”, for
which the field of computational geometry provides some data
structures: One can either answer queries in timeO(log n), at a
cost ofO(n4+�) preprocessing and storage [2, 4, 8, 20], or answer
queries in worst-case timeO(n3=4), using a data structure that is
essentially linear inn [3, 24]. In terms of worst-case complexity,
there are reasons to believe that these tradeoffs between query time
and storage space are essentially the best possible. Unfortunately,
these algorithms are rather complicated, with high constants, and
have not been implemented or shown to be practical. (Certainly,
data structures with super-linear storage costs are not practical in
volume rendering.) This motivated Mitchell et al. [18] to devise
methods of ray shooting that are “query sensitive” — the worst-
case complexity of answering the query depends on a notion of lo-
cal combinatorial complexity associated with a reasonable estimate
of the “difficulty” of the query, so that “easy” queries take prov-
ably less time than “hard” queries. Their data structure is based on
octrees (as in [23]), but with extra care needed to keep the space
complexity low, while achieving the provably good query time.

Uselton [28] proposed the use a Z-buffer to speed up FirstCell;
Ramamoorthy and Wilhelms [22] point out that this approach is
only effective 95% of the time. They also point out that 35% of
the time is spent checking for exit cells and 10% for entry cells.
Ma [15] describes a parallelization of Garrity’s method. One of the
disadvantages of these ray casting approaches is that they do not
exploit coherence between nearby rays that may cross the same set
of cells.

Another approach for rendering irregular grids is the use of pro-
jection (“feed-forward”) methods [17, 32, 25, 27], in which the cells
are projected onto the screen, one-by-one, in avisibility ordering,
incrementally accumulating their contributions to the final image.
One advantage of these methods is the ability to use graphics hard-
ware to compute the volumetric lighting models in order to speed
up rendering. Another advantage of this approach is that it works
in object space, allowing coherence to be exploited directly: By
projecting cells onto the image plane, we may end up with large
regions of pixels that correspond to rays having the same depth or-
dering, and this is discovered without explicitly casting these rays.
However, in order for the projection to be possible a depth order-
ing of the cells has to be computed, which is, of course, not always
possible; even a set of three triangles can have a cyclic overlap, as
shown in Figure 1. Computing and verifying depth orders is possi-
ble inO(n4=3+�) time [1, 7, 9]. In case no depth ordering exists, it

is an important problem to find a small number of “cuts” that break
the objects in such a way that a depth ordering does exist; see [7, 5].
BSP trees have been used to obtain such a decomposition, but can
result in a quadratic number of pieces [12, 19]. However, for some
important classes of meshes (e.g., rectilinear meshes and Delaunay
meshes [10]), it is known that a depth ordering always exists, with
respect to any viewpoint. This structure has been exploited by Max
et al. [17]. Williams [32] has obtained a linear-time algorithm for
visibility ordering convex (connected) acyclic meshes whose union
of (convex) cells is itself convex, assuming a visibility ordering ex-
ists. Williams also suggests heuristics that can be applied in case
there is no visibility ordering or in the case ofnonconvex meshes,
(e.g., by tetrahedralizing the nonconvexities which, unfortunately,
may result in a quadratic number of cells). In [29], techniques are
presented where no depth ordering is strictly necessary,and in some
cases calculated approximately. Very fast rendering is achieved by
using graphics hardware to project the partially sorted faces.

Two important references on rendering irregular grids have not
yet been discussed here — Giertsen [14] and Yagel et al. [33]. We
discuss Giertsen’s method in the next section. For details on [33],
we refer to their paper in these proceedings.

In summary, projection methods are potentially faster than ray
casting methods, since they exploit spatial coherence. However,
projection methods give inaccurate renderings if there is no visi-
bility ordering, and methods to break cycles are either heuristic in
nature or potentially costly in terms of space and time.

Our Contribution

In this paper we propose a new algorithm for rendering irregular
grids based on a sweep-plane approach. Our method is similar to
other ray casting methods in that it does not need totransformthe
grid; instead, it uses (as the projection methods) the adjacency in-
formation (when available) to determine ordering and to attempt to
optimize the rendering. An interesting feature of our algorithm is
that its running time and memory requirements are sensitive to the
complexity of the rendering task. Furthermore, unlike the method
by Giertsen [14], we conduct the ray casting within each “slice” of
the sweep plane by a sweep-line method whose accuracy does not
depend on the uniformity of feature sizes in the slice. Our method
is able to handle the most general types of grids without the explicit
transformation and sorting used in other methods, thereby saving
memory and computation time while performing an accurate ray
casting of the datasets. We establish the practicality of our method
through experimental results based on our implementation. We also
discuss theoretical lower and upper bounds on the complexity of ray
casting in irregular grids.

2 Sweep-Plane Approaches

A standard algorithmic paradigm in computational geometry is the
“sweep” paradigm [21]. Commonly, asweep-lineis swept across
the plane, or asweep-planeis swept across 3-space. A data struc-
ture, called thesweep structure(or status), is maintained during the
simulation of the continuous sweep, and at certain discreteevents
(e.g., when the sweep-line hits one of a discrete set of points), the
sweep structure is updated to reflect the change. The idea is to lo-
calize the problem to be solved, solving it within the lower dimen-
sional space of the sweep-line or sweep-plane. By processing the
problem according to the systematic sweeping of the space, sweep
algorithms are able to exploit spatial coherence in the data.

Giertsen’s Method

Giertsen’s pioneering work [14] was the first step in optimizing ray
casting by making use of coherency in order to speed up rendering.



