
Efficient Compression of Non-Manifold Polygonal Meshes �

André Guéziec y Frank Bossen z Gabriel Taubin x Claudio Silva {

A B C

Figure 1: A: cutting a non-manifold mesh (two tetrahedra sharing a face). B: representing a non-manifold mesh as a manifold
mesh together with a vertex clustering. C: Overall compressed syntax for a non-manifold mesh.

Abstract

We present a method for compressing non-manifold polygonal
meshes, i.e. polygonal meshes with singularities, which occur very
frequently in the real-world. Most efficient polygonal compression
methods currently available are restricted to a manifold mesh: they
require a conversion process, and fail to retrieve the original model
connectivity after decompression. The present method works by
converting the original model to a manifold model, encoding the
manifold model using an existing mesh compression technique, and
clustering, or stitching together during the decompression process
vertices that were duplicated earlier to faithfully recover the origi-
nal connectivity. This paper focuses on efficiently encoding and de-
coding the stitching information. By separating connectivity from
geometry and properties, the method avoids encoding vertices (and
properties bound to vertices) multiple times; thus a reduction of the
size of the bit-stream of about 10% is obtained compared with en-
coding the model as a manifold.
Key-words : Polygonal Mesh, Geometry Compression, Non-
Manifold, Stitching.

1 Introduction

Three-dimensional polygonal meshes are used pervasively in man-
ufacturing, architectural, Geographic Information Systems, warfare
simulation, medical imaging, robotics, and entertainment indus-
tries. In particular, polygons (especially, triangles) are required for
generating three-dimensional renderings using available graphics
architecture.

The sizes of such meshes have been steadily increasing, and
there is no indication that this trend will change. For instance, a
polygonal model representing a Boeing 777 airplane contains on the
order of 1 Billion polygons, excluding polygons associated with the
rivet models. Geometry compression deals with the compression of
polygonal meshes for transmission and storage.

�This research was conducted while all authors were with IBM.
yMultigen Paradigm, 550 S. Winchester Bvd., Suite 500, San Jose, CA

95128, gueziec@multigen.com
zSignal Processing Lab, EPFL, 1015 Lausanne, Switzerland,

frank.bossen@epfl.ch
xIBM T.J.Watson Research Center, P.O. Box 704, Yorktown Heights,

NY 10598, taubin@watson.ibm.com
{AT&T Labs-Research, 180 Park Ave, P.O. Box 971, Florham Park, NJ

07932, csilva@research.att.com

Many real-world polygonal meshes are non-manifold, that is,
contain topological singularities, (e.g., edges shared by more than
two triangles) 1. In fact, on a database of 300 meshes used for
MPEG-4 core experiments and obtained on the Web (notably at
the www.ocnus.com site), we discovered that more than half of
the meshes (157 exactly) were non-manifolds. As discussed in
Section 2, most of the methods currently available for geometry
compression require a manifold connectivity. Meshes can be con-
verted, but then the original connectivity is lost, as discussed in our
work [1]. At the time this paper is written, we are aware of only two
publications treating connectivity-preserving non-manifold mesh
compression [2, 3].

In this paper we describe a method for compressing non-
manifold polygonal meshes and recovering their exact connectiv-
ity (and topology) after decompression. Our method compares in
compression efficiency and speed with the most efficient manifold-
mesh compression methods, thus extending [4, 5, 6, 7, 2], and even
allows some savings by avoiding duplicate encodings of vertex co-
ordinates and properties. method works by converting the original
mesh to a set of manifold meshes, encoding the manifold meshes
using an existing mesh compression technique, and clustering, or
stitching together during the decompression process the vertices
that were duplicated earlier to faithfully recover the original con-
nectivity (see Fig. 1-A,B). To convert a non-manifold to a manifold
by cutting (as little as possible), we are using the method described
in [1] and briefly recalled in Section 3. However, there is significant
flexibility in the strategies used for converting to manifold meshes
and compressing them, and the present method does not require us-
ing specific ones. A vertex clustering 2 is recorded during the con-
version process, such that when applied to the manifold meshes, the
original non-manifold mesh is recovered.
Representation for Compression. The basic idea in this paper is
to encode both the manifold meshes and vertex clustering as a sub-
stitute for the non-manifold mesh. While this idea is quite obvious,
efficiently encoding and decoding a vertex clustering isn’t, and will
be the primary focus here. The mesh is compressed as indicated in
Fig. 1-C. For each manifold connected component, the connectivity
is encoded, followed with optional stitches, and geometry and prop-
erties. Stitches are used to recover the vertex clustering within the

1Specifically, a manifold polygonal surface is such that the neighbor-
hood of every vertex can be continuously deformed to a disk (to a half disk
at the boundary).

2I.e., means for specifying groups of vertices, such that each group
should be clustered to form a single vertex.



current component and between vertices of the current component
and previous components. In this way, for each cluster, geometry
and properties are only encoded and decoded for the vertex of the
cluster that is encountered first (in decoder order of traversal).

As described in Section 5, the vertex clustering is decomposed
in a series of variable-length stitches, that merge a given number
of vertices along two directed paths of vertices. We propose to
choose between a very simple and fast decomposition technique
and a more advanced one. This latter decomposition presents sev-
eral challenges that are described and overcome. The bit-stream
syntax supports both possibilities, and it is not required that the en-
coder use the more advanced feature. In Sections 6 and 7, we give
details on the encoding and decoding processes and describe a pro-
posed bit-stream syntax for stitches.

