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Abstract

In this paper, we present a novelout-of-coretechnique for the inter-
active computation of isosurfaces from volume data. Our algorithm
minimizes the main memory and disk space requirements on the
visualization workstation, while speeding up isosurface extraction
queries. Our overall approach is atwo-level indexingscheme. First,
by our meta-celltechnique, we partition the original dataset into
clusters of cells, calledmeta-cells. Secondly, we producemeta-
intervalsassociated with the meta-cells, and build an indexing data
structure on the meta-intervals. Weseparatethe cell information,
kept only in meta-cells in disk, from the indexing structure, which is
also in disk and only contains pointers to meta-cells. Our meta-cell
technique is an I/O-efficient approach for computing ak-d-tree-like
partition of the dataset. Our indexing data structure, thebinary-
blocked I/O interval tree, is a new I/O-optimal data structure to per-
form stabbing queriesthat report from a set of meta-intervals (or
intervals) those containing a query valueq. Our tree is simpler to
implement, and is also more space-efficient in practice than the ex-
isting structures. To perform an isosurface query, we first query the
indexing structure, and then use the reported meta-cell pointers to
read from disk theactivemeta-cells intersected by the isosurface.
The isosurface itself can then be generated from active meta-cells.
Rather than being a single-cost indexing approach, our technique
exhibits asmooth trade-offbetween query time and disk space.

Keywords: Isosurface Extraction, Marching Cubes, Out-Of-Core
Computation, Interval Tree, Scientific Visualization.

1 Introduction

Isosurface extraction represents one of the most effective and
widely used techniques for the visualization of volume datasets.
Formally, a scalar volume datasetconsists of tuples(x;F(x)),
wherex is a 3D point andF is a scalar function defined over 3D
points. Given an isovalueq, extracting the isosurface ofq is to
compute the isosurfaceC(q) = fxjF(x) = qg. The computation
process can be divided into two phases: First, one finds theactive
cells that are intersected by the isosurface (thesearch phase), and
then, one can compute the isosurface from the active cells (thegen-
eration phase). Most of the isosurface algorithms require the entire
dataset to be kept in main memory, which is a severe limitation on
their applicability, especially for large scientific applications.

In this paper, we present an isosurface technique whose main
memory and disk space requirements on the visualization work-
station are minimized, while speeding up the isosurface extraction
procedure. In the same flavor as the methods of [10, 11], we in-
dex the dataset cells to achieve output-sensitive searches. Also, as
in [10, 11], we keep both the indices (i.e., intervals obtained from
the cells) and the original dataset indisk, rather than in main mem-
ory. Moreover, during isosurface queries only a small portion of
the dataset is touched and brought to main memory, by performing
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(using an indexing data structure)stabbing queriesthat report from
a set of intervals those containing the query valueq.

In [10, 11], to avoid inefficientpointer referencesin disk, thedi-
rect cell informationis stored with its interval, in the indexing data
structure. This is very inefficient in disk space, since the vertex
information is duplicated many times, once for each cell sharing
the vertex. Moreover, in the indexing structures [3, 18] used, each
interval is stored three times in practice, increasing the duplica-
tions of vertex information by another factor of three. To eliminate
this inefficiency, our indexing scheme uses atwo-levelstructure.
First, we partition the original dataset into clusters of cells, called
meta-cells. Secondly, we producemeta-intervalsassociated with
the meta-cells, and build our indexing data structure on the meta-
intervals. Weseparatethe cell information, kept only in meta-cells
in disk, from the indexing structure, which is also in disk and only
contains pointers to meta-cells. Isosurface queries are performed
by first querying the structure, then using the reported meta-cell
pointers to read from disk theactivemeta-cells intersected by the
isosurface, which can then be generated from the active meta-cells.

While we need to performpointer referencesin disk from the in-
dexing structure to meta-cells, thespatial coherencesof isosurfaces
and of our meta-cells ensure that each meta-cell being read contains
manyactive cells, so such pointer references are efficient. Also,
a meta-cell is always read as a whole, hence we can use pointers
within a meta-cell to store each meta-cell compactly. In this way,
we obtain efficiencies inbothquery time and disk space. Two new
techniques lie at the heart of this paper. One is themeta-celltech-
nique that computes the spatially coherent meta-cells. The other is
the binary-blocked I/O interval tree, a new I/O-optimal stabbing-
query data structure that is simpler to implement and more space-
efficient in practice than those in [3, 18]. We believe both tech-
niques will find applications other than efficient out-of-core isosur-
face extraction.

We summarize the contributions of this work as follows.

� We present a novel out-of-core isosurface technique that im-
proves [10, 11]. While keeping the querying time and main
memory requirement small, the disk space overhead is re-
duced by more than one order of magnitude.

� We give a newmeta-celltechnique that partitions a volume
dataset into spatially coherent meta-cells. This can be viewed
as an out-of-corek-d-tree-like partition, and is efficiently car-
ried out by performing external sorting a few times.

� We propose thebinary-blocked I/O interval tree, a new I/O-
optimal stabbing-query data structure. Previous such struc-
tures [3, 18] both have three types of secondary lists, but our
tree has only two types of lists (as in the original main mem-
ory interval tree of [14]), so it has the tree size reduced by a
factor of 2/3 in practice, and is also simpler to implement.