Sweep Plane

Intersection with sweep plane

Z axis

Viewing Plane

Y axis

Scanline X axis

Figure 2: A sweep-plane (perpendicular to they-axis) used in
sweeping 3-space.

He performs a sweep of the mesh in 3-space, using a sweep-plane
that is parallel to thex-z plane. Here, the viewing coordinate sys-
tem is such that the viewing plane is thex-y plane, and the viewing
direction is thez direction; see Figure 2. The algorithm consists of:

1. Transform all vertices ofS to the viewing coordinate system.

2. Sort the (transformed) vertices ofS by their y-coordinates;
put the ordered vertices, as well as they-coordinates of the
scanlines for the viewing image, into an event priority queue,
implemented in this case as an array,A.

3. Initialize theActive Tetrahedra List(ATL) to empty. The ATL
represents the sweep status; it maintains a list of the tetrahedra
currently intersected by the sweep-plane.

4. WhileA is not empty, do:

(a). Pop the event queue: If the event corresponds to a ver-
tex,v, then go to (b); otherwise, go to (c).

(b). Update ATL: Insert/delete, as appropriate, the tetrahe-
dra incident onv. (Giertsen assumed that the tetrahedra
are disjoint, so eachv belongs to a single tetrahedron.)

(c). Render current scanline: Giertsen uses a memory hash
buffer, based on a regular grid of squares in the sweep-
plane, allowing a straightforward casting of the rays that
lie on the current scanline.

By sweeping 3-space, Giertsen reduces the ray casting problem
in 3-space to a 2-dimensional cell sorting problem.

Discussion

Giertsen’s method has several advantages over previous ray casting
schemes. First, there is no need to maintain connectivity informa-
tion between cells of the mesh. (In fact, he assumes the tetrahedral
cells are all disjoint.) Second, the computationally expensive ray
shooting in 3-space is replaced by a simple walk through regular
grid cells in a plane. Finally, the method is able to take advantage
of coherence from one scanline to the next.

However, there are some drawbacks to the method, including:
(1) The original data is being coarsed into a finite resolution buffer
(the memory hashing buffer) for rendering, basically limiting the
resolution of the rendering, and possibly creating an aliasing effect.
Also, his memory scheme cannot be easily resolved by increasing
the resolution of the buffer, as irregular grids have cell size vari-
ation of the order from 1:100,000, making it impractical to have
a large enough buffer. In his paper, Giertsen mentions that when

cells get mapped to the same location, this is considered a degen-
erate case, and the later cells are ignored; however, this form of
collision resolution might lead to temporal aliasing when calculat-
ing multiple images. (2) Another disadvantage when comparing to
other ray casting techniques is the need to have two copies of the
dataset, as the transformation and sorting of the cells must be done
before the sweeping can be started. (Note that this is also a feature
of cell projection methods.) One cannot just keep re-transforming
a single copy, since floating point errors could accumulate.

3 Our Algorithm

The design of our new method is based on two main goals: (1) the
depth ordering of the cells should be correct along the rays corre-
sponding to every pixel; and (2) the algorithm should be as efficient
as possible, taking advantage of structure and coherence in the data.

With the first goal in mind, we chose to explore ray casting al-
gorithms, as they have an inherent advantage for handling cycles
among cells, a case causing difficulties for projection methods. To
address the second goal, we use a sweep approach, as did Giert-
sen, in order to exploit bothinter-scanlineandinter-raycoherence.
Our algorithm has the following advantages over Giertsen’s: (1) It
avoids the explicit transformation and sorting phase, thereby avoid-
ing the storage of an extra copy of the vertices; (2) It makes no
requirements or assumptions about the level of connectivity or con-
vexity among cells of the mesh; however, it does take advantage of
structure in the mesh, running faster in cases that involve meshes
having convex cells and convex components; (3) It avoids the use
of a hash buffer plane, thereby allowing accurate rendering even for
meshes whose cells greatly vary in size; (4) It is able to handle par-
allel and perspective projection within the same framework (e.g, no
explicit transformations).

3.1 Performing the Sweep

Our sweep method, like Giertsen’s, sweeps space with a sweep-
plane that is orthogonal to the viewing plane (thex-y plane), and
parallel to the scanlines (i.e., parallel to thex-z plane).

Eventsoccur when the sweep-plane hits vertices of the meshS.
But, rather than sorting all of the vertices ofS in advance, and
placing them into an auxiliary data structure (thereby at leastdou-
bling the storage requirements), we maintain an event queue (prior-
ity queue) of an appropriate subset of the mesh vertices.

A vertex v is locally extremal(or simplyextremal, for short) if
all of the edges incident to it lie in the (closed) halfspace above or
below it (in y-coordinate). A simple (linear-time) pass through the
data readily identifies the extremal vertices.

We initialize the event queue with the extremal vertices, priori-
tized according to the magnitude of their inner product (dot prod-
uct) with the vector representing they-axis (“up”) in the viewing
coordinate system (i.e., according to theiry-coordinates). We do
not explicitly transform coordinates. Furthermore, at any given in-
stant, the event queue only stores the set of extremal vertices not
yet swept over, plus the vertices that are the upper endpoints of
the edges currently intersected by the sweep-plane. In practice, the
event queue is relatively small, usually accounting for a very small
percentage of the total data size. As the sweep takes place, new
vertices (non-extremal ones) will be inserted into and deleted from
the event queue each time the sweep-plane hits a vertex ofS.