2 Related Work

Connectivity-preserving non-manifold mesh compression algo-
rithms were proposed by Popovic and Hoppe [2] and Bajaj et al. [3].
Hoppe’s Progressive Meshes [8] use a base mesh and a series of
vertex insertions (specifically, inverted edge contractions) to repre-
sent a manifold mesh. While the main functionality is progressive
transmission, the encoding is fairly compact, using 30 to 50 bits per
vertex with arithmetic coding [8]. Utilizing more general vertex
insertion strategies, this method was extended in [2] to represent
arbitrary simplicial complexes, manifold or not, using about 50 bits
per vertex (asymptotically the cost of this method is proportional to
n log n, n being the number of vertices). Our present method im-
proves upon [2] by achieving significantly smaller bit-rates (about
10 bits per vertex or so) and reducing encoding time (admittedly,
an off-line process) by more than four orders of magnitude (with-
out levels-of-detail).

Bajaj et al.’s “dag of ring” mesh compression approach [3] parti-
tions meshes in vertex and triangle layers that can represent a non-
manifold mesh. Since vector quantization is used for compressing
the geometry as opposed to scalar quantization in the present work,
a direct comparison of the results is difficult. One advantage of the
approach in this paper is that stitches may be used for encoding
changes of topology (such as aggregating components) in addition
to representing singularities.

Deering [9] introduced geometry compression methods, origi-
nally to alleviate 3D graphics rendering limitations due to a bottle-
neck in the transmission of information to the graphics hardware
(in the bus). His method uses vertex and normal quantization, and
exploits a mesh buffer to reuse a number of vertices recently visited
and avoid resending them. Deering’s work fostered research on 3D
mesh compression for other applications. Chow [10] extended [9]
with efficient generalized-triangle-strip building strategies.

The Topological Surgery single-resolution mesh compression
method [11, 12] represents a connected component of a manifold
mesh as a tree of polygons (which are each temporarily decom-
posed into triangles during encoding and recovered after decod-
ing). The tree is decomposed into runs, whose connectivity can
be encoded at a very low cost. To recover the connectivity and
topology, this tree is completed with a vertex tree, providing infor-
mation to merge triangle edges. The method of [12] also encodes
the vertex coordinates (geometry) and all property bindings defined
in VRML’97 [13].

Touma and Gotsman [4] traverse a triangular (or polygonal)
mesh and remove one triangle at a time, recording vertex valences3

as they go and recording triangles for which a boundary is split in
two as a separate case.

Gumhold and Strasser [5] and Rossignac [6] concentrate on en-
coding the mesh connectivity. They use mesh traversal techniques

3Number of incident polygons.

similar to [4], but instead of recording vertex valences, consider
more cases depending on whether triangles adjacent to the triangle
that is being removed have already been visited. Another relevant
work for connectivity compression is by Denny and Sohler [14].

Li and Kuo [7]’s “dual graph” approach traverses polygons of
a mesh in a breadth-first fashion, and uses special codes to merge
nearby (topologically close) polygons (serving the same purpose as
the vertex graph in the approach of [12]) and special commands
to merge topologically distant polygons (to represent a general
connectivity-not only a disk).

3 Cutting a Non-manifold Mesh to Pro-
duce Manifold Meshes

We briefly recall here the method of Guéziec et al. [1] that we
are using. For each edge of the polygonal mesh, it is determined
whether the edge is singular (has three or more incident faces) or
regular. Edges for which incident faces are inconsistently oriented
are also considered to be singular for the purpose of this process.
For each singular vertex of the polygonal mesh, the number of con-
nected fans of polygons incident to it is determined4. For each
connected fan of polygons, a copy of the singular vertex is cre-
ated (thereby duplicating singular vertices). The resulting mesh is
a manifold mesh. The correspondences between the new set of ver-
tices comprising the new vertex copies and the old set of vertices
comprising the singular vertices is recorded in a vertex clustering
array. This process is illustrated in Fig. 1.

This method admits a number of variations that moderately alter
the original mesh connectivity (without recovering it after decod-
ing) in order to achieve a decreased size of the bit-stream: polygo-
nal faces with repeated indices may be removed. Repeated faces
(albeit with potentially different properties attached) may be re-
moved. Finally, the number of singular edges may be reduced by
first attempting to invert the orientation of some faces in order to
reduce the number of edges whose two incident faces are inconsis-
tently oriented.

4 Compressing Manifold Meshes

The method described in this section extends the Topological
Surgery method [12], and is explained in detail in [15]. In [12] the
connectivity of the mesh is represented by a tree spanning the set of
vertices, a simple polygon, and optionally a set of jump edges. To
derive these data structures a vertex spanning tree is first contructed
in the graph of the mesh and the mesh is cut through the edges of
the tree. If the mesh has a simple topology, the result is a simple
polygon. However if the mesh has boundaries or a higher genus,
additional cuts along jump edges are needed to obtain the simple
polygon. This simple polygon is then represented by a triangle
spanning tree and a marching pattern that indicates how neighbor-
ing triangles are connected to each other. The connectivity is then
encoded as a vertex tree, a simple polygon and jump edges. In this
paper the approach is slightly different. First, a triangle spanning
tree is constructed. Then the set of all edges that are not cut by the
triangle tree are gathered into a graph. This graph, called Vertex
Graph, spans the set of vertices, and may have cycles. Cycles are
caused by boundaries or handles (for higher genus models). The
vertex graph, triangle tree, and marching pattern are sufficient to
represent the connectivity of the mesh.