Previous Related Work

We first briefly review the work on out-of-core, orI/O techniques.
In addition to early work on sorting and scientific computing, re-
cently there have been I/O algorithms for graphs and for compu-
tational geometry; see [10, 11] for the references. Although most



of the results are theoretical, the experiments of Chiang [8], Ven-
groff and Vitter [27], and Argeet al. [2] on some of these tech-
niques show that they result in significant improvements over tra-
ditional algorithms in practice. Telleret al. [24] describe a sys-
tem to compute radiosity solutions for polygonal environments
larger than main memory, and Funkhouseret al. [15] present
prefetching techniques for interactive walk-throughs in large archi-
tectural virtual environments. Very recently, Pharret al. [21] give
memory-coherent ray-tracing algorithms, Cox and Ellsworth [13]
present application-controlled demand paging methods, and Ueng
el al. [25] propose out-of-core streamline techniques.

As for isosurface extraction, there is a very rich literature. Here
we only briefly review the results that focus on speeding up the
search phase. We letN denote the number of cells in the dataset,
andK the number of active cells. In Marching Cubes [20], all
cells are searched for isosurface intersection, and thusO(N) time
is needed. Techniques avoiding exhaustive scanning include using
an octree [28], identifying a collection ofseed cellsand performing
contour propagation from the seed cells [4, 17, 26], NOISE [19],
and other nearly optimal isosurface extraction methods [23]. The
first optimal isosurface extraction algorithm was given by Cignoni
et al. [12], based on the following two ideas. First, for each cell,
they produce an intervalI = [min;max] wheremin andmax are
the minimum and maximum of the scalar values in the cell ver-
tices. Then the active cells are exactly those cells whose intervals
containq. Searching active cells then amounts to performing stab-
bing queries. Secondly, the stabbing queries are solved by using
an internal-memory interval tree [14]. After anO(N logN)-time
preprocessing, active cells can be found in optimalO(logN +K)
time.

The firstout-of-coreisosurface technique was given by Chiang
and Silva [10]. They follow the ideas of Cignoniet al. [12], but use
the I/O-optimal interval tree of [3] to solve the stabbing queries.
In their follow-up paper [11], they replaced the I/O interval tree
of [3] with the metablock tree [18]. With their techniques, datasets
much larger than main memory can be visualized very efficiently.
The major drawback is the large overhead in disk space to hold
the search structure, and the disk scratch space needed to build the
structure. Another out-of-core isosurface technique, based on con-
tour propagation from seed cells, is recently proposed in [5] (where
no out-of-core implementation is reported).

2 Main Techniques

In this section we present our isosurface algorithm. There are two
major techniques: themeta-celltechnique, which is used to con-
structmeta-cellsfrom dataset cells, and thebinary-blocked I/O in-
terval tree, which is a new I/O-optimal stabbing-query data struc-
ture, used to serve as anindexingstructure for the meta-cells. We
show the preprocessing pipeline of our overall algorithm in Fig. 1.
The main tasks are as follows:

(1) Group spatially neighboring cells intometa-cells. The total
number of vertices in each meta-cell is roughly the same, so
that during queries each meta-cell can be retrieved from disk
with approximately the same I/O cost. Each cell is assigned
to exactly one meta-cell.

(2) Compute and store in disk the meta-cell information for each
meta-cell.

(3) Computemeta-intervalsassociated with each meta-cell. Each
meta-interval is an interval[min;max], to be defined later.

(4) Build in disk a binary-blocked I/O interval tree on meta-
intervals. For each meta-interval, only itsmin andmax val-
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Figure 1: The preprocessing pipeline of our isosurface technique.

ues and the meta-cell ID are stored in the tree, where meta-cell
ID is a pointer to the corresponding meta-cell record in disk.

We describe the representation of meta-cells. Each meta-cell has
a list of vertices, where each vertex entry contains itsx-, y-, z-
and scalar values, and a list of cells, where each cell entry con-
tains pointers to its vertices in the vertex list. In this way, a vertex
shared by many cells in the same meta-cell is stored justonce in
that meta-cell. The only duplications of vertex information occur
when a vertex belongs to two cells indifferentmeta-cells; in this
case we let both meta-cells include that vertex in their vertex lists,
so that each meta-cell hasself-containedvertex and cell lists. We
store the meta-cells, one after another, in disk.

The purpose of meta-intervals for a meta-cell is analogous to that
of interval for a cell: a meta-cell isactive, i.e., intersected by the iso-
surface ofq, if and only if one of its meta-intervals containsq. Intu-
itively, we could just take the minimum and maximum scalar values
among the vertices to define the meta-interval (as cell intervals),
but such big range would containgaps� in which no cell interval
lies. Therefore, we break such big range into pieces, each a meta-
interval, by the gaps. Formally, we define themeta-intervalsof a
meta-cell as theconnected componentsamong the intervals of the
cells in that meta-cell. With this definition, searching active meta-
cells amounts to performing stabbing queries on the meta-intervals.
The query pipeline of our overall algorithm is shown in Fig. 2. We
have the following steps:

(1) Find all meta-intervals (and the corresponding meta-cell ID’s)
containingq, by querying the binary-blocked I/O interval tree
in disk.