The sweep algorithm proceeds in the usual way, processing
events as they occur, as determined by the event queue and by the
scanlines. We pop the event queue, obtaining the next vertex,v, to
be hit, and we check whether or not the sweep-plane encountersv
before it reaches they-coordinate of the next scanline. If it does hit
v first, we perform the appropriate insertions/deletions on the event
queue; these are easily determined by checking the signs of the dot



products of edge vectors out ofv with the vector representing they-
axis. Otherwise, the sweep-plane has encountered a scanline. And
at this point, we stop the sweep and drop into a two-dimensional
ray casting procedure (also based on a sweep), as described below.
The algorithm terminates once the last scanline is encountered.

We remark here that, instead of doing a sort (iny) of all vertices
of S at once, the algorithm is able to take advantage of the partial
order information that is encoded in the mesh data structure. (In
particular, if each edge is oriented in the+y direction, the resulting
directed graph is acyclic, defining a partial ordering of the vertices.)
Further, by doing the sorting “on the fly”, using the event queue,
our algorithm can be run in a “lock step” mode that avoids having
to sort and sweep over highly complex subdomains of the mesh.
This is especially useful, as we see in the next section, if the slices
that correspond to our actual scanlines are relatively simple, or the
image resolution (pixel size) is large in comparison with some of
the features of the dataset. (Such cases arise, for example, in some
applications of scientific visualization on highly disparate datasets.)

3.2 Processing a Scanline

When the sweep-plane encounters a scanline, the current sweep sta-
tus data structure gives us a “slice” through the mesh in which we
must solve a two-dimensional ray casting problem. LetS denote
the polygonal (planar) subdivision at the current scanline (i.e.,S is
the subdivision obtained by intersecting the sweep-plane with the
meshS.) In time linear in the size ofS, we can recover the sub-
division S (both its geometry and its topology), just by stepping
through the sweep status structure, and utilizing the local topology
of the cells in the slice.

The two-dimensional problem is also solved using a sweep algo-
rithm — now we sweep the plane with a sweep-line parallel to the
z axis. Events now correspond to vertices of the planar subdivision
S. At the time that we constructS, we identify those vertices in
the slice that are locally extremal inS (i.e., those vertices that have
edges only leftward inx or rightward incident on them.) These are
inserted in the initial event queue. Thesweep-line statusis an or-
dered list, stored and maintained in a binary tree, of the edges ofS
crossed by the sweep-line. The sweep-line status is initially empty.
Then, as we pass the sweep-line overS, we update the sweep-line
status and the event queue at each event when the sweep-line hits
an extremal vertex, making insertions and deletions in the standard
way. This is analogous to the Bentley-Ottmann sweep that is used
for computing line segment intersections in the plane [21]. We also
stop the sweep at each of thex-coordinates that correspond to the
rays that we are casting (i.e., at the pixel coordinates along the cur-
rent scanline), and output to the rendering model the sorted order-
ing (depth ordering) given by the current sweep-line status (binary
tree).

4 Analysis: Upper and Lower Bounds

We proceed now to give a theoretical analysis of the time required
to render irregular grids. We begin with “negative” results that es-
tablish lower bounds on the worst-case running time:

Theorem 1 (Lower Bounds) LetS be a mesh havingc connected
components andn edges. Even if all cells ofS are convex,

(k + n log n) is a lower bound on the worst-case complexity of
ray casting. If all cells ofS are convexand, for each connected
component ofS, the union of cells in the component is convex, then

(k + c log c) is a lower bound. Here,k is the total number of
facets crossed by allN2 rays that are cast through the mesh (one
per pixel of the image plane).

Figure 3:Lower bound construction.

Proof. It is clear that
(k) is a lower bound, sincek is the size of
the output from the ray casting.

Let us start with the case ofc convex components in the meshS,
each made up of a set of convex cells. Assume that one of the rays
to be traced lies exactly along thez-axis. In fact, we can assume
that there is only one pixel, at the origin, in the image plane. Then
the only ray to be cast is the one along thez-axis, andk simply
measures how many cells it intersects. To show a lower bound of

(c log c), we simply note that any ray tracing algorithm that out-
puts the intersected cells, in order, along a ray can be used to sortc
numbers,zi. (Just construct, inO(c) time, tiny disjoint tetrahedral
cells, one centered on eachzi.)

Now consider the case of aconnectedmeshS, all of whose cells
are convex. We assume that all local connectivity of the cells ofS
is part of the input mesh data structure. (The claim of the theorem
is that, even with all of this information, we still must effectively
perform a sort.) Again, we claim that casting a single ray along the
z-axis will require that we effectively sortn numbers,z1; : : : ; zn.
We take the unsorted numberszi and construct a meshS as fol-
lows. Take a unit cube centered on the origin and subtract from it a
cylinder, centered on thez-axis, with cross sectional shape a regu-
lar2n-gon, having radius less than 1/2. Now remove the half of this
polyhedral solid that lies above thex-z plane. We now have a poly-
hedronP of genus 0 that we have constructed in timeO(n). We
refer to then (skinny) rectangular facets that bound the concavity
as the “walls”. Now, for each point(0; 0; zi), create a thin “wedge”
that contains(0; 0; zi) (and no other point(0; 0; zj), j 6= i), such
that the wedge is attached to walli (and touches no other wall). Re-
fer to Figure 3. We now have a polyhedronP , still of genus 0, of
sizeO(n), and this polyhedron is easily decomposed inO(n) time
intoO(n) convex polytopes. Further, thez-axis intersects (pierces)
all n of the wedges, and does so in the order given by the sorted
order of thezi’s. Thus, the output of a ray tracing algorithm that
has one ray along thez-axis must give us the sorted order of the
n wedges, and hence of then numberszi. The
(n log n) bound
follows. ut

Upper Bounds

The previous theorem establishes lower bounds that show that, in
the worst case, any ray casting method will have complexity that
is superlinear in the problem size — essentially, it is forced to do
some sorting. However, the pathological situations in the lower
bound constructions are unlikely to arise in practice.