In [12] geometry and properties are coded differentially with re-
spect to a prediction. This prediction is obtained by a linear com-

4A fan of polygons at a vertex is a set of polygons incident to a vertex
and connected with regular edges. A singular vertex is simply a vertex with
more than one incident fans.



bination of ancestors in the vertex tree. The weighting coefficients
are chosen to globally minimize the residues, i.e. the difference
between the prediction and the actual values. In this paper the prin-
ciple of linear combination is preserved but the triangle tree is used
instead of the vertex tree for determining the ancestors. Note that
the “parallelogram prediction” [4]5 is a special case of this scheme,
and is achieved through the appropriate selection of the weighting
coefficients.

Coding efficency is further improved by the use of an efficient
adaptive arithmetic coder [16]. Arithmetic coding is applied to all
data, namely connectivity, geometry and properties.

Finally the data is ordered so as to permit efficient decoding and
on-the-fly rendering. The vertex graph and triangle tree are put first
into the bit stream. The remaining data, i.e. marching pattern, ge-
ometry, and properties, is referred to as triangle data and is put next
into the bit stream. It is organized on a per-triangle basis, following
a depth-first traversal of the triangle tree. Therefore a new triangle
may be rendered every time a few more bits, corresponding to the
data attached to the triangle, are received.

5 Representing the Vertex Clustering Us-
ing Stitches

We introduce two methods, called Stack-Based and Variable-
Length. The decomposition of the vertex clustering in stitches re-
lies on the availability of two main elements: (1) a decoding order
for the mesh vertices, and (2), for the variable-length method only,
an unequivocal means of defining paths of vertices. We next sup-
pose that such paths are recorded in an array called v father, rep-

resenting a function f1; : : : ; ng
v father
�! f1; : : : ; ng, where n is the

number of vertices.
All of the manifold mesh compression methods reviewed in Sec-

tion 2 can provide an order in which vertices will be decoded as
well as unambiguous paths of vertices from the decoded connectiv-
ity (the decoding order being one example). Fig. 2 shows v father
for the example of Fig. 1, obtained using the Topological Surgery
method. The information consigned in v father is implicit, and re-
quires no specific encoding. In the following we assume without
loss of generality that vertices are enumerated in the decoder order
of traversal. (If this is not the case, we can perform a permutation
of the vertices). Both the stack-based and variable-length methods
take as input a vertex clustering array, which for convenience we

denote by v cluster (f1; : : : ; ng
v cluster
�! f1; : : : ; ng).

To access vertices through v cluster, we propose the conven-
tion that v cluster always indicate the vertex with the lowest de-
coder order: Supposing that vertices 1 and 256 belong to dif-
ferent components but cluster to the same vertex, it is better to
write v cluster[1] = v cluster[256] = 1 than v cluster[1] =
v cluster[256] = 256. As the encoder and decoder build compo-
nents gradually, at some point Vertex 1 will be a “physical” vertex
of an existing component, while Vertex 256 will be in a yet-to-be-
encoded component. Accessing Vertex 1 through Vertex 256 would
increase code complexity.

5.1 Stack-Based Method

We use a stack-buffer for stitches, similarly to Deering [9] and other
manifold mesh compression modules (see [15]). In the decoding or-
der, we push, get and pop in a stack-buffer6 the vertices that cluster

5Which extends a current triangle to form a parallelogram, with the new
parallelogram vertex being used as a predictor.

6A “stack” would only support “push” and “pop” operations. We denote
by “stack-buffer” a data structure that supports the “get” operation as well,
i.e., direct indexing.

Figure 2: A: v father for the example of Fig. 1. B: in the partic-
ular case of Topological Surgery [15], v father is a forest that
also admits self-loops. In the following, we will omit to draw
self-loops.

together. Connected components (i.e., clusters) can be computed
for the vertex clustering, such that two vertices belong to the same
component if they cluster to the same vertex. We thus associate
a stitching command for each vertex that belongs to a component
whose size is larger than one. The command is either PUSH, or
GET, or POP depending on the decoding order of the vertices in
a given component. The vertex that is decoded first is associated
with a PUSH; all subsequently decoded vertices are associated with
a GET except the vertex decoded last, which is associated with a
POP. For the example of Fig. 1 we illustrate the association of com-
mands to vertices in Fig. 3.

Figure 3: Stack-based method applied to the example of Fig.1.

5.2 Variable-Length Method

One drawback of the stack-based method is that it requires to send
one stitching command (either PUSH, GET or POP) for each ver-
tex that clusters to a singular vertex. Instead, by specifying an inte-
ger length, we could keep stitching vertex pairs when following the
v father relationship. This simple idea is illustrated in Fig. 4.