(2) (Internally) sort the reported meta-cell ID’s. This makes the
subsequent disk reads for active meta-cellssequential(except
for skipping inactive meta-cells), and minimizes the disk-head
movements.

(3) For each active meta-cell, read it from disk to main memory,
identify active cells and compute isosurface triangles, throw
away the current meta-cell from main memory and repeat the
process for the next active meta-cell. At the end, patch the
generated triangles and perform the remaining operations in
the generation phase to generate and display the isosurface.

Now we argue that in step (3) the pointer references in disk to
read meta-cells are efficient,i.e., there are many active cells in an
active meta-cell. Intuitively, by the way we construct the meta-
cells, we can think of each meta-cell as a cube, with roughly the
same number of cells in each dimension. Also, by thespatial co-
herenceof an isosurface, usually there are not many meta-cells that

�Gaps only occur when disconnected components of cells belong to the
same meta-cell.
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Figure 2: The query pipeline of our isosurface technique.

are cutonly through cornersby the isosurface. Thus by a dimension
argument, if an active meta-cell hasC cells, for most times the iso-
surface cuts throughC2=3 cells. This is similar to the argument that
usually there are�(N2=3) active cells in anN -cell volume dataset.
Then this means that we readC cells (a whole meta-cell) for ev-
eryC2=3 active cells,i.e., we traverse athicknessof C1=3 layers of
cells, for one layer of isosurface. Therefore we readC1=3 � (K=B)

disk blocks forK active cells, which is a factor ofC1=3 from op-
timal (B is the number of cells fitting in one disk block). Notice
that when the size of meta-cells is increased, the number of dupli-
cated vertices is decreased (less vertices in meta-cell boundaries),
and the number of meta-intervals is also decreased (less meta-cells),
while the numberC is increased. Hence we have atrade-offbe-
tween space and query time, by varying the meta-cell size. Since
the major cost in disk reads is indisk-head movements(e.g., reading
two disk blocks takes approximately the same time as reading one
block, after moving the disk head), we can increase meta-cell sizes
while keeping the effect of the factorC1=3 negligible. (We shall
see the actual trade-off between disk space and query time when
we present the experimental results in Section 3.)

2.1 Meta-Cell Computation

The efficient subdivision of the dataset into meta-cells lies at the
heart of our overall isosurface algorithm. The computation is simi-
lar to the partition induced by ak-d-tree [6], but we do not need to
compute the multiple levels. Since direct random access to vertices
is very inefficient in disk, we develop a new technique that is I/O-
efficient, by essentially performing external sorting a few times. We
assume that the input dataset is in a general “index cell set” (ICS)
format, i.e., there is a list of vertices, each containing itsx-, y-, z-
and scalar values, and a list of cells, each containing pointers to its
vertices in the vertex list. We want to partition the dataset intoH3

meta-cells, whereH is a parameter we can adjust to vary the meta-
cell sizes, usually several disk blocks. The final output of meta-cell
computation is a single file that contains all meta-cells, one after
another, each anindependentICS file (i.e., the pointer references
from cells of a meta-cell arewithin the meta-cell). We also produce
meta-intervals for each meta-cell.

For simplicity, we assume that the input cell list contains cells
of the same type (e.g., tetrahedral cells). If this is not the case, we
can first scan the cell list and put different types of cells into differ-
ent cell lists. In the following, we refer to meta-cell ID’s as num-
bers0; 1; � � � to number the meta-cells; we refer to them aspointers
to the meta-cell positions in disk, as we previously do, only after
the meta-cell computation is complete. Our meta-cell computation
consists of the following steps.

1. Partition vertices into clusters of equal size.This is thekeystep
in constructing meta-cells. We use each resulting cluster to define a
meta-cell, whose vertices are those in the cluster, plus somedupli-
catedvertices to be constructed later. Observe that meta-cells may
differ dramatically in their volumes, but their numbers of vertices
are roughly the same. The partitioning method is very simple. We

first externally sort all vertices by thex-values, and partition them
into H consecutive chunks. Then, for each such chunk, we exter-
nally sort its vertices by they-values, and partition them intoH
chunks. Finally, we repeat the process for each refined chunk, ex-
cept that we externally sort the vertices by thez-values. We take the
final chunks as clusters. Clearly, each cluster has spatially neigh-
boring vertices. The computing cost is bounded by three passes of
external sorting. This step actuallyassignsvertices to meta-cells.
We produce avertex-assignmentlist with entries(vid;mid), indi-
cating that vertexvid is assigned to meta-cellmid.