We now examine upper bounds for the running time of the sweep
algorithm we have proposed, and we discuss how its complexity



can be written in terms of other parameters that capture problem
instance complexity.

First, we give a worst-case upper bound. In sweeping 3-space,
we haveO(n) vertex events, plusN “events” when we stop the
sweep and process the 2-dimensional slice corresponding to a scan-
line. Each operation (insertion/deletion) on the priority queue re-
quires timeO(logM), whereM is the maximum size of the event
queue. In the worst case,M can be of the order ofn, so we get a
worst-case total ofO(N + n log n) time to perform the sweep of
3-space.

For each scanline slice, we must perform a sweep as well, on
the subdivisionS, which has worst-case sizeO(n). The events
in this sweep algorithm include theO(n) vertices of the subdivi-
sion (which are intersections of the slice plane with the edges of
the mesh,S), as well as theN “events” when we stop the sweep-
line at discrete pixel values ofx, in order to output the ordering
(of sizeki;j for the ith pixel in thejth scanline) along the sweep-
line, and pass it to the rendering module. Thus, in the worst case,
this sweep of 2-space, for each scanline slice, requires overall time
O(
P

i;j
ki;j +Nn log n) = O(k +Nn log n). Overall, then, we

getO(k +Nn log n).�

Now, the product term,Nn, in the bound ofO(k = Nn log n)
is due to the fact that each of theN slices might have complexity
roughlyn. However, this is a pessimistic bound for practical sit-
uations. Instead, we can letns denote the total sum of the com-
plexities of allN slices; in practice, we expectns to be much
smaller thanNn, and potentiallyns is considerably smaller than
n. (For example, if the mesh is uniform, we may expect each slice
to have complexity ofn2=3, as in the case of an1=3-by-n1=3-by-
n1=3 grid, which gives rise tons = O(Nn2=3).) If we now write
the complexity in terms ofns, we get worst-case running time of
O(k + n log n+ ns log n).

Theorem 2 (Upper Bound) Ray casting for an irregular grid hav-
ing n edges can be performed in timeO(k + n log n+ ns log n),
wherek = O(N2n) is the size of the output (the total number of
facets crossed by all cast rays), andns = O(Nn) is the total com-
plexity of all slices.

Note that, in the worst case,k = 
(N2n); e.g., it may be that
every one of theN2 rays crosses
(n) of the facets in the mesh.
Thus, the output sizek could end up being the dominant term in the
complexity of our algorithm. Note too that, even in the best case,
k = 
(N2), since there areN2 rays.

TheO(n log n) term in the upper bound comes from the sweep
of 3-space, where, in the worst case, we may be forced to (effec-
tively) sort theO(n) vertices (viaO(n) insertions/deletions in the
event queue).

Consider the sweep of 3-space with the sweep-plane. We say
that vertexv is critical if, in a small neighborhood ofv, the number
of connected components in the slice changes as the sweep-plane
passes throughv. (Thus, vertices that are locally min or max are
critical, but also some “saddle” points may be critical.) Letnc de-
note the number of critical vertices. Now, if we conduct our sweep
of 3-space carefully, then we can get away with only having to sort
the critical vertices, resulting in total timeO(n+ ns + nc log nc)
for constructing allN of the slices. The main idea is to exploit
the topological coherence between slices, noting that the number of
connected components changes only at critical vertices (and their
y-coordinates are sorted, along with theN scanlines). In particular,
we can use depth-first search to construct each connected compo-
nent ofS within each slice, given a starting “seed” point in each

�The upper bound ofO(k + Nn logn) should be contrasted with the
boundO(N2

n logn) obtained from the most naive method of ray casting,
which computes the intersections of allN2 rays with allO(n) facets, and
then sorts the intersections along each ray.

21 3 4 5 6 7

Figure 4:Illustration of a sweep in one slice.

component. These seed points are obtained from the seed points
of the previous slice, simply by walking vertically (+y direction)
from one seed to the next slice (in total timeO(n), for all walks);
changes only occur at critical vertices, and these are local to these
points, so they can be processed in time linear in the degree of the
critical vertices (again, overallO(n)). This sweep of 3-space gives
us the slices, each of which can then be processed as already de-
scribed. (Note that the extremal vertices within each slice can be
discovered during the construction of the slice, and these are the
only vertices that need to be sorted and put into the initial event
queue for the sweep of a slice.)

Another potential savings, particularly if the image resolution
is low compared with the mesh resolution, is to “jump” from one
slice to the next,without using the sweep to discover how one
slice evolves into the next. We can instead construct the next slice
from scratch, using a depth-first search through the mesh, and using
“seed” points that are found by intersecting the new slice plane with
a critical subgraph of mesh edges that connects the critical vertices
of the mesh. Of course, we do not know a priori if it is better to
sweep from slicei to slicei + 1, or to construct slicei + 1 from
scratch. Thus, we can perform a “lock step” algorithm (doing steps
in alternation, between the two methods), to achieve asymptotically
a complexity that is the minimum of the two. This scheme applies
not just to the sweep in 3-space, but also to the sweeps in each slice.