Using the same example of Fig 1, we illustrate in the Fig. 5 how
variable length stitches can be used to represent the vertex cluster-
ing. A stitch of length l greater than zero is obtained by starting
with two vertices and stitching vertices along two paths starting at
the vertices and defined using the v father graph, exactly l + 1
times. For the example of Fig. 5, 3 stitches are applied to represent
v cluster: one (forward) stitch of length 1, one stitch of length zero,
and one stitch of length 2 in the reverse direction. A stitch in the



Figure 4: A: the stack-based method requires one command
for each vertex that is clustered. B: with the variable-length
method, the specification of a length can eliminate several
commands.

reverse direction works similarly by starting with two vertices, fol-
lowing the path for the second vertex and storing all vertices along
the path in a temporary structure, and stitching vertices along the
first path together with the stored vertices visited in reverse order.
In the remainder of this section, we explain how to discover such
stitches from the knowledge of the v cluster and v father arrays.

Figure 5: Three stitches of variable length and direction en-
code the vertex clustering of Fig. 1.

While our ultimate goal is to minimize the total encoding size for
stitches (with manageable encoder and especially, decoder, com-
plexities), a good working hypothesis (heuristic) states that: the
longer the stitches, the fewer the commands, and the smaller the
bit-stream size. We propose a greedy method that operates as fol-
lows. The method first computes for each vertex that clusters to a
singular vertex the longest possible forward stitch starting at that
vertex: a length and one or several candidate vertices to be stitched
with are determined. As illustrated in Fig. 6-A, starting with a ver-
tex v0, v0 2 f1; : : : ; ng, all other vertices in the same cluster are
identified, and v father is followed for all these vertices. From the
vertices thus obtained, the method retains only those belonging to
the same cluster as v father[v0]. This process is iterated until the
cluster contains a single vertex. The ancestors of vertices remaining
in the previous iteration (vf is the successor of v0 ending the stitch
in Fig. 6-A) are candidates for stitching (v1 in Fig. 6-A). Special
care must be taken with self-loops in v father in order for the pro-
cess to finish and the stitch length to be meaningful. Also, in our
implementation we have assumed that v father did not have loops
(except self-loops). In case v father has loops we should make sure
that the process finishes.

Starting with vf , the method then attempts to find a reverse stitch
that would potentially be longer. This is illustrated in Fig. 6-B, by
examining vertices that cluster with v father[vf ], such as v2. The
stitch can be extended in this way several times. However, since
nothing prevents a vertex v and its v father[v] from belonging to
the same cluster, we must avoid stitching v0 with itself.

All potential stitches are inserted in a priority queue, indexed
with the length of the stitch. The method then empties the priority

queue and applies the stitches in order of decreasing length until the
vertex clustering is completely represented by stitches. This simple
strategy must be extended to cope with the following issues (which
are irrelevant for the stack-based method).

Figure 6: Computing the longest possible stitch starting at a
vertex v0. Ovals indicate clusters. A: forward stitch of length
3 with v1. B: backward stitch of length 4 with v2.

1. The representation method must respect and use the decoder or-
der of connected components of the manifold mesh. As mentioned
in the Introduction, independently of the number of vertices that
cluster to a given vertex, geometry and properties for that vertex
are encoded only once, specifically for the first vertex of the clus-
ter that is decoded. Connectivity, stitches, geometry and properties
are encoded and decoded on a component-per-component basis (see
Fig. 1-C) to allow progressive decoding and visualization. This im-
plies that after decoding stitches corresponding to a given compo-
nent, say Component m, the complete clustering information (rel-
evant portion of v cluster) for Component m as well as between
Component m and the previously decoded components 1; : : : ;m�1
should be available. If this is not so, there is a mismatch between
the geometry and properties that were encoded (too few) and those
that the decoder is trying to decode, with potentially adverse conse-
quences.

The stack-based method generates one command per vertex, for
each cluster that is not trivial (cardinal larger than one), and will
have no problem with this requirement. However, when applying
the variable-length search for longest stitches on all components to-
gether, the optimum found by the method could be as in Fig. 7-A,
where three components may be stitched together with two stitches,
one involving Components 1 and 3 and the second involving Com-
ponents 2 and 3.

Assuming that the total number of manifold components is c,
Our solution is to iterate on m, the component number in decoder
order, and for m between 2 and c, perform a search for longest
stitches on components 1; 2; : : : ;m.
2. The longest stitch cannot always be performed, because of in-
compatibilities with the decoder order of vertices: a vertex can only
be stitched to one other vertex of lower decoder order. The example
in Fig. 7-B illustrates this: the (12,3) and (12,7) stitches cannot be
both encoded.

Since problems only involve vertices that start the stitch, it is
possible to split the stitch in two stitches, one being one unit shorter
and the other being of length zero. Both stitches are entered in the
priority queue. For stitches of length zero, the incompatibility with
the decoder order of vertices can always be resolved. In Fig. 7-B,
for stitching 3 vertices, we can consider three stitching pairs, only
one of which being rejected. Since for stitches of length zero the
direction of the stitch does not matter, all other stitching pairs are
valid.



Figure 7: Potential problems with variable-length stitches. A:
the clustering between Components 1 and 2 is decoded only
when Component 3 is. B: These two stitches cannot be both
encoded, because Vertex 12 can only be stitched to one ver-
tex of lower decoding order (either 3 or 7 but not both.)

3. The method generates the longest stitch starting at each vertex.
It is possible that this may not provide enough stitches to encode all
the clusters. In this case the method can finish encoding the clusters
using zero-length stitches similarly to the stack-based method.

Once a working combination of stitches is found, the last step is
to translate them to stitching commands. This is the object of the
next section which also specifies a bit-stream syntax.