2. Assign cells to meta-cells and duplicate vertices.Our assign-
ment of cells to meta-cells attempts to minimize the wasted space.
The basic coverage criterion is to see how a cell’s vertices have
been mapped to meta-cells. A cell whose vertices all belong to the
same meta-cell is assigned to that meta-cell. Otherwise, the cell
is in the boundary, and a simple voting scheme is used: the meta-
cell that contains themostvertices owns that cell, and themissing
vertices of the cell have to be duplicated and inserted to this meta-
cell. We break ties arbitrarily. In order to determine this assign-
ment, we need to obtain for each cell, the destination meta-cells of
its vertices. For in-core computation, this is easily computed by a
pointer de-reference. But the out-of-core counterpart of this com-
putation is not so simple. Our basic operation is thejoin operation
(commonly used in database), using the vertex ID as thekey, in
both the cell list and the vertex-assignment list. The join operation
can be performed I/O-efficiently, by externally sorting both lists by
the key, and scanning through both lists to fill in the information
needed [7, 9]. For example, to fill in the destination meta-cell ID
of the first vertex in each cell, we sort the cell records in the cell
list by the vertex ID’s of theirfirst vertices, so that the first group
contains the cells whose first vertices are vertex 1, the second group
contains the cells whose first vertices are vertex 2, and so on. We
also sort the vertex-assignment list by vertex ID, so that we know
the destination meta-cell ID’s of vertex 1, of vertex 2, etc., in that
sequential order. We then scan through both lists and fill in the des-
tination meta-cell ID of the first vertex, for each cell in the cell list.
We need to perform as many join operations as the degree of the
cell (i.e., for tetrahedra we need to perform four joins). Once all the
vertex-to-meta-cell assignments have been propagated to the cell
list, a single scan is enough not only to assign cells to meta-cells,
but also to decide which vertices to duplicate and insert to which
meta-cells. For the latter, we produce avertex-duplicationlist with
entries(vid; mid), indicating that vertexvid has to be duplicated
and inserted to meta-cellmid.

3. Compute the vertex and cell lists for each meta-cell.To ac-
tually duplicate vertices and insert them to appropriate meta-cells,
we first need to de-reference the vertex ID’s (to obtain thecom-
pletevertex information) from the vertex-duplication list. We can
do this by using one join operation, using vertex ID as the key, on
the original input vertex list and the vertex-duplication list. Now
the vertex-duplication list contains for each entry the complete ver-
tex information, together with the ID of the meta-cell to which the
vertex must be inserted. We also have a list for assigning cells to
meta-cells. To finish the generation of meta-cells, we use a main
join operation on these lists, using meta-cell ID as the main key.
To avoid possible replications of the same vertex inside a meta-cell,
we use vertex ID’s as the secondary key during the sorting for the
join operation. Finally, we update the vertex pointers for the cells
within each meta-cell. This can be easily done since each meta-cell
can be kept in the main memory.

4. Compute meta-intervals for each meta-cell.Since each meta-
cell can fit in main memory, this step only involves in-core compu-
tation. First, we compute the interval for each cell in the meta-
cell. Then we sort all interval endpoints. We scan through the
endpoints, with a counter initialized to 0. A left endpoint encoun-
tered increases the counter by 1, and a right endpoint decreases the



counter by 1. A “0 ! 1” transition gives the beginning of a new
meta-interval, and a “1 ! 0” transition gives the end of the current
meta-interval. We can easily see that the computation is correct,
and the computing time is bounded by that of internal sorting.

2.2 Binary-Blocked I/O Interval Tree

Now we present ourbinary-blocked I/O interval tree. Since it is a
general stabbing-query data structure, we use the general termin-
terval to refer to the underlying intervals or meta-intervals being
manipulated. We useunique cell ID’sto break a tie between end-
point values. In the case of meta-intervals and meta-cells, it is easy
to see that each entry of (endpoint value, meta-cell ID) is distinct.
We useN to denote the total number of intervals considered, and
M andB the numbers of intervals fitting in main memory and in
one disk block, respectively. One I/O operation reads or writes one
disk block.

Our interval tree is I/O-optimal in space, query, and preprocess-
ing, and is an extension of the original (main memory, binary) inter-
val tree of [14]. Ourbranching factor Bf(i.e., the maximum number
of children of an internal node) is increased from 2 to�(B), to re-
duce the tree height fromO(log

2
N) toO(logB N), like B-trees.

We remark that the previous I/O-optimal interval tree of [3] also
increasesBf (to �(

p
B)) to make tree heightO(logB N), but an

additional type of secondary lists is introduced, which potentially
increases the space by a factor of 3/2 (originally the binary interval
tree has two types of secondary lists). Our tree does not introduce
any new type of lists, so is simpler to implement and also is more
space-efficient in practice.

2.2.1 Data Structure

Before describing our binary-blocked I/O interval tree, we first re-
view the original (main memory) interval tree of [14]. Given a set
of N intervals, such interval treeT is defined recursively as fol-
lows. If there is only one interval, then the current noder is a leaf
containing that interval. Otherwise, noder stores as a key the me-
dian valuem that partitions the interval endpoints into two slabs,
each having the same number of endpoints that are smaller (resp.
larger) thanm. The intervals that containm are assigned to node
r. The intervals with both endpoints smaller thanm are assigned
to the left slab; similarly, the intervals with both endpoints larger
thanm are assigned to the right slab. The left and right subtrees
of r are recursively defined as the interval trees on the intervals in
the left and right slabs, respectively. In addition, each internal node
u of T has two secondary lists: theleft list, which stores the in-
tervals assigned tou, sorted inincreasing left endpoint values, and
the right list, which stores the same set of intervals, sorted inde-
creasing right endpoint values. It is easy to see that the tree height
isO(log

2
N). Also, each interval is assigned to exactly one node,

and is stored either twice (when assigned to an internal node) or
once (when assigned to a leaf), and thus the overall space isO(N).