As an illustration of how these methods can be quite useful, con-
sider the situation in Figure 4, which, while drawn only in 2 di-
mensions, can depict the cases in 3-space as well. When we sweep
from line 2 to line 3, a huge complexity must be swept over, and
this may be costly compared to rebuilding from the scratch the slice
along line 3. On the other hand, sweeping from line 5 to line 6 is
quite cheap (essentially no change in the geometry and topology),
while constructing the slice along line 6 from scratch would be quite
costly. By performing the two methods in lock step (possibly in par-
allel, if a second processor is available), we can take advantage of
the best of both methods. The resulting algorithm exploits coher-
ence in the data and has a running time that is sensitive, in some
sense, to the complexity of the visualization task.

5 Experimental Results

We have implemented the main algorithm described in the previous
sections. Our implementation handles general disconnected grids,
and has most of the advantages of the complete algorithm described
already, but we have not yet implemented the “lock step” idea (used



to avoid worst-case complexity in disparate data sets), and our code
does not currently handle perspective projections. (The implemen-
tation ofperspective projectionwill be done soon and is conceptu-
ally very simple, requiring only that the priority values in the queue
be based on an appropriate dot product.) Further, in our initial im-
plementation, we have assumed that cells of the mesh are tetrahedra
(simplices). Our method does not require convex cells, even though
they do make some of the implementation issues simpler.

The rendering algorithm consists of about 5,000 lines of C code.
It is fairly naive in terms of optimization, so we expect that it can
be further improved. An interesting aspect of the code is the way
it cleanly handles geometric degeneracies. The major modules of
the program include:3D sweep, which sweeps the vertices of the
input mesh along a given direction, while maintaining two dynamic
sweep status data structures — the active tetrahedra list (ATL) and
the active edge list (AEL);2D sweep, which orders the 3D edge
intersections, and is complemented with the code that incremen-
tally depth sorts the segments along the current ray. We also have a
graphics module that sets up the transformations and manages the
other modules, and the transfer function and the optical integration
(or simple shading) modules. We do not attempt to describe the
implementation in detail, but we shall explain some of the most
relevant issues.

Due to the large sizes of irregular grids, efficient data structures
can substantially influence the performance of the implementation.
For priority queues (we use two of them, one for the incremental
3D sweep sort, another for the 2D sweep), we use a simpleheap
implementation (the same code is shared for 3D/2D). Instead of
performing the view-dependentO(n) search for extremal vertices,
we simply preprocess the external vertices of the grid and place
them in the heap before starting the sweep (all the internal vertices
are still inserted incrementally – see Figure 5 – in order to avoid
the need for substantial extra storage). In order to keep the ATL
and AEL, we need a dictionary data structure that allows efficient
insertion/deletion. We have experimented using a hash table and
binary trees. The hash tables performed much better than the binary
trees in our examples, because of lower overhead, both in time and
space.

During the 2D sweep, a binary tree stores the sweep status.
Edges are inserted in depth order, and for rendering at the pixel
locations, the binary tree is sent to the shader. The handling of
the binary tree is tricky, since a consistent ordering of all the seg-
ments along each ray must be maintained as edges are inserted and
deleted during the sweep. Due to degeneracies, geometric tests
alone are not suficient to keep a consistent ordering; edges may
have the samegeometricalproperties, buttopologically they are
different, which causes inconsistencies in the tree – for instance,
an edge might be inserted along a certain binary tree path when its
first endpoint is reached, but might not be found in the tree when
its second endpoint is reached due to the insertion of another edge
along that path, resulting in an inconsistent sweep-status state. This
problem is solved by assigning a computational ordering, that is,
explicitly using an ordering function that depends on the memory
position of the edges (which are fixed foreach scanplane), to break
geometric “ties”, therefore forcing a globally consistent ordering
among edges.

Another place where degeneracies have to be avoided is during
the final rendering. The problem arises because several vertices
may lie on the same plane. This leads to intersections that may
have non-closed and/or null primitives (e.g., a triangle with two
coincident sides). The solution is to keep track of the current status
of the priority queue and only perform the rendering once all the
events with values lower than or equal to the currenty-value (or
x-value when in ray casting) have been processed. This solution is
conceptually simple, correct and easy to implement.

Geomview, from the Geometry Center of the University of Min-

nesota, was instrumental in the development of our renderer, help-
ing to create animations and visually debug our code. Without vi-
sual debugging it would have been virtually impossible to write this
code.

Datasets

The code currently handles datasets composed of tetrahedral grids.
The input format is analogous to the Geomview “off” file. It simply
has the number of vertices and tetrahedra, followed by a list of the
vertices and a list of the tetrahedra, each of which is specified using
the vertex locations in the file as an index. This format is compact,
can handle general grids (including disconnected), and it is fairly
simple (and fast) to recover topological information. Maintaining
explicit topological information in the input file would waste too
much space.

For our test runs we have used tetrahedralized versions of the
well-known Blunt Fin and Liquid Oxygen Post datasets, originally
in NASA Plot3D format. The Blunt Fin contains 40-by-32-by-32
data points (40,960 vertices), from which we create 187,395 tetra-
hedra by breaking each cell into 5 tetrahedra. Figure 7 depicts the
decomposition used, and Figure 8 shows a running configuration
of the algorithm. The Post dataset contains 38-by-76-by-38 data
points (109,744 vertices) and 513,375 tetrahedra after conversion.
We have generated several other artificial datasets for debugging
purposes; in particular, we generated simple datasets that have dis-
connected components.