6 Stitches Encoding

To encode the stitching commands in a bit-stream, we propose the
following syntax, that accommodates commands generated by both
the stack-based and variable-length methods. To specify whether
there are any stitches at all in a given component, a boolean flag
has stitches is used. In addition to the PUSH, GET and POP com-
mands, a vertex may be associated with a NONE command, in case
it is sole representative of its cluster (e.g. does not correspond to a
singular vertex in the non-manifold mesh), or in case the informa-
tion on how to cluster it was already taken care of (variable-length
method only). In general, because a majority of vertices are ex-
pected to be non-singular, most of the commands should be NONE.
Three bits called stitching command, pop or get, and pop are
used for coding the commands NONE, PUSH, GET and POP as
shown in Fig. 8.

Figure 8: Syntax for Stitches. “X”s indicate variables associ-
ated with each command

A stitch length unsigned integer is associated with a PUSH
command. A stack index unsigned integer is associated with GET
and POP commands. In addition, GET and POP have the follow-
ing parameters: differential length is a signed integer representing
a potential increment or decrement with respect to the length that

was recorded with a previous PUSH command or updated with a
previous GET and POP (using differential length). push bit is a
bit indicating whether the current vertex should be pushed in the
stack, 7 and reverse bit indicates whether the stitch should be per-
formed in a reverse fashion.

We now explain how to encode (translate) the stitches obtained
in the previous section in compliance with the syntax we de-
fined. Both encoder and decoder maintain an anchor stack ac-
cross manifold connected component for referring to vertices (po-
tentially belonging to previous components). For the stack-based
method, the process is straightforward: in addition to the com-
mands NONE, PUSH, GET and POP encoded using the three
bits stitching command, pop or get, and pop, a PUSH is asso-
ciated with stitch length= 0. GET and POP are associated with a
stack index that is easily computed from the anchor stack.

For the variable-length method, the process can be better under-
stood by examining Fig. 9. In Fig. 9-A we show a pictorial repre-
sentation of a stitch. A vertex is shown with an attached string of
edges representing a stitch length, and a stitch to arrow pointing to
an anchor. Both vertex and anchor are represented in relation to
the decoder order of (traversal of) vertices.

Figure 9: Translating stitches to the bit-stream syntax.

The stitch to relationship defines a partition of the vertices as-
sociated with stitching commands. In Fig. 9-B we isolate a compo-
nent of this partition. For each such component, the method visits
the vertices in decoder order (v0; v1; v2; v3 in Fig. 9-B.) For the first
vertex, the command is a PUSH. Subsequent vertices are associated
with a GET or POP depending on remaining stitch to relationships;
for vertices that are also anchors, a push bit is set. Incremental
lengths and reverse bits are also computed. Fig. 9-C shows the
commands associated with Fig. 9-B. For the example of Fig. 1 that
we have used throughout this paper, the final five commands differ-
ent from NONE are gathered in Table 1.

After the commands are in this form, the encoder operates in a
manner completely symmetric to the decoder which is described in
detail in the next section, except that the encoder does not actually
perform the stitches while the decoder does.

7Since POP and GET have an associated push bit there are fewer PUSH
than POP commands (although this seems counter-intuitive). We have tried
exchanging the variable length codes for PUSH and POP, but did not observe
smaller bit-streams in practice; we attributed this to the arithmetic coder.



stitch stack differential push reverse
Vertex Command length index length bit bit
0 PUSH 0
1 PUSH 1
5 POP 1 0 0 0
6 POP 0 0 1 0
0 POP 0 2 0 1

Table 1: Five commands (different from NONE) encoding the com-
plete clustering of Fig. 1. The stack-based encoding shown in Fig. 3
requires nine.

7 Stitches Decoding

The decoder reconstructs the v cluster that should be applied to
vertices to reconstruct the polygonal mesh. The following pseudo-
code shown in Fig. 10 summarizes the operation of the stitches de-
coder: if the boolean has stitches in the current connected compo-
nent is true, then for each vertex of the current component in de-
coder order, a stitching command is decoded. If the boolean value
stitching command is true, then the boolean value pop or get is
decoded; if the boolean value pop or get is false, an unsigned in-
teger is decoded, and associated to the current vertex i as an anchor
(to stitch to). The current vertex i is then pushed to the back of the
anchor stack. if pop or get is true, then the boolean value pop is
decoded, followed with the unsigned integer value stack index.

Figure 10: Pseudo-code for the Stitches decoder.

Using stack index, an anchor is retrieved from the an-
chor stack. This is the anchor that the current vertex i will be
stitched to. If the pop boolean variable is true, then the an-
chor is removed from the anchor stack. Then, an integer differ-
ential length is decoded as an unsigned integer. If it is differ-
ent from zero, its sign (boolean differential length sign) is de-
coded, and is used to update the sign of differential length. A
push bit boolean value is decoded. If push bit is true, the cur-
rent vertex i is pushed to the back of the anchor stack. An in-

teger stitch length associated with the anchor is retrieved. A
total length is computed by adding stitch length and differen-
tial length; if total length is greater than zero, a reverse bit
boolean value is decoded. Then the v cluster array is updated by
stitching the current vertex i to the stitching anchor with a length
equal to total length and potentially using a reverse stitch. The de-
coder uses the v father array to perform this operation. To stitch
the current vertex i to the stitching anchor with a length equal
to total length, starting from both i and the anchor at the same
time, we follow vertex paths starting with both i and the anchor by
looking up the v father entries total length times, and for each
corresponding entries (i,anchor), (v father[i],v father[anchor]),
(v father[v father[i]], v father[v father[anchor]]),: : : we record in
the v cluster array that the entry with the largest decoder order
should be the same as the entry with the lowest decoder order.
For instance if (j > k), then v cluster[j] = k else v cluster[k] =
j. v cluster defines a graph that is a forest. Each time an entry in
v cluster is changed, we perform path compression on the forest
by updating v cluster such that each element refers directly to the
root of the forest tree it belongs to.