In our binary-blocked I/O interval tree,T , each node is one disk
block, capable of holdingB items. We want to increase the branch-
ing factorBf so that the tree height isO(logB N). The intuition of
our method is extremely simple: weblock a subtree of the binary
interval treeT into one node ofT (see Fig. 3). In the following, we
refer to the nodes ofT assmall nodes. We take the branching factor
Bf to be�(B). Then in an internal node ofT , there areBf�1 small
nodes, each having a key, a pointer to its left list and a pointer to its
right list, where all left and right lists are stored in disk.

Now we give a more formal definition of treeT . First, we sort
all left endpoints of theN intervals in increasing order from left to
right, into setE. We use (meta-)cell ID’s to break ties. SetE is
used to define the keys in small nodes. Then treeT is recursively
defined as follows. If there are no more thanB intervals, then the
current nodeu is a leaf node storing all intervals. Otherwise,u is

Figure 3: Intuition of binary-blocked I/O interval treeT : each cir-
cle is a node in the binary interval treeT , and each rectangle, which
blocks a subtree ofT , is a node ofT .

an internal node. We takeBf � 1 median values fromE, which
partitionE into Bf slabs, each with the same number of endpoints.
We store sorted, in non-decreasing order, theseBf�1 median values
in nodeu, which serve as the keys of theBf� 1 small nodes inu.
We implicitly build a subtree ofT on theseBf� 1 small nodes, by
a binary-search scheme: the root key is the median of theBf � 1
sorted keys, the key of the left child of the root is the median of the
lower half keys, and the right-child key is the median of the upper
half keys, and so on. Now consider the intervals. The intervals that
contain one or more keys ofu are assigned tou. In fact, each such
intervalI is assigned to thehighestsmall node (in the subtree inu)
whose key is contained inI; we storeI in the corresponding left
and right lists of that small node. For the remaining intervals, each
has both endpoints in the same slab and is assigned to that slab. We
recursively define theBf subtrees of nodeu as the binary-blocked
I/O interval trees on the intervals in theBf slabs.

Notice that with the above binary-search scheme for implicitly
building a (sub)tree on the keys stored in an internal nodeu, Bf
does not need to be a power of 2 — we can makeBf as large as
possible, as long as theBf� 1 keys, the2(Bf� 1) pointers to the
left and right lists, and theBf pointers to the children, etc., can all
fit into one disk block. As a comparison, in the I/O interval tree
of [3], each internal node has�(Bf) left lists,�(Bf) right lists, and
additional�(Bf2) multi lists, and thusBf is taken as�(

p
B). Also,

an interval can be stored up to three times. It is easy to see that our
treeT has heightO(logB N), and the overall space complexity is
optimalO(N=B) disk blocks.

2.2.2 Query Algorithm

Our query algorithm for the binary-blocked I/O interval treeT is
very simple and mimics the query algorithm for the binary interval
treeT . Given a query pointq, we perform the following recursive
process starting from the root ofT . For the current nodeu, we
readu from disk. Now consider the subtreeTu implicitly built on
the small nodes inu by the binary-search scheme. Using the same
binary-search scheme, we follow a root-to-leaf path inTu. Let r
be the current small node ofTu being visited, with key valuem. If
q = m, then we report all intervals in the left (or equivalently, right)
list of r and stop. Ifq < m, we scan and report the intervals in
the left list ofr, until the first interval with left endpoint larger than
q is encountered. Recall that the left lists are sorted by increasing
left endpoint values. After that, we proceed to the left child ofr
in Tu. Similarly, if q > m, we scan and report the intervals in
the right list ofr, until the first interval with right endpoint smaller
thanq is encountered. Then we proceed to the right child ofr in
Tu. At the end, ifq is not equal to any key inTu, the binary search
on theBf� 1 keys locatesq in one of theBf slabs. We then visit
the child node ofu in T which corresponds to that slab, and apply
the same process recursively. Finally, when we reach a leaf node of
T , we check theO(B) intervals stored to report those that contain
q, and stop. Although the tree height isO(logB N), in the worst-



case we might need to perform a total ofO(log
2
(N=B) +K=B)

I/O operations for a query. We can improve this bound to optimal
O(logB N +K=B) I/O’s by using thecorner structures[18]; we
omit the details here in order to stay within the page limitations.

2.2.3 Preprocessing Algorithm

We describe our preprocessing algorithm for building the treeT .
It is based on thescan and distributeparadigm originated from the
distribution sweepI/O technique [8, 16]. Our algorithm follows
the definition ofT given in Section 2.2.1. In the first phase, we
sort (using external sorting) allN input intervals in increasingleft
endpoint values from left to right, into a setS. We use (meta-)cell
ID’s to break a tie. We also copy theleft endpoints, in the same
sorted order, fromS to another setE. The setE is used to define
median values to partitionE into slabs throughout the process.