Memory Requirements

Our algorithm is very memory efficient. The dataset is stored as a
collection of vertices and tetrahedra. Each tetrahedron only stores
indices to its vertices, and a single flag that identifies the external
faces (no topological information is saved at the tetrahedra). Each
vertex contains, besides its position and scalar value, a flag, used
during the algorithm for various purposes, and a list of the tetrahe-
dra it belongs to. Because each tetrahedron contains four vertices,
the overall increase in memory cost for the topological information
is minimal.

Besides the input dataset, the only other memory consumption
is in the priority queues, which are very small in practice. (For the
Blunt Fin, the extra storage is below half a megabyte.) This low
storage requirement is due to our incremental computations, which
only touch a cross section of the dataset at a time. The overall
memory consumption for rendering the Blunt Fin is about 8MB of
memory total, of which over 95% is the dataset itself (about 36%
is topology information). For the Post dataset, the storage require-
ment is a bit over 21MB, of which 97% is the dataset itself (about
35% is topology information).

Performance Analysis

Our primary system for measurements was a Sun UltraSparc-1. We
present numbers for the tetrahedralized version of the Blunt Fin and
Post datasets, described above. It is important to notice, that our
rendering times will clearly be higher than algorithms that treat the
either dataset as a curvilinear grid composed of hexahedral cells.

Reading the Blunt Fin dataset off a local disk takes 9.8 seconds
on the UlraSparc. The Post dataset takes 27.32 seconds. Our ASCII
input files require parsing; thus, processing time dominates, not the
actual disk access time. (Our tetrahedralized Blunt Fin version has
almost 6MB, and the Post has over 16MB.) The use of binary files
would likely improve efficiency, but using ASCII files simplifies the
manual creation of test samples. In a preprocessing phase, we re-
cover the adjacency information of the grid, and separate the exter-
nal vertices into a list (for the Blunt Fin, we classify 6,760 vertices



0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r 

of
 A

ct
iv

e 
E

dg
es

Scanline Number

Active Edges
External Active Edges

Figure 5:Number of active edges as a function of the scanline: the
active edges are the edges intersected at a given scanline by the
current scanplane during the 3D sweep. The number of external
active edges is also shown.

as externals, for the Post, 13,840 vertices). The complete prepro-
cessing takes 2.95 seconds for the Blunt Fin, and 8.48 seconds for
the Post.

Rendering can be decomposed into several stages: 3D sweep,
2D sweep and 1D ray casting (including shading). All of them are
embedded inside each other. The complexity of the 3D sweep is
independent of the image size; it just depends on how many points
need to be processed. For instance, without performing any render-
ing, just sweeping (the 3D sweep) the Blunt Fin grid takes about 3.5
seconds. During this time, the ATL and AEL are being updated at
every event (the binary tree implementation takes over three times
as long). The AEL is used during the 2D sweep for calculating and
ordering the intersections for the final ray casting (see Figures 5
and 6).

Since the Blunt Fin projection is not square, it is not meaningful
to give performance numbers on a square screen. Instead we give
numbers for a 527-by-200 screen (105,400 pixels), which matches
the aspect ratio of the Blunt Fin for the direction in which we are
looking. Figure 5 contains the number of active edges for each
scanline. It is easy to see that, because the structure of the grid is
irregular, the number of edges varies quite a bit. For the Post, we
used a 300-by-300 screen (90,000 pixels).

Rendering a scanline involves computing the intersection points,
sorting them along the direction of the scanline, and then perform-
ing a 1D sweep (or sort) along each ray incrementally (which basi-
cally involves processing events and shading). Figure 6 shows the
rendering times for the 2D sweep, for each scanline. The perfor-
mance numbers indicate: the time to process a given scanline is
directly correlated to the number of active edges on that plane; the
cost per scanline varies depending on the complexity of the plane
being rendered; (and most important for future optimization) the
event handling time dominates the total time spent per scanline.

The event handling time is clearly the bottleneck of the render-
ing speed. This was puzzling at first, specially because it is just
performing a sweep of a few thousand vertices (less than 5,500).
In the 3D sweep, we handle over 40,000 vertices in about 3.5 sec-
onds. Profiling the code showed that “CompareEdge” (a function
that tells which of two edges is closer to the screen) is called over 68
million times, consuming over 40% of theoverall rendering time.
Further study shows that the reason for such a high number of calls
to “CompareEdge” is related to the depth of the binary tree used
to save the ordering. Because the Blunt Fin comes from a curvi-
linear grid, it has lots of vertices that lie (degenerately) on common
planes, which causes extremely bad behavior in our binary tree sort-

ing. This indicates that we can potentially obtain a dramatic im-
provement in performance, just by changing the data structure used
(e.g., by employing a standard 2-3 tree or a Red-Black tree [6]).
Another reason the 2D sweep is taking so long is the fact that there
is a scanline component on its rendering time. As discussed later,
the most time consuming parts of it can be eliminated by making
incremental changes to the depth sorting on the segments.

Performance Comparisons

The total rendering time of our algorithm is 70 seconds for a
190,000 tetrahedra cell complex (the Blunt Fin), for a 527-by-200
image with almost complete pixel coverage (see Figure 9 – the pic-
ture was actually padded with a black frame after rendering for
printing purposes). For the Blunt Fin, the performance of our cur-
rent code is 373�s (microseconds) per tetrahedron, and 664�s per
pixel. For the Post, a 500,000 tetrahedra cell complex, it takes 145
seconds (see Figure 10) to render a 300-by-300 image.