If the stitch is a reverse stitch, then we first follow the v father
entries starting from the anchor for a length equal to to to-
tal length (from Vertices 6 through 3 in Fig. 5), recording the inter-
mediate vertices in a temporary array. We then follow the v father
entries starting from the vertex i and for each corresponding entry
stored in the temporary array (from the last entry to the first entry),
we update v cluster as explained above.

8 Experimental Results

Test Meshes: 14 meshes illustrated in Fig. 11 (of the color page)
were considered, ranging from having a few vertices (5) to about
65,000. The meshes range from having very few non-manifold
vertices (2 out of 5056 or 0.04%) to a significant proportion of
non-manifold vertices (up to 88 % for the Sierpinski.wrl model).
One mesh was manifold and all the rest of the meshes were non-
manifold. (The manifold mesh will be easily identified by the
reader in Table 2.) One model (Gen nm.wrl) had colors and nor-
mals per vertex. It was made non-manifold by adding triangles.
The Engine model was originally manifold, and made non-manifold
by applying a clustering operation. We synthesized the models
Planet0.wrl, Saturn.wrl, Sierpinski.wrl, Tetra2nm.wrl. All other
models were obtained from various sources and originally non-
manifolds.
Test Conditions: The following quantization parameters were
used: geometry (vertex coordinates) was quantized to 10 bits per
coordinate, colors to 6 bits per color, and normals to 10 bits per
normal. The coordinate prediction was done using the “parallelo-
gram prediction” [4], the color prediction was be done along the
triangle tree (see Section 4), and there was no normal prediction.
Using 10 bits per coordinate, there was hardly a noticeable differ-
ence between the original and decoded models. For completeness,
we illustrate the Symmetric-brain test model before compression
and after decompression in Fig. 12 (of the color page).
Test Results: This paper focuses about encoding and decoding
stitches, which is a small portion of the geometry compression pro-
cess. Our goal in this section is to determine how stitches affect
the entire compression process. We will thus provide estimates of
compression ratios and decoding timings that apply to the entire
process, keeping in mind that the bulk of the compression process
is described in other publications [12, 15]. The following estimates
(obtained using the 14 meshes) may have to be revised as more sta-
tistical data becomes available, or as more efficient encoders and
decoders are implemented.

Table 2 provides compressed bit-stream sizes for the 14 meshes
and compares the bit-stream sizes when meshes are encoded as non-



Model Uncompressed Number of Number of Compressed as Compressed as Non-manifold vs
Size Vertices Triangles Non-Manifold Manifold Manifold
bytes bytes bpv bpt bytes ratio savings

Bart.wrl 392,030 5,056 9,000 7,243 11.46 6.43 8,105 0.89 11%
Briggso.wrl 130,297 1,584 3,160 4,080 20.61 10.32 4,129 0.98 2%
Engine.wrl 4,851,671 63,528 132,807 139,632 17.58 8.41 167,379 0.83 17%
Enterprise.wrl 859,388 12,580 12,609 28,224 17.95 17.91 29,553 0.95 5%
Gen nm.wrl 49,360 410 820 2,566 50.06 25.03 2625 0.97 3%
Lamp.wrl 254,043 2,810 5,054 3,726 10.61 5.90 3954 0.94 6%
Maze.wrl 87,391 1,412 1,504 4,235 24.0 22.53 4855 0.87 13%
Opt-cow.wrl 204,420 3,078 5,804 7,006 18.02 9.66 7,006 1 0%
Planet0.wrl 1,656 8 12 82 82 54.6 96 0.85 15%
Saturn.wrl 61,155 770 1,536 1,998 20.75 10.40 2,197 0.91 9%
Sierpinski.wrl 4,702 34 64 193 45.64 24.12 252 0.76 4%
Superfemur.wrl 1,241,052 14,065 28,124 30,964 17.61 8.81 31,378 0.98 2%
Symmetric brain.wrl 3,092,371 34,416 66,688 73,789 17.15 8.85 73,640 1.002 -0.2%
Tetra2nm.wrl 489 5 7 66 105.6 75.42 83 0.79 21%

Table 2: Compression results. “bpv” stands for “bits per vertex” and bpt for “bits per triangle”

Stack-Based Variable-Length
Non-manifold Encoder size
Model bit-stream size in bytes ratio
Bart.wrl 7,245 7,243 1.0003
Briggso.wrl 4,100 4,080 1.005
engine.wrl 148,601 139,632 1.064
Gen nm.wrl 2,566 2,566 1
Lamp.wrl 3,904 3,726 1.05
Maze.wrl 4,278 4,235 1.01
Planet0.wrl 82 82 1
Saturn.wrl 2,087 1,998 1.045
Sierpinski.wrl 193 193 1
Superfemur.wrl 30,971 30,964 1.0002
Symmetricbrain.wrl 73,839 73,789 1.0007
Tetra2nm.wrl 67 66 1.015