The second phase is a recursive process. If there are no more
thanB intervals, then we make the current nodeu a leaf, store all
intervals inu and stop. Otherwise, nodeu is an internal node. We
first take theBf � 1 median values fromE that partitionE into
Bf slabs, each containing the same number of endpoints. We store
sorted inu, in non-decreasing order from left to right, these median
values as the keys in the small nodes ofu. We now scan all intervals
(from S) to distribute them to nodeu or to one of theBf slabs. We
maintain a temporary list for nodeu, and also a temporary list for
each of theBf slabs. For each temporary list, we keep one block
in the main memory as abuffer, and keep the remaining blocks in
disk. Each time an interval is distribute to nodeu or to a slab, we
put that interval to the corresponding buffer; when a buffer is full, it
is written to the corresponding list in disk. The distribution of each
interval I is carried out by thebinary-search schemedescribed in
Section 2.2.1, which implicitly defines a balanced binary treeTu on
theBf� 1 keys and the corresponding small nodes inu. We per-
form this binary search on these keys to find the highest small node
r whose key is contained inI, in which case we assignI to small
noder (and also to the current nodeu), by appending the small
node ID ofr to I and putting it to the temporary list for nodeu, or
to find that no such small node exists and both endpoints ofI lie in
the same slab, in which case we distributeI to that slab by putting
I to the corresponding temporary list. When all intervals inS are
scanned and distributed, each temporary list has all its intervals, au-
tomatically sorted in increasing left-endpoint values. Now we sort
the intervals belonging to nodeu by small node ID as the first key
and the left-endpoint value as the second key, in increasing order,
so that intervals assigned to the same small node are put together,
sorted in increasing left-endpoint values. We read these intervals to
set up the left lists of all small nodes inu. Then we copy each such
left list to its corresponding right list, and sort the right list by de-
creasing right-endpoint values. The corner structure for nodeu, if
we want to construct, can be built at this point. This completes the
construction of nodeu. Finally, we perform the process recursively
on each of theBf slabs, using the intervals in the corresponding
temporary list as input, to build each subtree of nodeu.

We remark that in the abovescan and distributeprocess, instead
of keeping all intervals assigned to the current nodeu in onetem-
porary list, we could maintainBf� 1 temporary lists for theBf� 1
small nodes ofu. This would eliminate the subsequent sorting by
small node ID’s (which is used tore-distributethe intervals ofu
into individual small nodes). But for the actual implementation,
our method is used to address the system issue that a process can-
not open too many files simultaneously, while avoiding a blow-up
in disk scratch space. It can be shown that the overall preprocess-
ing takes nearly optimalO(N

B
logB N) I/O’s. We can also make the

bound optimal (O(N
B
logM

B

N
B
), as the external sorting bound [1],

whereM is the number of intervals fitting in main memory) by the
tree-height conversion method in [10].

3 Experimental Results and Analysis

In this section, we attempt to experimentally assess the advantages
and shortcomings of our new technique, in particularly as compared
to our previous work [10, 11]. We consider five datasets in our
study. Four of them were used in our previous papers [10, 11], and
a new, larger dataset, Cyl3 with about 5.8M cells has been added to
our test set. Table 1 summarize their properties.

Our experimental set-up is similar to the one we used in [10,
11]. Our benchmark machine is an off-the-shelf PC: a Pentium Pro,
200MHz with 128M of RAM, and 768M of swap space. Using
Linux, we booted the machine in two different configurations, with
64M and 128M of main memory. For preprocessing, we used the
machine with only 64M of main memory, and for computing the
isosurfaces we varied the amount of main memory. Because of the
usage of the operating system and X-windows, we estimate that
only half to two thirds of main memory was actually available for
computations.

Meta-cell Generation

Computing the meta-cells is a core operation of our technique, and
one of the main differences between our new method and [10, 11].
Meta-cell generation is basically divided into five parts: (1) normal-
izing the original file, which involves separating the vertices and
each type of cells into their own files, (2) mapping the vertices into
meta-cells, (3) mapping the cells into meta-cells, (4) completing
the meta-cell information and writing to the meta-cell file, and (5)
computing the meta-intervals used for indexing. As can be seen in
Tables 2 and 3, meta-cell generation can be expensive, in particular
for large datasets, such as Cyl3. The main reason for this is that we
do not assume any kind of pre-determined spatial coherence in our
input, forcing us to perform severalexternal sortson differentkeys,
over very large files.

There are several ways to make this faster. The most obvious
would be to use a larger machine with enough main memory for
the computation. In this case, the geometric hashing we are us-
ing becomes trivial, and clearly can be performed very efficiently.
A less obvious observation is that due to the fact that we are es-
sentially performing a global geometric hashing operation, given
information about the relative positions of the vertices (basically,
rough bounding boxes), the computation can be performed more
efficiently. For instance, if we already have some meta-cell subdivi-
sion, we do not need to recompute another one from scratch, instead
it is possible to either refine a coarser subdivision, or join multiple
fine subdivisions into coarser ones. We conjecture (though have not
tried yet) that we should be able to manage multi-gigabyte scientific
datasets computed in distributed memory parallel machines, by run-
ning our meta-cell generation on each piece individually, since, in
general, they are organized in mostly disjoint chunks of spatially
coherent data.