The most recent report on an irregular grid ray caster is Ma [15],
from October 1995. Ma is using an Intel Paragon (with superscalar
50MHz Intel i860XPs). He reports rendering times for two datasets,
an artificially generatedCubedataset with 130,000 tetrahedra and
aFlow dataset with 45,500 tetrahedra. He does not report times for
single CPU runs, always starting with two nodes. With two nodes,
for the Cube, he reports taking 2,415 seconds (2234 seconds for
the ray casting – the rest is parallel overhead) for a 480-by-480 im-
age (approximately 230,000 pixels), for a total cost of 10.5 (9.69)
milliseconds per pixel. The cost per tetrahedron is 18.5 (17.18)
milliseconds. For theFlow dataset he reports 1593 (1,585) mil-
liseconds (same image size), for a cost of 6.9 (6.8) milliseconds per
pixel, and 35.01 (34.8) milliseconds per tetrahedron. All his perfor-
mance numbers reflect the use of 2 processors. Giertsen [14] reports
running times of 38 seconds for 3,681 cells (10.32 milliseconds per
cell). His dataset is too small (and too uniform) to allow meaningful
comparisons, nevertheless our implementation handles a cell com-
plex that has over 100 times the number of cells he used, at a frac-
tion of the cost per cell. Yagel et al. [33] reports rendering the Blunt
Fin, using an SGI with a Reality Engine2 in just over 9 seconds, us-
ing a total of 21MB of RAM, using 50 “slicing” planes; with 100
planes, he reports the cost increases to 13–17 seconds. (Their ren-
dering time is dependent on the number of “slicing” planes, which,
of course, affects the accuracy of the picture generated.) For a 50
slice-rendering of the Post, it takes just over 20 seconds,using about
57MB RAM.

Optimizations

There are at least a couple of directions for optimization of the cur-
rent code that may make it even more competitive. First, improve-
ment in the data structures for keeping the sorted rays should lower
the cost of using “CompareEdge”. Second, at this time, we are
starting the 2D sorting process over for every scanplane, not using
the previously sorted information.

6 Conclusions and Future Work

In this paper we propose a new algorithm for rendering irregular
grids. Our algorithm is carefully tailored to exploit spatial coher-
ence even if the image resolution differs substantially from the ob-
ject space resolution. We have also discussed some of the theoreti-
cal upper and lower bounds on ray casting approaches.

We have reported timing results showing that our method com-
pares favorably with other ray casting schemes, and is, in fact, a
couple orders of magnitude faster than other published ray cast-
ing results. Another advantage of our method is the fact that it is



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
(s

ec
on

ds
)

Scanline Number

Total Time
Event Handling Time

Integration Time
Plane Intersection Time

2D Projection Time
2D Sorting Time

Figure 6: Total rendering time as a function of the scanline: the
intersection time is the time it takes to calculate the 2D point of
intersection of the active edges with the scanplane; the event han-
dling time is the time to process every active edge after sorting,
including the 1D ray sorting necessary for integration. Note that
event handling time dominates the total cost of a scanline.

very memory efficient, making it suitable for use with very large
datasets.

It is difficult to compare our method with hardware-based tech-
niques (e.g., [33]), which can yield impressive speed-ups over
purely software-based algorithms. On the other hand, software-
based solutions broaden the range of machines on which the code
can run (e.g., much of our code was developed on a small laptop,
with only 16MB of RAM). Also, we are optimistic that implemen-
tation of the optimizations suggested in the last section will further
improve the performance of our software. More experimentation
should help us quantify exactly how our algorithm compares with
other methods.

An interesting possible extension of our work would be to inves-
tigate issues involving out-of-core operation. The spatial locality of
our memory accesses indicates that we should be able to employ
pre-fetchingtechniques to achieve fast rendering when the irregular
grids are much larger than memory. Also, our method is a natural
candidate for parallelization.

Acknowledgements

We thank Ashish Tiwari for implementing the 3D sweep code, as
part of a graphics course project. Juliana Freire helped with our
rendering code. Brian Wylie helped with the preparation of the
paper for publication. Dirk Bartz, Pat Crossno, George Davidson
and Dino Pavlakos provided useful criticism on the paper. Blunt
Fin and Post datasets courtesy of NASA. C. Silva is partially sup-
ported by CNPq-Brazil under a Ph.D. fellowship, by Sandia Na-
tional Labs, and by the National Science Foundation (NSF), grant
CDA-9626370. J. Mitchell is partially supported by NSF (CCR-
9504192) and by Hughes Aircraft and Boeing. A. Kaufman is par-
tially supported by NSF (CCR-9205047, DCA 9303181 and MPI-
9527694) and by the Dept. of Energy under the PICS grant.

References
[1] Agarwal, P., M. Katz, M. Sharir. Computing depth orders and related problems.

In Proc. 4th Scand. Workshop Algorithm Theory, pages 1–12, 1994.

[2] Agarwal, P. and J. Matouˇsek. Ray shooting and parametric search.SIAM J.
Comput., 22(4):794–806,1993.

[3] Agarwal, P. and J. Matouˇsek. On range searching with semialgebraic sets.Dis-
crete Comput. Geom., 11:393–418, 1994.

[4] Agarwal, P. and M. Sharir. Applications of a new partition scheme.Discrete
Comput. Geom., 9:11–38,1993.

[5] Chazelle, B., H. Edelsbrunner, L. Guibas, R. Pollack, R. Seidel, M. Sharir,
J. Snoeyink. Counting and cutting cycles of lines and rods in space.Comput.
Geom. Theory Appl., 1:305–323, 1992.