Table 3: Comparing the efficiency of the variable-length encoder
vs. the stack-based encoder. The total bit-stream sizes are in bytes.
5% percent of the total bit-stream size represents a significant pro-
portion of the connectivity (perhaps all of it) and is thus very sig-
nificant for stitches.

manifolds or as manifolds (i.e., without the stitching information).
There is an initial cost for each mesh on the order of 40 bytes or so,
independently of the number of triangles and vertices. Although
we do not provide specific results on the connectivity encoding in
this paper, from data that we collected independently of the present
study involving non-manifolds, we expect the connectivity to gen-
erally consume significantly fewer bits than coordinates and proper-
ties once compressed and arithmetic-coded (a few bits per triangle
at most: from 0.1 bits to 3 bits per triangle).

In case of smooth meshes, the connectivity coding, prediction
and arithmetic coding seem to divide by three or so the size of
quantized vertices: for instance, starting with 10 bits per vertex of
quantization, a typical bit-stream size would be on the order of 10
bits per vertex and 5 bits per triangle (assuming a manifold mesh
without too many boundaries). In case of highly non-manifold or
non-smooth meshes, starting with 10 bits per vertex of quantization,
a typical bit-stream size would be on the order of 20 bits per vertex
and 10 bits per triangle (smooth meshes compress roughly twice as
much).

The previous estimates apply to both manifold and non-manifold
compression. Table 2 indicates that when compressing a non-
manifold as a non-manifold (i.e., recovering the connectivity us-
ing stitches) the total bit-stream size can be reduced by up to 20%

Non-manifold Encoding Decoding Vertices Triangles
Model CPU Time in seconds Decoded/second
Bart.wrl 0.64 0.38 13,300 23,700
Briggso.wrl 0.24 0.14 11,300 22,600
Engine.wrl 12.35 7.88 8,100 16,900
Enterprise.wrl 1.29 1.12 11,200 11,300
Gen nm.wrl 0.10 0.04 10,300 20,500
Lamp.wrl 0.39 0.25 11,200 20,200
Maze.wrl 0.18 0.12 11,800 12,500
Cow.wrl 0.43 0.23 13,400 25,200
Planet0.wrl 0.02 0.02 400 600
Saturn.wrl 0.14 0.08 9,600 19,200
Sierpinski.wrl 0.03 0.02 1,700 3,200
Superfemur.wrl 2.12 1.36 10,300 20,700
Symmetric-brain.wrl 7.34 3.20 10,800 20,800
Tetra2nm.wrl 0.02 0.02 250 350

Table 4: Encoding and decoding times in seconds measured on an
IBM Thinkpad 600 233MHz computer. The stack-based method
was used. The times include non-manifold to manifold conversion.

(21% for the tetra2nm.wrl model). This is because when encod-
ing stitches, vertices that will be stitched together are encoded only
once (such vertices were duplicated during the non-manifold to
manifold conversion process). The same applies to per-vertex prop-
erties.

Table 3 compares the efficiencies of the stack-based encoder
and variable-length encoder by measuring total bit-stream sizes.
The observed bitstream sizes decrease using the variable-length
encoder, in three cases by about 5%. 5% of the total bit-stream
size represents a significant proportion of the connectivity (per-
haps all of it), while the stitches would represent a small portion of
the connectivity (which includes vertex graph, triangle trees, etc.).
Thus the savings of the variable-length encoder are very significant.
These bits would be better used for a more accurate encoding of the
geometry.

Table 4 gathers overall encoding and decoding timings using the
stack-based method8. We observe a decoding speed of 10,000 to
13,000 vertices per second on a commonly available 233MHz Pen-
tium II laptop computer. For many meshes it has been reported that
the number of triangles is about twice the number of vertices: this
is exact for a torus, and is approximate for many large meshes with

8Which are perhaps more relevant for [12, 15], the present methods rep-
resenting only one module.



a relatively simple topology. In this case we observe a decoding
speed of 20,000 to 25,000 triangles per second. When considering
non-manifold meshes the assumption that the number of triangles
is about twice the number of vertices does not necessarily hold, de-
pending on the number of singular and boundary vertices and edges
of the model (for instance consider the Enterprise.wrl model). This
is why for non-manifold meshes, or meshes with a significant num-
ber of boundary vertices, when measuring computational complex-
ity the number of vertices is probably a better measure of shape
complexity than the number of triangles. The above estimates ap-
ply to most meshes, including meshes with one or several proper-
ties (such as gen nm.wrl), with the exception of meshes with fewer
than 50 vertices or so, which would not be significant for measuring
per-triangle or per-vertex decompression speeds (because of vari-
ous overheads). While these results appear to be at first an order of
magnitude slower than those reported in [5], we note that Gumhold
and Strasser decode the connectivity only (which is only one func-
tionality, and a small portion of compressed data) and observe their
timings on a different computer (175MHz SGI/02). Also, our de-
coder was not optimized so far (more on this in Section 9). Timings
reported are independent of whether the mesh is a manifold mesh
or not. There is thus no measured penalty in decoding time incurred
by stitches.

9 Summary and Future Work

We have described a method for compressing non-manifold polyg-
onal meshes that combines an existing method for compressing
a manifold mesh and new methods for encoding and decoding
stitches. These latter methods comply with a new bitstream syn-
tax for stitches that we have defined.