Tables 2 and 3 give some important performance statistics. In
Table 2, a global view of the performance of our technique can
be seen on four different datasets. It is interesting to note that by
varying the number of meta-cells, we can effectively control the
disk space overhead. In general, the smaller number of cells in a
meta-cell, the faster the querying and fetching, and also the more
accurate the isosurface search. In Table 3 we vary the number of
meta-cells used for the Delta dataset. This table shows that our
algorithm scales well with increasing meta-cell sizes. The most
important feature is the linear dependency of the querying accuracy
versus the disk space overhead. For example, using a total of 146
meta-cells (at 7% disk overhead), for a given isosurface, we need
3.34s to find the active cells. When using 30,628 meta-cells (at
63% disk overhead), we only need 1.18s to find the correct cells.
Basically, the more meta-cells, the more accurate our active-cell
searchers, and the less amount of data we need to fetch from disk.



Name # of Cells Original Size Binary Size
Blunt Fin 187K 5.8M 3.7M

Comb. Chamber 215K 6.8M 4.2M
Liquid Oxygen Post 513K 16.4M 10M

Delta Wing 1M 33.8M 19.4M
Cyl3 5.8M 337M 152M

Table 1: A list of the datasets used for testing. Original size is the
file size as an ASCII “.scalar” or “.vtk” file.

Blunt Chamber Post Cyl3

# of meta-cells 737 1009 1870 27896
Normalization 3.1s 3.5s 8.8s 158s
Vertex Map 2.8s 3.6s 8.3s 382s
Cell Map 19s 24.1s 58.1s 783s
Meta-Cell Info 20.8s 24s 67.8s 1179s
Meta-Intervals 4.2s 4.8s 11.7s 147s
Total 50s 60s 154.8s 3652s
Original Size 3.65M 4.19M 10M 152M
Meta-Cell Size 4.39M 5M 12.2M 271M
Avg Vertex 118.1 102.1 133.2 399
Avg Cell 254.2 213.1 274.5 208
Increase 20% 21% 22% 78%
BBIO Tree (size) 29K 28K 84K 1.7M
BBIO Tree (time) 0.35s 0.67s 1.23s 43s

Table 2: Statistics for preprocessing isosurfaces on different
datasets. First, we show the number of meta-cells used for parti-
tioning the dataset, followed by the times for each step of the meta-
cell computation and its total time. Secondly, the original dataset
size and the size of the meta-cell file are shown. We also show
the average numbers of vertices and of cells per meta-cell, and the
overall increase in storage. Finally, we show the size (in bytes) of
the BBIO tree and its construction time.

An interesting point is that the more data fetched, the more work
(and main memory usage) for the isosurface generation engine. By
paying the 63% disk overhead, we only need to fetch 16% of the
dataset into main memory, which is clearly a substantial saving.

Figs. 4a and 5a show the bounding boxes of two meta-cell de-
compositions on the same dataset. The dataset used was a low res-
olution version of the dataset Cyl3 used in Tables 2 and 4 to avoid
cluttering. One can see from the two figures that our algorithm sam-
ples the higher-resolution areas with more meta-cells, while using
lower numbers of meta-cells in areas with less details.

Meta-cell Indexing

The number of meta-intervals generated is directly proportional to
the number of meta-cells. The size of the interval tree (denoted by
BBIO tree) increases when the dataset gets larger (e.g., for the Cyl3
dataset shown in Table 2 is 1.7M), and may be well beyond the main
memory size for larger dataset. This is the major reason why we
need the BBIO tree, to ensure the scalability for a large number of
meta-intervals being indexed. In addition, as opposed to in-core in-
dexing structures, we need not spend the time to build/load the tree
in main memory every time the process starts to run. Tables 2 and 3
also contain information related to the construction of the trees, and
their respective sizes. Having the indexing data structure separated
from the meta-cells is important, since in several applications mul-
tiple indexing structures can point to the same set of meta-cells. For
instance, in handling time-varying datasets, one can keep a single

copy of the geometric data (in the meta-cells), and have multiple
BBIO trees for indexing different time steps.

Isosurface Extraction Queries

Table 3 already presents some limited querying information that
demonstrates the effectiveness of the meta-cell blocking as a func-
tion of the disk space overhead. Particularly interesting are the
data given in Table 3, which shows how the isosurface extraction
cost changes with meta-cell sizes. As the number of meta-cells in-
creases (and the disk space overhead also increases due to more
vertex replications), the query time decreases. This shows that our
technique provides a smooth trade-off between disk space overhead
and querying performance. A visual representation of this effect
can be seen from Figs. 4b and 5b, which show the bounding boxes
of the fetched (i.e., active) meta-cells during the query of the iso-
surface with value 0.0623775 in the Cyl dataset. Figs. 4c and 5c
show the actual isosurfaces superimposed to the active meta-cells.
Even for this down-sampled dataset and the coarse meta-cells, one
can see the effect of more meta-cells in culling away larger portions
of the dataset not containing the isosurface. Note the difference be-
tween Figs. 4b and 5b in the middle of the dataset where the cells do
not get touched. As the number of meta-cells increases, the active
meta-cells are refined and resemble the isosurface.

It is important to study the overall performance of the isosurface
extraction query pipeline. Ideally, we would like to compare four
different techniques: (1) the plain Vtk [22] pipeline; (2) an output-
sensitive in-core isosurface algorithm (such as the one presented
in [12]); (3) our previous work [10, 11]; (4) our new algorithm.
Unfortunately, we do not have (2)y. With respect to the compar-
isons with (3) [10], we will not be able to compare for the Cyl3
dataset, since we would need over 2.4GB of disk to perform the
preprocessing (and several hours).