[6] Cormen, T., C. Leiserson, R. Rivest.Introduction to Algorithms. The MIT Press,
1990.

[7] de Berg, M.Ray Shooting,Depth Orders and Hidden Surface Removal, Vol 703
of Lecture Notes in Computer Science. Springer-Verlag,Berlin, 1993.

[8] de Berg, M,, D. Halperin, M. Overmars, J. Snoeyink, M. van Kreveld. Efficient
ray shooting and hidden surface removal.Algorithmica, 12:30–53,1994.

[9] de Berg, M., M. Overmars, O. Schwarzkopf. Computing and verifying depth
orders.SIAM J. Comput., 23:437–446, 1994.

[10] Edelsbrunner, H. An acyclicity theorem for cell complexes ind dimensions.
Combinatorica, 10:251–260, 1990.

[11] Fruhauf, T. Raycasting of nonregularly structured volume data.Computer
Graphics Forum (Eurographics ’94), 13(3):294–303,1994.

[12] Fuchs, H., Z. Kedem, B. Naylor. On visible surface generation by a priori tree
structures.Comput. Graph., 14(3):124–133, 1980. Proc. SIGGRAPH ’80.

[13] Garrity, M. Ray tracing irregular volume data. InComputer Graphics (San Diego
Workshop on Volume Visualization), 24:35–40,November 1990.

[14] Giertsen, C. Volume visualization of sparse irregular meshes.IEEE Computer
Graphics and Applications, 12(2):40–48,March 1992.

[15] Ma, K-L. Parallel volume rendering for unstructured-grid data on distributed
memory machines. InIEEE/ACM Parallel Rendering Symposium ’95, pages
23–30, 1995.

[16] Mao, X., L. Hong, A. Kaufman. Splatting of curvilinear grids. InIEEE Visual-
ization ’95, pages 61–68, 1995.

[17] Max, N., P. Hanrahan, R. Crawfis. Area and volume coherence for efficient vi-
sualization of 3D scalar functions. InComputer Graphics (San Diego Workshop
on Volume Visualization), 24:27–33, November 1990.

[18] Mitchell, J., D. Mount, S. Suri. Query-sensitive ray shooting. InProc. 10th
Annu. ACM Sympos. Comput. Geom., pages 359–368,1994.

[19] Paterson, M. and F. Yao. Efficient binary space partitions for hidden-surface
removal and solid modeling.Discrete Comput. Geom., 5:485–503, 1990.

[20] Pellegrini, M. Ray shooting on triangles in3-space.Algorithmica, 9:471–494,
1993.

[21] Preparata, F. and M. Shamos.Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, 1985.

[22] Ramamoorthy S. and J. Wilhelms. An analysis of approaches to ray-tracing
curvilinear grids. Report UCSC-CRL-92-07, U. of California, Santa Cruz,1992.

[23] Samet, H.The Design and Analysis of SpatialData Structures. Addison-Wesley,
Reading, MA, 1990.

[24] Sharir, M. and P. Agarwal.Davenport-SchinzelSequences and Their Geometric
Applications. Cambridge University Press, New York, 1995.

[25] Shirley, P. and A. Tuchman. A polygonalapproximation to direct scalar volume
rendering. InComputer Graphics (San Diego Workshop on Volume Visualiza-
tion), 24:63–70, November 1990.

[26] Speray, D. and S. Kennon. Volume probes: Interactive data exploration on arbi-
trary grids. InComputer Graphics (San Diego Workshop on Volume Visualiza-
tion), 24:5–12, November 1990.

[27] Stein, C., B. Becker, N. Max. Sorting and hardwareassisted rendering for volume
visualization. InACM Volume Visualization Symposium ’94, pages 83–89, 1994.

[28] Uselton, S. Volume rendering for computational fluid dynamics: Initial results.
Tech Report RNR-91-026, Nasa Ames Research Center, 1991.

[29] Van Gelder, A. and J. Wilhelms. Rapid Exploration of Curvilinear Grids Using
Direct Volume Rendering. InIEEE Visualization ’93, pages 70–77, 1993.

[30] Wilhelms, J., J. Challinger, N. Alper, S. Ramamoorthy, and A. Vaziri. Direct
volume rendering of curvilinear volumes. InComputer Graphics (San Diego
Workshop on Volume Visualization), 24:41–47,November 1990.

[31] Wilhelms, J. and A. Van Gelder. A coherent projection approach for direct vol-
ume rendering.Comput. Graph., 25:275–284, 1991. Proc. SIGGRAPH ’91.

[32] Williams, P. Visibility ordering meshed polyhedra.ACM Trans. Graph., 11:103–
126, 1992.

[33] Yagel, R., D. Reed, A. Law, P-W. Shih, N. Shareef. Hardware assisted volume
rendering of unstructured grids by incremental slicing. InVolume Visualization
Workshop, these proceedings,1996.



Figure 7: Outside faces of a lower resolution version of the
Blunt Fin are shown to demonstrate the tetrahedralization pro-
cess. Red and green cells have to be tetrahedralized in opposite
direction to allow for correct matching between cells.

Figure 8:A typical configuration during the sweep is shown in
red. (A lower resolution version of the Blunt Fin is used to avoid
excessive cluttering.)

Figure 9:A volume renderingof the Blunt Fin dataset generated
with our method.

Figure 10: A volume rendering of the Liquid Oxygen Post
dataset generated with our method.