While our work uses an extension of the Topological Surgery
method for manifold compression [15], there are no major obstacles
preventing the use of other methods such as [4, 5, 6, 7, 3].

We reported results showing that non-manifold compression has
no noticeable effect on decoding complexity. Furthermore, com-
pared with encoding a non-manifold as a manifold, our method
permits savings in the compressed bitstream size (of up to 20%,
and in average of 8.4%), because it avoids duplication of vertex
coordinates and properties. This is in addition to achieving the
functionality of compressing a non-manifold without perturbing the
connectivity.

In terms of encoding, we presented two different encoders: a
simple entry-level encoder, and a more complex encoder that uses
the full potential of the syntax. The results we reported indicate
that the additional complexity of the second encoder is justified in
several cases. Other encoders may be designed in compliance with
the syntax. One particularly interesting open question is: Is there
a provably good optimization strategy to minimize the number of
bits for encoding stitches?

Stitches allow more than connectivity-preserving non-manifold
compression: merging components and performing all other topo-
logical transformations corresponding to a vertex clustering are
possible. How to exploit such topological transformations using
our stitching syntax (or other syntaxes) is another interesting av-
enue for future developments.

The technology described in this paper is part of the MPEG-4
standard on 3-D Mesh Coding. It hides completely the issues of
mesh singularities to the user. These are arguably complex issues
that creators and users of 3-D content may not necessarily want to
learn about. Using the methods described in this paper, there will
be no alteration of the original connectivity, whether non-manifold
or manifold.

Decoder Optimization The software that was used to report
results in this paper was by no means optimized. This is because
non-manifold compression is only one of the functionalities of ge-
ometry compression, incremental (i.e., streamed) and hierarchical
transmission being examples of other functionalities. Optimization
must thus be done in harmony with all the functionalities and will
be the subject of future work. The decoder may be optimized in
the following ways (other optimizations are possible as well): (1)
limiting modularity and function calls between modules, once the
functionalities and syntax are frozen; (2) optimizing the arithmetic
coding, which is a bottleneck of the decoding process (every sin-
gle cycle in the arithmetic coder matters); (3) performing a detailed
analysis of memory requirements, imposing restrictions on the size
of mesh connected components, and limiting the number of cache
misses in this way.

Acknowledgments We thank G. Zhuang, V. Pascucci and C.
Bajaj for providing the Brain model, and A. Kalvin for providing
the Femur model.

References
[1] A. Gueziec, G. Taubin, F. Lazarus, and W.P. Horn. Converting sets of

polygons to manifold surfaces by cutting and stitching. In Visualiza-
tion’98, pages 383–390, Raleigh, NC., October 1998. IEEE.

[2] J. Popovic and H. Hoppe. Progressive simplicial complexes. In Sig-
graph’97 Conference Proceedings, pages 217–224, Los Angeles, Au-
gust 1997. ACM.

[3] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution compres-
sion of arbitrary triangular meshes with properties. In Proceedings of
Data Compression Conference, pages 247–256, 1999. TICAM Report
Number 99-05.

[4] C. Touma and C. Gotsman. Triangle mesh compression. In Proc. 24th
Graphics Interface Conference, pages 26–34, San Francisco, 1998.

[5] S. Gumhold and W. Strasser. Real time compression of triangle mesh
connectivity. In Siggraph’98 Conference Proceedings, pages 133–
140, Orlando, July 1998.

[6] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Transactions on Visualization and Computer Graph-
ics, 5(1):47–61, 1999.

[7] J. Li and C.C. Kuo. Progressive coding of 3D graphics models. Pro-
ceedings of the IEEE, 96(6):1052–1063, June 1998.

[8] H. Hoppe. Efficient implementation of progressive meshes. Computer
and Graphics, 22(1):27–36, 1998.

[9] M. Deering. Geometry compression. In Siggraph’95 Conference Pro-
ceedings, pages 13–20, Los Angeles, August 1995.

[10] M. Chow. Optimized geometry compression for real-time rendering.
In Visualization 97, pages 415–421, Phoenix, AZ., oct 1997. IEEE.

[11] G. Taubin and J. Rossignac. Geometry compression through topo-
logical surgery. ACM Transactions on Graphics, 17(2):84–115, April
1998.

[12] G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometry coding
and VRML. Proceedings of the IEEE, 86(6):1228–1243, Jun 1998.

[13] The Virtual Reality Modeling Language Specification, VRML’97 Spec-
ification, June 1997. http://www.web3d.org/Specifications/VRML97.

[14] M. Denny and C. Sohler. Encoding and triangulation as a permuta-
tion of its point set. In Proc. of the Ninth Canadian Conference on
Computational Geometry, pages 39–43, August 1997.

[15] ISO/IEC 14496-2 MPEG-4 Visual Committee Working Draft Version,
SC29/WG11 document number W2688, Seoul, April 2nd, 1999.

[16] M.J. Slattery and J.L. Mitchell. The Qx-coder. IBM J. Res. and Dev.,
42(6):767–784, 1998.



Figure 11: Test meshes.

Figure 12: A: Symmetric-brain model before compression. B. after decompression: starting with 10 bits of quantization per vertex
coordinate the complete compressed bitstream uses 17.2 bits per vertex.