Table 4 summarizes our benchmarks. Points worth noting:

� Our previous technique,ioQuery [10], performs better
than bothmcQuery (our new code) andvtkIso (the pure
Vtk code) in all cases. This is not really a surprise, since
ioQuery performs an exact search, only bringing active cells
into main memory. Thus, it does not waste either disk band-
width or main memory space. Unfortunately, as we pointed
out before,ioQuery is not practical, since it uses about 8
times as much disk space as the original dataset to keep the
search structure, and it needs 16 times as much disk scratch
space for preprocessing.

� Our new querying code,mcQuery , performs better than
vtkIso for most examples. In particular, for Cyl3, it is over
20 times faster than pure Vtk, and even in cases where there is
enough main memory such as for the Delta dataset, with only
63% disk overhead, it is about five times faster than Vtk. In
fact, in some cases (such as for Post and Delta), we are able
to finish querying while Vtk is still reading the dataset.

One last note about the implementation. Some might be won-
dering how come Vtk needs so much main memory to compute
isosurfaces. In fact, it might require two to three times as much
main memory as the original dataset. Without further study, we can
only speculate. There are several main memory overheads for iso-
surface calculation, besides the isosurface itself. For instance, one

yWe believe techniques such as [12] have active cell search times at least
comparable to the ones we have, but in general, these other techniques need
the whole dataset to be loaded into main memory, and the preprocessing has
to be done each time the dataset is loaded. Also, the indexing data structures
increase the amount of main memory needed (if only by a small amount),
thus making these methods less likely to be used for very large datasets.



# of meta-cells 146 361 1100 2364 3600 8400 30628
Total Time 618s 427.4s 346s 331s 331s 347s 376s
Meta-Cell Size 20.8M 21.5M 22.6M 23.7M 24.6M 26.7M 31.7M
Avg Vertex 2032.8 940.1 370.4 202.8 148.2 79.3 31.4
Avg Cell 6888.1 2785.8 914.2 425.4 279.35 119.7 32.8
Increase 7% 10% 16% 22% 26.9% 37.9% 63%
BBIO Tree (size) 4K 16K 48K 112K 168K 640K 1.7M
BBIO Tree (time) 0.42s 0.61s 1.51s 1.94s 3.78s 13.1s 31.9s

Query (act) 49.3K 49.3K 49.3K 49.3K 49.3K 49.3K 49.3K
Query (fetch) 704K 560K 418K 345K 320K 247K 167K
Query (mc) 87 189 414 754 1094 1996 4923
Perc. (mc) 59% 52% 37% 31% 30% 23% 16%
Query Time 3.34s 2.76s 2.09s 1.82s 1.73s 1.5s 1.18s

Table 3: Statistics for preprocessing and querying isosurfaces on the Delta dataset (original binary file size 19.4M). The entries for prepro-
cessing are as defined in Table 2. We also show the performance of a representative isosurface query with 64M of RAM: number of active
cells (“act”), number of cells fetched (“fetch”), number of fetched (i.e., active) meta-cells (“mc”), the ratio between the numbers of active and
overall meta-cells (“Perc. (mc)”), and finally the time for finding the active cells (the time for actual isosurface generation is not included).

is the Vtk “locator” class, which is used to avoid outputting multiple
vertices for the same spatial location.

4 Conclusions

In this paper we present a new out-of-core algorithm for output-
sensitive isosurface extraction. In our tests, our algorithm has
shown to be both robust and effective in optimizing isosurface
queries. Regardless of the size of the dataset, our techniques pro-
vide a cost-effective method to speed up isosurface extraction from
volume data. The actual code can be made much faster by fine tun-
ing the disk I/O. This is an interesting but hard and time-consuming
task, and might often be non-portable across platforms, since the in-
terplay among the operating system, the algorithms, and the disk is
non-trivial to optimize. We believe that a substantial speed-up can
be achieved by optimizing the external sorting and the file copying
primitives.

In the process, we developed two new techniques of independent
interest. First, our binary-blocked I/O interval is easier to imple-
ment, and uses less disk space than the existing external-memory
stabbing-query data structures. Secondly, the technique we use to
compute the meta-cells has a wider applicability in the preprocess-
ing of general cell structures larger than main memory. For ex-
ample, one could use our technique to break polyhedral surfaces
larger than main memory into spatially coherent sections for sim-
plification, or to break large volumetric grids into smaller ones for
rendering purposes.

We believe this work brings efficient out-of-core isosurface tech-
niques closer to practicality. One remaining challenge is to improve
the preprocessing times for large datasets, which, even though is
much lower than the ones presented in [10, 11], is still fairly costly.
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(a) (b) (c)

Figure 4: Illustration for the distribution of63 meta-cells: (a) the bounding boxes of the meta-cells; (b) the bounding boxes of the fetched
meta-cells during a query; (c) the fetched meta-cells superimposed with the isosurface.

(a) (b) (c)

Figure 5: Illustration for the distribution of103 meta-cells in the same dataset as in Fig. 4.


